Unmet Needs of Artificial Intelligence in Small Bowel Capsule Endoscopy
Abstract
:1. Introduction
2. Materials and Methods
3. The Role of Artificial Intelligence in Detecting and Characterizing Small Bowel Lesions
4. The Role of Artificial Intelligence in Assessing Small Bowel Cleanliness
5. Capsule Localization: A Critical Component in Small Bowel Capsule Endoscopy
6. Barriers to Clinical Integration of AI in SBCE
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SBCE | Small bowel capsule endoscopy |
SSBB | Suspected small bowel bleeding |
CD | Crohn’s disease |
AI | Artificial intelligence |
References
- Pennazio, M.; Rondonotti, E.; Despott, E.J.; Dray, X.; Keuchel, M.; Moreels, T.; Sanders, D.S.; Spada, C.; Carretero, C.; Valdivia, P.C.; et al. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Guideline—Update 2022. Endoscopy 2023, 55, 58–95. [Google Scholar] [CrossRef]
- Zammit, S.C.; Sidhu, R. Capsule endoscopy—Recent developments and future directions. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 127–137. [Google Scholar] [CrossRef]
- Wang, A.; Banerjee, S.; Barth, B.A.; Bhat, Y.M.; Chauhan, S.; Gottlieb, K.T.; Konda, V.; Maple, J.T.; Murad, F.; Pfau, P.R.; et al. Wireless capsule endoscopy. Gastrointest. Endosc. 2013, 78, 805–815. [Google Scholar] [CrossRef]
- Valdivia, P.C.; Deding, U.; Bjørsum-Meyer, T.; Baatrup, G.; Fernández-Urién, I.; Dray, X.; Boal-Carvalho, P.; Ellul, P.; Toth, E.; Rondonotti, E.; et al. Inter/Intra-Observer Agreement in Video-Capsule Endoscopy: Are We Getting It All Wrong? A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 2400. [Google Scholar] [CrossRef] [PubMed]
- Leenhardt, R.; Sainz, I.F.-U.; Rondonotti, E.; Toth, E.; Van de Bruaene, C.; Baltes, P.; Rosa, B.J.; Triantafyllou, K.; Histace, A.; Koulaouzidis, A.; et al. PEACE: Perception and Expectations toward Artificial Intelligence in Capsule Endoscopy. J. Clin. Med. 2021, 10, 5708. [Google Scholar] [CrossRef] [PubMed]
- Spada, C.; Piccirelli, S.; Hassan, C.; Ferrari, C.; Toth, E.; González-Suárez, B.; Keuchel, M.; McAlindon, M.; Finta, Á.; Rosztóczy, A.; et al. AI-assisted capsule endoscopy reading in suspected small bowel bleeding: A multicentre prospective study. Lancet Digit. Health 2024, 6, e345–e353. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Shi, H.; Zhang, H.; Zhang, H.; Tian, S.; Zhang, K.; Cai, S.; Ming, F.; Xie, X.; Liu, J.; et al. Artificial intelligence-based diagnosis of abnormalities in small-bowel capsule endoscopy. Endoscopy 2022, 55, 44–51. [Google Scholar] [CrossRef]
- Xie, X.; Xiao, Y.-F.; Zhao, X.-Y.; Li, J.-J.; Yang, Q.-Q.; Peng, X.; Nie, X.-B.; Zhou, J.-Y.; Zhao, Y.-B.; Yang, H.; et al. Development and Validation of an Artificial Intelligence Model for Small Bowel Capsule Endoscopy Video Review. JAMA Netw. Open 2022, 5, e2221992. [Google Scholar] [CrossRef]
- Houdeville, C.; Souchaud, M.; Leenhardt, R.; Goltstein, L.C.; Velut, G.; Beaumont, H.; Dray, X.; Histace, A. Toward automated small bowel capsule endoscopy reporting using a summarizing machine learning algorithm: The SUM UP study. Clin. Res. Hepatol. Gastroenterol. 2024, 49, 102509. [Google Scholar] [CrossRef]
- Saurin, J.-C.; Delvaux, M.; Gaudin, J.-L.; Fassler, I.; Villarejo, J.; Vahedi, K.; Bitoun, A.; Canard, J.-M.; Souquet, J.C.; Ponchon, T.; et al. Diagnostic Value of Endoscopic Capsule in Patients with Obscure Digestive Bleeding: Blinded Comparison with Video Push-Enteroscopy. Endoscopy 2003, 35, 576–584. [Google Scholar] [CrossRef]
- Korman, L.Y.; Delvaux, M.; Gay, G.; Hagenmuller, F.; Keuchel, M.; Friedman, S.; Weinstein, M.; Shetzline, M.; Cave, D.; de Franchis, R.; et al. Capsule Endoscopy Structured Terminology (CEST): Proposal of a Standardized and Structured Terminology for Reporting Capsule Endoscopy Procedures. Endoscopy 2005, 37, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Niv, Y.; Ilani, S.; Levi, Z.; Hershkowitz, M.; Niv, E.; Fireman, Z.; O’donnel, S.; O’morain, C.; Eliakim, R.; Scapa, E.; et al. Validation of the Capsule Endoscopy Crohn’s Disease Activity Index (CECDAI or Niv score): A multicenter prospective study. Endoscopy 2012, 44, 21–26. [Google Scholar] [CrossRef]
- Leenhardt, R.; Buisson, A.; Bourreille, A.; Marteau, P.; Koulaouzidis, A.; Li, C.; Keuchel, M.; Rondonotti, E.; Toth, E.; Plevris, J.N.; et al. Nomenclature and semantic descriptions of ulcerative and inflammatory lesions seen in Crohn’s disease in small bowel capsule endoscopy: An international Delphi consensus statement. United Eur. Gastroenterol. J. 2020, 8, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Sciberras, M.; Conti, K.; Elli, L.; Scaramella, L.; Riccioni, M.E.; Marmo, C.; Cadoni, S.; McAlindon, M.; Sidhu, R.; O’hara, F.; et al. Score reproducibility and reliability in differentiating small bowel subepithelial masses from innocent bulges. Dig. Liver Dis. 2022, 54, 1403–1409. [Google Scholar] [CrossRef]
- Dray, X.; Iakovidis, D.; Houdeville, C.; Jover, R.; Diamantis, D.; Histace, A.; Koulaouzidis, A. Artificial intelligence in small bowel capsule endoscopy—current status, challenges and future promise. J. Gastroenterol. Hepatol. 2021, 36, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Noya, F.; Alvarez-Gonzalez, M.A.; Benitez, R. Automated angiodysplasia detection from wireless capsule endoscopy. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Republic of Korea, 11–15 July 2017; 2017; pp. 3158–3161. [Google Scholar]
- Leenhardt, R.; Vasseur, P.; Li, C.; Saurin, J.C.; Rahmi, G.; Cholet, F.; Becq, A.; Marteau, P.; Histace, A.; Dray, X.; et al. A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointest. Endosc. 2019, 89, 189–194. [Google Scholar] [CrossRef]
- Tsuboi, A.; Oka, S.; Aoyama, K.; Saito, H.; Aoki, T.; Yamada, A.; Matsuda, T.; Fujishiro, M.; Ishihara, S.; Nakahori, M.; et al. Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images. Dig. Endosc. 2020, 32, 382–390. [Google Scholar] [CrossRef]
- Fan, S.; Xu, L.; Fan, Y.; Wei, K.; Li, L. Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images. Phys. Med. Biol. 2018, 63, 165001. [Google Scholar] [CrossRef]
- Aoki, T.; Yamada, A.; Aoyama, K.; Saito, H.; Tsuboi, A.; Nakada, A.; Niikura, R.; Fujishiro, M.; Oka, S.; Ishihara, S.; et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest. Endosc. 2019, 89, 357–363.e2. [Google Scholar] [CrossRef]
- Wang, S.; Xing, Y.; Zhang, L.; Gao, H.; Zhang, H. A systematic evaluation and optimization of automatic detection of ulcers in wireless capsule endoscopy on a large dataset using deep convolutional neural networks. Phys. Med. Biol. 2019, 64, 235014. [Google Scholar] [CrossRef]
- Klang, E.; Barash, Y.; Margalit, R.Y.; Soffer, S.; Shimon, O.; Albshesh, A.; Ben-Horin, S.; Amitai, M.M.; Eliakim, R.; Kopylov, U. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointest. Endosc. 2020, 91, 606–613.e2. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Lee, H.H.; Park, C.; Tama, B.A.; Kim, J.S.; Cheung, D.Y.; Chung, W.C.; Cho, Y.; Lee, K.; Choi, M.; et al. Improved classification and localization approach to small bowel capsule endoscopy using convolutional neural network. Dig. Endosc. 2021, 33, 598–607. [Google Scholar] [CrossRef]
- Saraiva, M.J.M.; Afonso, J.; Ribeiro, T.; Ferreira, J.; Cardoso, H.; Andrade, A.P.; Parente, M.; Natal, R.; Macedo, G. Deep learning and capsule endoscopy: Automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network. BMJ Open Gastroenterol. 2021, 8, e000753. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Yamada, A.; Kato, Y.; Saito, H.; Tsuboi, A.; Nakada, A.; Niikura, R.; Fujishiro, M.; Oka, S.; Ishihara, S.; et al. Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: A multicenter study. Gastrointest. Endosc. 2021, 93, 165–173.e1. [Google Scholar] [CrossRef]
- Xie, X.; Xiao, Y.-F.; Yang, H.; Peng, X.; Li, J.-J.; Zhou, Y.-Y.; Fan, C.-Q.; Meng, R.-P.; Huang, B.-B.; Liao, X.-P.; et al. A new artificial intelligence system for both stomach and small-bowel capsule endoscopy. Gastrointest. Endosc. 2024, 100, 878.e1–878.e14. [Google Scholar] [CrossRef]
- Sidhu, R.; Shiha, M.G.; Carretero, C.; Koulaouzidis, A.; Dray, X.; Mussetto, A.; Keuchel, M.; Spada, C.; Despott, E.J.; Zammit, S.C.; et al. Performance measures for small-bowel endoscopy: A European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative—Update 2025. Endoscopy 2025, 57, 366–389. [Google Scholar] [CrossRef]
- Marmo, C.; Riccioni, M.E.; Pennazio, M.; Antonelli, G.; Spada, C.; Costamagna, G. Small bowel cleansing for capsule endoscopy, systematic review and meta- analysis: Timing is the real issue. Dig. Liver Dis. 2023, 55, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Rondonotti, E.; Spada, C.; Adler, S.; May, A.; Despott, E.J.; Koulaouzidis, A.; Panter, S.; Domagk, D.; Fernandez-Urien, I.; Rahmi, G.; et al. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Technical Review. Endoscopy 2018, 50, 423–446. [Google Scholar] [CrossRef]
- Ponte, A.; Pinho, R.; Rodrigues, A.; Carvalho, J. Review of small-bowel cleansing scales in capsule endoscopy: A panoply of choices. World J. Gastrointest. Endosc. 2016, 8, 600–609. [Google Scholar] [CrossRef]
- Brotz, C.; Nandi, N.; Conn, M.; Daskalakis, C.; DiMarino, M.; Infantolino, A.; Katz, L.C.; Schroeder, T.; Kastenberg, D. A validation study of 3 grading systems to evaluate small-bowel cleansing for wireless capsule endoscopy: A quantitative index, a qualitative evaluation, and an overall adequacy assessment. Gastrointest. Endosc. 2009, 69, 262–270.e1. [Google Scholar] [CrossRef]
- Park, S.C.; Keum, B.; Hyun, J.J.; Seo, Y.S.; Kim, Y.S.; Jeen, Y.T.; Chun, H.J.; Um, S.H.; Kim, C.D.; Ryu, H.S. A novel cleansing score system for capsule endoscopy. World J. Gastroenterol. 2010, 16, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Van Weyenberg, S.J.B.; De Leest, H.T.J.I.; Mulder, C.J.J. Description of a novel grading system to assess the quality of bowel preparation in video capsule endoscopy. Endoscopy 2011, 43, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Gizbar, M.; Bourke, M.J.; Ahlenstiel, G. Validated computed cleansing score for video capsule endoscopy. Dig. Endosc. 2016, 28, 564–569. [Google Scholar] [CrossRef]
- Ponte, A.; Pinho, R.; Rodrigues, A.; Silva, J.; Rodrigues, J.; Carvalho, J. Validation of the computed assessment of cleansing score with the Mirocam® system. Rev. Esp. Enfermedades Dig. 2016, 108, 709–715. [Google Scholar] [CrossRef]
- Ali, E.A.; Histace, A.; Camus, M.; Gerometta, R.; Becq, A.; Pietri, O.; Nion-Larmurier, I.; Li, C.; Chaput, U.; Marteau, P.; et al. Development and validation of a computed assessment of cleansing score for evaluation of quality of small-bowel visualization in capsule endoscopy. Endosc. Int. Open 2018, 6, E646–E651. [Google Scholar] [CrossRef]
- Pietri, O.; Rezgui, G.; Histace, A.; Camus, M.; Nion-Larmurier, I.; Li, C.; Becq, A.; Ali, E.A.; Romain, O.; Chaput, U.; et al. Development and validation of an automated algorithm to evaluate the abundance of bubbles in small bowel capsule endoscopy. Endosc. Int. Open 2018, 6, E462–E469. [Google Scholar] [CrossRef] [PubMed]
- Oumrani, S.; Histace, A.; Ali, E.A.; Pietri, O.; Becq, A.; Houist, G.; Nion-Larmurier, I.; Camus, M.; Florent, C.; Dray, X. Multi-criterion, automated, high-performance, rapid tool for assessing mucosal visualization quality of still images in small bowel capsule endoscopy. Endosc. Int. Open 2019, 07, E944–E948. [Google Scholar] [CrossRef]
- Noorda, R.; Nevárez, A.; Colomer, A.; Beltrán, V.P.; Naranjo, V. Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture. Sci. Rep. 2020, 10, 17706. [Google Scholar] [CrossRef]
- Histace, A.; Dray, X.; Leenhardt, R.; Souchaud, M.; Houist, G.; Le Mouel, J.-P.; Saurin, J.-C.; Cholet, F.; Rahmi, G.; Leandri, C. A neural network-based algorithm for assessing the cleanliness of small bowel during capsule endoscopy. Endoscopy 2021, 53, 932–936. [Google Scholar] [CrossRef]
- Nam, J.H.; Oh, D.J.; Lee, S.; Song, H.J.; Lim, Y.J. Development and Verification of a Deep Learning Algorithm to Evaluate Small-Bowel Preparation Quality. Diagnostics 2021, 11, 1127. [Google Scholar] [CrossRef]
- Nam, J.H.; Hwang, Y.; Oh, D.J.; Park, J.; Kim, K.B.; Jung, M.K.; Lim, Y.J. Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy. Sci. Rep. 2021, 11, 4417. [Google Scholar] [CrossRef]
- Ribeiro, T.; Saraiva, M.J.M.; Afonso, J.; Cardoso, P.; Mendes, F.; Martins, M.; Andrade, A.P.; Cardoso, H.; Saraiva, M.M.; Ferreira, J.; et al. Design of a Convolutional Neural Network as a Deep Learning Tool for the Automatic Classification of Small-Bowel Cleansing in Capsule Endoscopy. Medicina 2023, 59, 810. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.J.; Hwang, Y.; Nam, J.H.; Lim, Y.J. Small bowel cleanliness in capsule endoscopy: A case–control study using validated artificial intelligence algorithm. Sci. Rep. 2022, 12, 18265. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Masaracchia, A.; Barjuei, E.S.; Menciassi, A.; Arezzo, A.; Koulaouzidis, A.; Stoyanov, D.; Dario, P.; Ciuti, G. Localization strategies for robotic endoscopic capsules: A review. Expert Rev. Med. Devices 2019, 16, 381–403. [Google Scholar] [CrossRef]
- Hanscom, M.; Cave, D.R. Endoscopic capsule robot-based diagnosis, navigation and localization in the gastrointestinal tract. Front. Robot. AI 2022, 9, 896028. [Google Scholar] [CrossRef]
- Pan, J.; Xia, J.; Jiang, B.; Zhang, H.; Zhang, H.; Li, Z.-S.; Liao, Z. Real-time identification of gastric lesions and anatomical landmarks by artificial intelligence during magnetically controlled capsule endoscopy. Endoscopy 2022, 54, E622–E623. [Google Scholar] [CrossRef] [PubMed]
- Vedaei, S.S.; Wahid, K.A. A localization method for wireless capsule endoscopy using side wall cameras and IMU sensor. Sci. Rep. 2021, 11, 11204. [Google Scholar] [CrossRef]
- Marya, N.; Karellas, A.; Foley, A.; Roychowdhury, A.; Cave, D. Computerized 3-dimensional localization of a video capsule in the abdominal cavity: Validation by digital radiography. Gastrointest. Endosc. 2014, 79, 669–674. [Google Scholar] [CrossRef]
- Than, T.D.; Alici, G.; Zhou, H.; Li, W. A Review of Localization Systems for Robotic Endoscopic Capsules. IEEE Trans. Biomed. Eng. 2012, 59, 2387–2399. [Google Scholar] [CrossRef]
Author | Year | Capsule Type | Training Set | Indication | Scale Type | Accuracy |
---|---|---|---|---|---|---|
Noorda R. [39] | 2020 | Pillcam SB3 | 55,293 images | All indications | Qualitative | 95.23 |
Leenhardt R. [40] | 2021 | Pillcam SB3 | 600 images | OGIB | OAA | 89.7 |
Nam J.H. [42] | 2021 | Pillcam SB3 | 71,191 images | All indications | Quantitative | 69.4 |
Nam J.H. [41] | 2021 | MC-1000 MC-1200 MC-4000 | 280,000 images | All indications | Quantitative | 93 |
Riberio T. [43] | 2023 | Pillcam SB3 OMOM HD | 12,159 images | All indications | Quantitative | 92.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccirelli, S.; Salvi, D.; Pugliano, C.L.; Tettoni, E.; Facciorusso, A.; Rondonotti, E.; Mussetto, A.; Fuccio, L.; Cesaro, P.; Spada, C. Unmet Needs of Artificial Intelligence in Small Bowel Capsule Endoscopy. Diagnostics 2025, 15, 1092. https://doi.org/10.3390/diagnostics15091092
Piccirelli S, Salvi D, Pugliano CL, Tettoni E, Facciorusso A, Rondonotti E, Mussetto A, Fuccio L, Cesaro P, Spada C. Unmet Needs of Artificial Intelligence in Small Bowel Capsule Endoscopy. Diagnostics. 2025; 15(9):1092. https://doi.org/10.3390/diagnostics15091092
Chicago/Turabian StylePiccirelli, Stefania, Daniele Salvi, Cecilia Lina Pugliano, Enrico Tettoni, Antonio Facciorusso, Emanuele Rondonotti, Alessandro Mussetto, Lorenzo Fuccio, Paola Cesaro, and Cristiano Spada. 2025. "Unmet Needs of Artificial Intelligence in Small Bowel Capsule Endoscopy" Diagnostics 15, no. 9: 1092. https://doi.org/10.3390/diagnostics15091092
APA StylePiccirelli, S., Salvi, D., Pugliano, C. L., Tettoni, E., Facciorusso, A., Rondonotti, E., Mussetto, A., Fuccio, L., Cesaro, P., & Spada, C. (2025). Unmet Needs of Artificial Intelligence in Small Bowel Capsule Endoscopy. Diagnostics, 15(9), 1092. https://doi.org/10.3390/diagnostics15091092