Can the Atherogenic Index of Plasma (AIP) Be a Prognostic Marker for Good Clinical Outcome After Mechanical Thrombectomy for Acute Ischemic Stroke?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Liu, K.; Pei, L.; Li, S.; Zhao, J.; Zhang, K.; Zong, C.; Zhao, L.; Fang, H.; Wu, J.; et al. Atherogenic Index of Plasma Predicts Outcomes in Acute Ischemic Stroke. Front. Neurol. 2021, 12, 741754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kocayigit, I.; Kilic, H.; Acar, B.A.; Acar, T.; Aras, Y.G.; Can, Y.; Eryılmaz, H.A.; Boncuk, S.; Akdemir, R. Should coronary catheter laboratories be used in the treatment of ischemic stroke? Endovascular treatment in acute ischemic stroke performed by interventional cardiologists. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, H.; Wu, K.; Wu, W.; Chen, G.; Chen, Z.; Cai, Z.; Cai, Z.; Lan, Y.; Wu, S.; Chen, Y. Relationship between the cumulative exposure to atherogenic index of plasma and ischemic stroke: A retrospective cohort study. Cardiovasc. Diabetol. 2023, 22, 313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piechocki, M.; Przewłocki, T.; Pieniążek, P.; Trystuła, M.; Podolec, J.; Kabłak-Ziembicka, A. A Non-Coronary, Peripheral Arterial Atherosclerotic Disease (Carotid, Renal, Lower Limb) in Elderly Patients-A Review: Part I-Epidemiology, Risk Factors, and Atherosclerosis-Related Diversities in Elderly Patients. J. Clin. Med. 2024, 13, 1471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Z.; Wang, H.; Hou, Q.; Zhou, Y.; Zhang, Y. Non-traditional lipid parameters as potential predictors of carotid plaque vulnerability and stenosis in patients with acute ischemic stroke. Neurol. Sci. 2023, 44, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Q.; Liu, L.; Liu, X.-C.; Lo, K.; Tang, S.-T.; Feng, Y.-Q.; Zhang, B. The association of blood lipid parameters variability with ischemic stroke in hypertensive patients. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Akdağ, G.; Saygın Uysal, E.; Çetiner, M.; Bardakçı, M.A.; Uysal, N.; Yatmazoğlu Çetin, M.; Ceylan, D.; Akkoyun Arıkan, F.; Canbaz Kabay, S. The Relationship of Hematologic Parameters and Lipid Profile with Acute Ischemic Stroke. Sak. Tıp Dergisi. 2024, 14, 334–343. [Google Scholar] [CrossRef]
- Fernández-Macías, J.C.; Ochoa-Martínez, A.C.; Varela-Silva, J.A.; Pérez-Maldonado, I.N. Atherogenic Index of Plasma: Novel Predictive Biomarker for Cardiovascular Illnesses. Arch. Med. Res. 2019, 50, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, C.; Yang, J.; Seery, S.; Qi, Y.; Wang, W.; Zhang, K.; Shao, C.; Tang, Y.-D. Atherogenic index of plasma for non-diabetic, coronary artery disease patients after percutaneous coronary intervention: A prospective study of the long-term outcomes in China. Cardiovasc. Diabetol. 2022, 21, 29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kakarla, R.; Vinjavarapu, L.A.; Krishnamurthy, S. Diet and Nutraceuticals for treatment and prevention of primary and secondary stroke: Emphasis on nutritional antiplatelet and antithrombotic agents. Neurochem. Int. 2024, 179, 105823. [Google Scholar] [CrossRef] [PubMed]
- Rajashekar, D.; Wilms, M.; MacDonald, M.E.; Schimert, S.; Hill, M.D.; Demchuk, A.; Goyal, M.; Dukelow, S.P.; Forkert, N.D. Lesion-symptom mapping with NIHSS sub-scores in ischemic stroke patients. Stroke Vasc. Neurol. 2022, 7, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Powers, W. Selecting stroke patients for thrombectomy: Is CTA+ASPECTS enough? J. Neurol. Neurosurg. Psychiatry 2023, 94, 779–780. [Google Scholar] [CrossRef] [PubMed]
- von Kummer, R.; Broderick, J.P.; Campbell, B.C.; Demchuk, A.; Goyal, M.; Hill, M.D.; Treurniet, K.M.; Majoie, C.B.; Marquering, H.A.; Mazya, M.V.; et al. The Heidelberg Bleeding Classification: Classification of Bleeding Events After Ischemic Stroke and Reperfusion Therapy. Stroke 2015, 46, 2981–2986. [Google Scholar] [CrossRef]
- Chen, P.H.; Gao, S.; Wang, Y.J.; Xu, A.D.; Li, Y.S.; Wang, D. Classifying Ischemic Stroke, from TOAST to CISS. CNS Neurosci. Ther. 2012, 18, 452–456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elawady, S.S.; Saway, B.F.; Matsukawa, H.; Uchida, K.; Lin, S.; Maier, I.; Jabbour, P.; Kim, J.-T.; Wolfe, S.Q.; Rai, A.; et al. Thrombectomy in Stroke Patients with Low Alberta Stroke Program Early Computed Tomography Score: Is Modified Thrombolysis in Cerebral Infarction (mTICI) 2c/3 Superior to mTICI 2b? J. Stroke 2024, 26, 95–103. [Google Scholar] [CrossRef]
- Tung, E.L.; McTaggart, R.A.; Baird, G.L.; Yaghi, S.; Hemendinger, M.; Dibiasio, E.L.; Hidlay, D.T.; Tung, G.A.; Jayaraman, M.V. Rethinking Thrombolysis in Cerebral Infarction 2b: Which Thrombolysis in Cerebral Infarction Scales Best Define Near Complete Recanalization in the Modern Thrombectomy Era? Stroke 2017, 48, 2488–2493. [Google Scholar] [CrossRef] [PubMed]
- Nussbaumerová, B. Hypertension and dyslipidemia treament in stroke. Vnitr. Lek. 2022, 68, 172–177. (In English) [Google Scholar] [CrossRef] [PubMed]
- Aradine, E.; Hou, Y.; Cronin, C.A.; Chaturvedi, S. Current Status of Dyslipidemia Treatment for Stroke Prevention. Curr. Neurol. Neurosci. Rep. 2020, 20, 31. [Google Scholar] [CrossRef] [PubMed]
- Eren, F.; Yücel, K. İskemik ve Hemorajik İnme Hastalarında Kan Lipid Parametrelerinin Karşılaştırılması ve Mortalite ile İlişkisi. Sak. Med. J. 2021, 11, 400–408. [Google Scholar] [CrossRef]
- Chang, Y.; Eom, S.; Kim, M.; Song, T.J. Medical Management of Dyslipidemia for Secondary Stroke Prevention: Narrative Review. Medicina 2023, 59, 776. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joob, B.; Wiwanitkit, V. Atherogenic index of plasma for the assessment of cardiovascular risk factors. Ann. Afr. Med. 2017, 16, 148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akıncı, S.; Akbay, E. 10-Year Cardiovascular Risk, Serum Lipid Indices and High Sensitivity CRP in a Healthy Population. Sak. Med. J. 2023, 13, 225–231. [Google Scholar] [CrossRef]
- Dobiásová, M. Atherogenic index of plasma [log(triglycerides/HDL-cholesterol)]: Theoretical and practical implications. Clin. Chem. 2004, 50, 1113–1115. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, W.; Chen, S.; Yan, E.; Liu, L.; Chen, J.; Qian, M. Association between the atherogenic index of plasma and early neurological deterioration in mechanical thrombectomy patients. J. Stroke Cerebrovasc. Dis. 2024, 33, 107993. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, S.; Tian, X.; Xu, Q.; Xia, X.; Zhang, X.; Li, J.; Wu, S.; Wang, A. Elevated atherogenic index of plasma associated with stroke risk in general Chinese. Endocrine, 2024; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Ivanovic, B.; Cuspidi, C. What do we currently know about metabolic syndrome and atrial fibrillation? Clin. Cardiol. 2013, 36, 654–662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horio, T.; Miyazato, J.; Kamide, K.; Takiuchi, S.; Kawano, Y. Influence of low high-density lipoprotein cholesterol on left ventricular hypertrophy and diastolic function in essential hypertension. Am. J. Hypertens. 2003, 16 Pt 1, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Velagaleti, R.S.; Massaro, J.; Vasan, R.S.; Robins, S.J.; Kannel, W.B.; Levy, D. Relations of lipid concentrations to heart failure incidence: The Framingham Heart Study. Circulation 2009, 120, 2345–2351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sari, M.; Yazar, H.; Kocayigit, I.; Karagoz, A.; Ayturk, M.; Fidan, S.; Arslantas, U.; Cakmak, E.O.; Alici, G.; Ozkan, B. Alteration of Serum Biomarkers in Patients with Hypertrophic Cardiomyopathy with and Without Atrial Fibrillation. Biomark. Med. 2021, 15, 1131–1142. [Google Scholar] [CrossRef]
- Watanabe, H.; Tanabe, N.; Yagihara, N.; Watanabe, T.; Aizawa, Y.; Kodama, M. Association between lipid profile and risk of atrial fibrillation. Circ. J. 2011, 75, 2767–2774. [Google Scholar] [CrossRef] [PubMed]
- Annoura, M.; Ogawa, M.; Kumagai, K.; Zhang, B.; Saku, K.; Arakawa, K. Cholesterol paradox in patients with paroxysmal atrial fibrillation. Cardiology 1999, 92, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Wu, Z.; Xia, Y.; Xiao, S.; Chen, L.; Li, Y. Non-linear association of atherogenic index of plasma with insulin resistance and type 2 diabetes: A cross-sectional study. Cardiovasc. Diabetol. 2023, 22, 157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, X.W.; Deng, F.Y.; Lei, S.F. Meta-analysis of Atherogenic Index of Plasma and other lipid parameters in relation to risk of type 2 diabetes mellitus. Prim. Care Diabetes 2015, 9, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.W.; Kwon, H.M.; Lee, Y.S. Atherogenic Index of Plasma Predicts Early Recurrent Ischemic Lesion in Acute Ischemic Stroke. J. Neurosonol. Neuroimag. 2022, 14, 42–50. [Google Scholar] [CrossRef]
- Acar, B.A.; Özdemir, A.Ö. Management of Intracranial Atherosclerotic Disease. Turk. J. Cerebrovasc. Dis. 2019, 25, 1–10. [Google Scholar] [CrossRef]
Min–Max | Median | n | % | ||
---|---|---|---|---|---|
Sex | Female | 113 | 50.9% | ||
Male | 109 | 49.1% | |||
Age | 29–94 | 69.00 | 67.70 ± 11.20 | ||
Admission NIHSS | 4–38 | 17.00 | 16.88 ± 4.00 | ||
24 h NIHSS | 0–42 | 11.00 | 11.81 ± 10.64 | ||
IV tPA (+) | 36 | 16.2% | |||
Atrial fibrillation (+) | 111 | 50.00% | |||
Hypertension (+) | 160 | 72.1% | |||
Active smoking (+) | 57 | 25.7% | |||
Ex-smoking (+) | 20 | 9.00% | |||
Alcoholism (+) | 21 | 9.5% | |||
Obesity (+) | 40 | 18% | |||
DM (+) | 52 | 23.4% | |||
CABG (+) | 13 | 5.9% | |||
CAD (+) | 80 | 36.00% | |||
MI in the last 3 months (+) | 3 | 1.4% | |||
Previous stroke history (+) | 46 | 20.7% | |||
HDL | 11–80 | 42 | 42.45 ± 10.90 | ||
Triglyceride | 7–1015 | 84.50 | 110.98 ± 99.54 | ||
AIP value | −0.78–1.86 | 0.30 | 0.34 ± 0.32 |
Min–Max | n | % | |||
---|---|---|---|---|---|
Stroke localization | Right | 101 | 45.5% | ||
Left | 107 | 48.2% | |||
Posterior | 14 | 6.3% | |||
ASPECTS | 6–10 | 9.12 ± 0.93 | |||
Symptom-to-door time (min) | 0–571 | 117.82 ± 97.63 | |||
Symptom-to-recanalization time (min) | 17–878 | 256.45 ± 115.18 | |||
ICA occlusion | (+) | 66 | 29.7% | ||
(−) | 156 | 70.3% | |||
Successful recanalization (mTICI2c-3) | (+) | 178 | 80.2% | ||
(−) | 44 | 19.8% | |||
First-pass recanalization | (+) | 103 | 46.4% | ||
(−) | 119 | 53.6% | |||
ICH at 24 h | (+) | 51 | 23.0% | ||
(−) | 171 | 77.0% | |||
Types of ICH | Type 1 HI | 8 | 3.6% | ||
Type 2 HI | 6 | 2.7% | |||
Type 1 PH | 14 | 6.3% | |||
Type 2 PH | 16 | 7.2% | |||
Subarachnoid hemorrhage | 7 | 3.2% | |||
Symptomatic ICH | 27 | 12% | |||
Three-month mRS | 0–6 | 2.58 ± 2.41 | |||
Cases with three-month mRS 0–2 | 109 | 49.1% | |||
Etiology | LAA | 36 | 16.2% | ||
Cardioembolism | 127 | 57.2% | |||
Undetermined | 59 | 26.6% |
AIP Index | p | |||||
---|---|---|---|---|---|---|
Mean. ± sd | Median | Min–Max | ||||
Admission NIHSS | <10 | 0.14 ± 0.28 | 0.14 | −0.26–0.62 | 0.032 | t |
≥10 | 0.35 ± 0.32 | 0.30 | −0.78–1.86 | |||
Sex | F | 0.31 ± 0.27 | 0.26 | −0.27–1.15 | 0.248 | t |
M | 0.36 ± 0.36 | 0.33 | −0.78–1.86 | |||
ICA occlusion | (−) | 0.33 ± 0.31 | 0.28 | −0.27–1.86 | 0.705 | t |
(+) | 0.35 ± 0.33 | 0.33 | −0.78–1.18 | |||
AF | (−) | 0.40 ± 0.34 | 0.36 | −0.26–1.86 | 0.005 | t |
(+) | 0.28 ± 0.28 | 0.24 | −0.78–1.07 | |||
HT | (−) | 0.32 ± 0.35 | 0.28 | −0.26–1.86 | 0.582 | t |
(+) | 0.34 ± 0.30 | 0.30 | −0.78–1.34 | |||
DM | (−) | 0.31 ± 0.29 | 0.27 | −0.78–1.15 | 0.028 | t |
(+) | 0.42 ± 0.39 | 0.34 | −0.27–1.86 | |||
CABG | (−) | 0.34 ± 0.32 | 0.29 | −0.78–1.86 | 0.908 | t |
(+) | 0.35 ± 0.25 | 0.36 | −0.10–0.78 | |||
CAD | (−) | 0.34 ± 0.34 | 0.30 | −0.78–1.86 | 0.612 | t |
(+) | 0.32 ± 0.28 | 0.29 | −0.27–1.07 | |||
MI in the last 3 months | (−) | 0.33 ± 0.32 | 0.30 | −0.78–1.86 | 0.562 | t |
(+) | 0.44 ± 0.34 | 0.35 | 0.16–0.83 | |||
Previous stroke history | (−) | 0.32 ± 0.28 | 0.29 | −0.27–1.15 | 0.072 | t |
(+) | 0.41 ± 0.42 | 0.35 | −0.78–1.86 | |||
Obesity | (−) | 0.32 ± 0.32 | 0.29 | −0.78–1.86 | 0.188 | t |
(+) | 0.40 ± 0.30 | 0.34 | −0.07–1.07 | |||
Active smoking | (−) | 0.32 ± 0.29 | 0.29 | −0.78–1.18 | 0.148 | t |
(+) | 0.39 ± 0.38 | 0.35 | −0.18–1.86 | |||
Ex-smoking | (−) | 0.33 ± 0.32 | 0.29 | −0.78–1.86 | 0.160 | t |
(+) | 0.43 ± 0.33 | 0.42 | −0.10–1.02 | |||
Alcoholism | (−) | 0.34 ± 0.32 | 0.29 | −0.78–1.86 | 0.937 | t |
(+) | 0.34 ± 0.29 | 0.36 | −0.15–0.83 | |||
Successful recanalization (mTICI2c-3) | (−) | 0.37 ± 0.29 | 0.30 | −0.19–1.15 | 0.502 | t |
(+) | 0.33 ± 0.32 | 0.29 | −0.78–1.86 | |||
ICH at 24 h | (−) | 0.32 ± 0.31 | 0.29 | −0.78–1.34 | 0.156 | t |
(+) | 0.39 ± 0.35 | 0.33 | −0.18–18.6 | |||
Three-month mRS 0–2 | (−) | 0.39 ± 0.35 | 0.33 | −0.78–1.86 | 0.007 | t |
(+) | 0.28 ± 0.27 | 0.25 | −0.27–0.99 |
AIP | |||
---|---|---|---|
Stroke Subgroup | n | Mean ± sd | p |
LAA | 36 | 0.41 ± 0.32 | |
Cardioembolism | 127 | 0.31 ± 0.31 | 0.234 |
Undetermined | 59 | 0.35 ± 0.32 | |
LAA | mRS 0–2, n = 15 | 0.30 ± 0.30 | 0.10 |
mRS 3–6, n = 21 | 0.48 ± 0.32 | ||
Cardioembolism | mRS 0–2, n = 60 | 0.27 ± 0.26 | 0.24 |
mRS 3–6, n = 67 | 0.34 ± 0.35 | ||
Undetermined | mRS 0–2, n = 34 | 0.27 ± 0.27 | 0.02 |
mRS 3–6, n = 25 | 0.46 ± 0.36 |
Dependent Variable | Regression Variables | β | SE | p | R2 of the Model |
---|---|---|---|---|---|
AIP | Constant | 0.677 | 0.335 | 0.045 | 0.13 |
Atrial Fibrillation | −0.180 | 0.046 | 0.013 | ||
Previous Stroke History | 0.130 | 0.052 | 0.049 | ||
3rd month mRS | 0.406 | 0.022 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boncuk Ulaş, S.; Acar, T.; Eryılmaz, H.A.; Ünal, E.; Güzey Aras, Y.; Kılıç, E.; Saçlı, H.; Salihi, S.; Acar, B.A. Can the Atherogenic Index of Plasma (AIP) Be a Prognostic Marker for Good Clinical Outcome After Mechanical Thrombectomy for Acute Ischemic Stroke? Diagnostics 2025, 15, 947. https://doi.org/10.3390/diagnostics15080947
Boncuk Ulaş S, Acar T, Eryılmaz HA, Ünal E, Güzey Aras Y, Kılıç E, Saçlı H, Salihi S, Acar BA. Can the Atherogenic Index of Plasma (AIP) Be a Prognostic Marker for Good Clinical Outcome After Mechanical Thrombectomy for Acute Ischemic Stroke? Diagnostics. 2025; 15(8):947. https://doi.org/10.3390/diagnostics15080947
Chicago/Turabian StyleBoncuk Ulaş, Sena, Türkan Acar, Halil Alper Eryılmaz, Esra Ünal, Yeşim Güzey Aras, Eren Kılıç, Hakan Saçlı, Salih Salihi, and Bilgehan Atılgan Acar. 2025. "Can the Atherogenic Index of Plasma (AIP) Be a Prognostic Marker for Good Clinical Outcome After Mechanical Thrombectomy for Acute Ischemic Stroke?" Diagnostics 15, no. 8: 947. https://doi.org/10.3390/diagnostics15080947
APA StyleBoncuk Ulaş, S., Acar, T., Eryılmaz, H. A., Ünal, E., Güzey Aras, Y., Kılıç, E., Saçlı, H., Salihi, S., & Acar, B. A. (2025). Can the Atherogenic Index of Plasma (AIP) Be a Prognostic Marker for Good Clinical Outcome After Mechanical Thrombectomy for Acute Ischemic Stroke? Diagnostics, 15(8), 947. https://doi.org/10.3390/diagnostics15080947