Pancreatic Neuroendocrine Diagnostic Imaging Order and Reader Evaluation over Two Decades in a Tertiary Academic Center
Abstract
:1. Introduction
2. Methods and Materials
2.1. Target Population
2.2. Study Design
3. Results
3.1. Our Data Characteristics
3.2. Inter-Reader and Intra-Reader Detection Assessment
- The sensitivity for pancreatic head tumor detection is higher than in the tail.
- To provide optimal care for patients with rare pNETs, multidisciplinary teams of healthcare professionals need to remain updated on the latest impacts of clinical imaging trends and aware of changes in the displaying of radiological features as a result of technical advances. Given the non-specific clinical symptoms and the overlap with other gastrointestinal conditions in suspected syndromic or disparate hormonally functional pNETs, the detection of millimeter-sized tumors in this deep-seated organ requires expertise. CT is recommended as the initial imaging modality, with MRI follow-ups.
- Our study shows CT’s dominance as the initial scan for pNET detection and an increasing preference for MRI and EUS as follow-ups. These patterns emphasize CT reliance as the primary modality for pNETs, supported by satisfactory inter-reader and intra-reader reliability for CT.
- This study also found that three advanced radiology fellowship-trained readers performed well in the preoperative detection of pNETs, with better detection on CT compared to MRI, especially with recent technical advances.
- However, intra-reader reliability was suboptimal, addressing the need for improvement in both CT and MRI.
4. Discussion
4.1. Observational Trend Findings
4.2. Concurrent Clinical Updates in a Review of the Literature
4.2.1. Evolution in Pathology Staging and Diagnosis
4.2.2. Surgical Management Advances
4.2.3. Advances in MR Imaging Techniques [26]
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Canakis, A.; Lee, L.S. Current updates and future directions in diagnosis and management of gastroenteropancreatic neuroendocrine neoplasms. World J. Gastrointest. Endosc. 2022, 14, 267–290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Howe, J.R.; Merchant, N.B.; Conrad, C.; Keutgen, X.M.; Hallet, J.; Drebin, J.A.; Minter, R.M.; Lairmore, T.C.; Tseng, J.F.; Zeh, H.J.; et al. The North American Neuroendocrine Tumor Society Consensus Paper on the Surgical Management of Pancreatic Neuroendocrine Tumors. Pancreas 2020, 49, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Kos-Kudła, B.; Castaño, J.P.; Denecke, T.; Grande, E.; Kjaer, A.; Koumarianou, A.; de Mestier, L.; Partelli, S.; Perren, A.; Stättner, S.; et al. European Neuroendocrine Tumour Society (ENETS) 2023 guidance paper for nonfunctioning pancreatic neuroendocrine tumours. J. Neuroendocrinol. 2023, 35, e13343. [Google Scholar] [CrossRef] [PubMed]
- Hofland, J.; Falconi, M.; Christ, E.; Castaño, J.P.; Faggiano, A.; Lamarca, A.; Perren, A.; Petrucci, S.; Prasad, V.; Ruszniewski, P.; et al. European Neuroendocrine Tumor Society 2023 guidance paper for functioning pancreatic neuroendocrine tumour syndromes. J. Neuroendocrinol. 2023, 35, e13318. [Google Scholar] [CrossRef] [PubMed]
- Milione, M.; Maisonneuve, P.; Spada, F.; Pellegrinelli, A.; Spaggiari, P.; Albarello, L.; Pisa, E.; Barberis, M.; Vanoli, A.; Buzzoni, R.; et al. The Clinicopathologic Heterogeneity of Grade 3 Gastroenteropancreatic Neuroendocrine Neoplasms: Morphological Differentiation and Proliferation Identify Different Prognostic Categories. Neuroendocrinology 2017, 104, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Rosa, S.; Sessa, F. High-grade poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: From morphology to proliferation and back. Endocr. Pathol. 2014, 25, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.B.S. The 2017 World Health Organization classification of tumors of the pituitary gland: A summary. Acta Neuropathol. 2017, 134, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Andreasi, V.; Partelli, S.; Muffatti, F.; Manzoni, M.F.; Capurso, G.; Falconi, M. Update on gastroenteropancreatic neuroendocrine tumors. Dig. Liver Dis. 2021, 53, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Nanno, Y.; Matsumoto, I.; Zen, Y.; Otani, K.; Uemura, J.; Toyama, H.; Asari, S.; Goto, T.; Ajiki, T.; Okano, K.; et al. Pancreatic Duct Involvement in Well-Differentiated Neuroendocrine Tumors is an Independent Poor Prognostic Factor. Ann. Surg. Oncol. 2017, 24, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Crippa, S.; Pergolini, I.; Rubini, C.; Castelli, P.; Partelli, S.; Zardini, C.; Marchesini, G.; Zamboni, G.; Falconi, M. Risk of misdiagnosis and overtreatment in patients with main pancreatic duct dilatation and suspected combined/main duct intraductal papillary mucinous neoplasms. Surgery 2016, 159, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Minaga, K.; Otsuka, Y.; Masuta, Y.; Kamata, K.; Yamao, K.; Takenaka, M.; Hyodo, T.; Kimura, M.; Watanabe, T.; et al. Pancreatic neuroendocrine carcinoma with unique morphological features mimicking intraductal papillary mucinous carcinoma: A case report. Front. Med. 2022, 9, 951834. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-Y.; Gong, Y.-F.; Zhuang, H.-K.; Zhou, Z.-X.; Huang, S.-Z.; Zou, Y.-P.; Huang, B.-W.; Sun, Z.-H.; Zhang, C.-Z.; Tang, Y.-Q.; et al. Pancreatic neuroendocrine tumors: A review of serum biomarkers, staging, and management. World J. Gastroenterol. 2020, 26, 2305–2322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jensen, R.T.; Norton, J.A. Treatment of Pancreatic Neuroendocrine Tumors in Multiple Endocrine Neoplasia Type 1: Some Clarity But Continued Controversy. Pancreas 2017, 46, 589–594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sadowski, S.M.; Millo, C.; Cottle-Delisle, C.; Merkel, R.; Yang, L.A.; Herscovitch, P.; Pacak, K.; Simonds, W.F.; Marx, S.J.; Kebebew, E. Results of (68)Gallium-DOTATATE PET/CT Scanning in Patients with Multiple Endocrine Neoplasia Type 1. J. Am. Coll. Surg. 2015, 221, 509–517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Froeling, V.; Elgeti, F.; Maurer, M.H.; Scheurig-Muenkler, C.; Beck, A.; Kroencke, T.J.; Pape, U.-F.; Hamm, B.; Brenner, W.; Schreiter, N.F. Impact of Ga-68 DOTATOC PET/CT on the diagnosis and treatment of patients with multiple endocrine neoplasia. Ann. Nucl. Med. 2012, 26, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Lastoria, S.; Marciello, F.; Faggiano, A.; Aloj, L.; Caracò, C.; Aurilio, M.; D’ambrosio, L.; Di Gennaro, F.; Ramundo, V.; Camera, L.; et al. Role of (68)Ga-DOTATATE PET/CT in patients with multiple endocrine neoplasia type 1 (MEN1). Endocrine 2016, 52, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Mukherjee, A.; Karunanithi, S.; Naswa, N.; Kumar, R.; Ammini, A.C.; Bal, C. Accuracy of 68Ga DOTANOC PET/CT Imaging in Patients With Multiple Endocrine Neoplasia Syndromes. Clin. Nucl. Med. 2015, 40, e351–e356. [Google Scholar] [CrossRef] [PubMed]
- Kumar Gupta, S.; Singla, S.; Damle, N.A.; Agarwal, K.; Bal, C. Diagnosis of Men-I Syndrome on (68)Ga-DOTANOC PET-CT and Role of Peptide Receptor Radionuclide Therapy With (177)Lu-DOTATATE. Int. J. Endocrinol. Metab. 2012, 10, 629–633. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanbidge, A.E. Cancer of the pancreas: The best image for early detection--CT, MRI, PET or US? Can. J. Gastroenterol. 2002, 16, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Bettini, R.; Partelli, S.; Boninsegna, L.; Capelli, P.; Crippa, S.; Pederzoli, P.; Scarpa, A.; Falconi, M. Tumor size correlates with malignancy in nonfunctioning pancreatic endocrine tumor. Surgery 2011, 150, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Regenet, N.; Carrere, N.; Boulanger, G.; de Calan, L.; Humeau, M.; Arnault, V.; Kraimps, J.-L.; Mathonnet, M.; Pessaux, P.; Donatini, G.; et al. Is the 2-cm size cutoff relevant for small nonfunctioning pancreatic neuroendocrine tumors: A French multicenter study. Surgery 2016, 159, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Gratian, L.; Pura, J.; Dinan, M.; Roman, S.; Reed, S.; Sosa, J.A. Impact of extent of surgery on survival in patients with small nonfunctional pancreatic neuroendocrine tumors in the United States. Ann. Surg. Oncol. 2014, 21, 3515–3521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Falconi, M.; Eriksson, B.; Kaltsas, G.; Bartsch, D.K.; Capdevila, J.; Caplin, M.; Kos-Kudla, B.; Kwekkeboom, D.; Rindi, G.; Klöppel, G.; et al. ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2016, 103, 153–171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kabasawa, H. MR Imaging in the 21st Century: Technical Innovation over the First Two Decades. Magn. Reson. Med. Sci. 2022, 21, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Fukatsu, H. 3T MR for clinical use: Update. Magn. Reson. Med. Sci. 2003, 2, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Inoue, T.; Tohyama, K.; Oikawa, H.; Ehara, S.; Ogawa, A. High-field MRI of the central nervous system: Current approaches to clinical and microscopic imaging. Magn. Reson. Med. Sci. 2003, 2, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Naganawa, S.; Kawai, H.; Fukatsu, H.; Ishigaki, T.; Komada, T.; Maruyama, K.; Takizawa, O. High-speed imaging at 3 Tesla: A technical and clinical review with an emphasis on whole-brain 3D imaging. Magn. Reson. Med. Sci. 2004, 3, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, M.; Kido, A.; Koyama, T.; Isoda, H.; Umeoka, S.; Tamai, K.; Nakamoto, Y.; Maetani, Y.; Morisawa, N.; Saga, T.; et al. MRI of the female pelvis at 3T compared to 1.5T: Evaluation on high-resolution T2-weighted and HASTE images. J. Magn. Reson. Imaging 2007, 25, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, V.; Campana, D.; Bodei, L.; Nanni, C.; Castellucci, P.; Allegri, V.; Montini, G.C.; Tomassetti, P.; Paganelli, G.; Fanti, S. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J. Nucl. Med. 2010, 51, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Barbe, C.; Murat, A.; Dupas, B.; Ruszniewski, P.; Tabarin, A.; Vullierme, M.-P.; Penfornis, A.; Rohmer, V.; Baudin, E.; Le Rhun, M.; et al. Magnetic resonance imaging versus endoscopic ultrasonography for the detection of pancreatic tumours in multiple endocrine neoplasia type 1. Dig. Liver Dis. 2012, 44, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Sundin, A.; Arnold, R.; Baudin, E.; Cwikla, J.B.; Eriksson, B.; Fanti, S.; Fazio, N.; Giammarile, F.; Hicks, R.J.; Kjaer, A.; et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Radiological, Nuclear Medicine & Hybrid Imaging. Neuroendocrinology 2017, 105, 212–244. [Google Scholar] [PubMed]
- Kim, J.H.; Eun, H.W.; Kim, Y.J.; Lee, J.M.; Han, J.K.; Choi, B.I. Pancreatic neuroendocrine tumour (PNET): Staging accuracy of MDCT and its diagnostic performance for the differentiation of PNET with uncommon CT findings from pancreatic adenocarcinoma. Eur. Radiol. 2016, 26, 1338–1347. [Google Scholar] [CrossRef] [PubMed]
- Di Leo, M.; Poliani, L.; Rahal, D.; Auriemma, F.; Anderloni, A.; Ridolfi, C.; Spaggiari, P.; Capretti, G.; Di Tommaso, L.; Preatoni, P.; et al. Pancreatic Neuroendocrine Tumours: The Role of Endoscopic Ultrasound Biopsy in Diagnosis and Grading Based on the WHO 2017 Classification. Dig. Dis. 2019, 37, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Farchione, A.; Rufini, V.; Brizi, M.G.; Iacovazzo, D.; Larghi, A.; Massara, R.M.; Petrone, G.; Poscia, A.; Treglia, G.; De Marinis, L.; et al. Evaluation of the Added Value of Diffusion-Weighted Imaging to Conventional Magnetic Resonance Imaging in Pancreatic Neuroendocrine Tumors and Comparison With 68Ga-DOTANOC Positron Emission Tomography/Computed Tomography. Pancreas 2016, 45, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Klein, H.M. Low-Field Magnetic Resonance Imaging. Rofo 2020, 192, 537–548. [Google Scholar] [CrossRef] [PubMed]
Studied Characteristics | Syndromic | Non-Syndromic | Overall |
---|---|---|---|
Number of patients | N = 35 | N = 40 | N = 75 |
Presented with metastases | N = 9 | N = 7 | N = 16 |
Mean age ± SD | 53.43 ± 16.36 | 55.97 ± 18.10 | 54.7 ± 17.23 |
Gender | 5 Male, 30 Female | 22 Male, 18 Female | 27 Male, 48 Female |
<2 cm | N = 23 | N = 17 | N = 40 |
2–4 cm | N = 6 | N = 9 | N = 15 |
>4 cm | N = 6 | N = 13 | N = 19 |
Tumor site | Head: N = 15 Neck: N = 3 Body: N = 5 Tail: N = 12 | Head: N = 8 Neck: N = 3 Body: N = 7 Tail: N = 13 | Head: 32% Neck: 9% Body: 18% Tail: 41% |
MRI | N = 16 13 detections in initial scan | N = 16 8 detections in initial scan | N = 32 |
CT | N = 21 19 detections in initial scan | N = 42 37 detections in initial scan | N = 63 |
EUS | N = 17 11 detections in initial scan | N = 18 5 detections in initial scan | N = 35 |
Surgery | Ex-lap: N = 29 Whipple: N = 24 | Ex-lap: N = 20 Whipple: N = 2 | Ex-lap: N = 49 Whipple: N = 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babapour, S.; Chen, A.; Li, G.; Phan, L. Pancreatic Neuroendocrine Diagnostic Imaging Order and Reader Evaluation over Two Decades in a Tertiary Academic Center. Diagnostics 2025, 15, 960. https://doi.org/10.3390/diagnostics15080960
Babapour S, Chen A, Li G, Phan L. Pancreatic Neuroendocrine Diagnostic Imaging Order and Reader Evaluation over Two Decades in a Tertiary Academic Center. Diagnostics. 2025; 15(8):960. https://doi.org/10.3390/diagnostics15080960
Chicago/Turabian StyleBabapour, Sara, Annabel Chen, Grace Li, and Luke Phan. 2025. "Pancreatic Neuroendocrine Diagnostic Imaging Order and Reader Evaluation over Two Decades in a Tertiary Academic Center" Diagnostics 15, no. 8: 960. https://doi.org/10.3390/diagnostics15080960
APA StyleBabapour, S., Chen, A., Li, G., & Phan, L. (2025). Pancreatic Neuroendocrine Diagnostic Imaging Order and Reader Evaluation over Two Decades in a Tertiary Academic Center. Diagnostics, 15(8), 960. https://doi.org/10.3390/diagnostics15080960