Neurophysiological Examination for the Diagnosis of Orofacial Pain and Temporomandibular Disorders: A Literature Review
Abstract
:1. Introduction
2. Neurophysiology of the Trigeminal Pain Pathway
3. Neurophysiology of TMD Pain
4. Surface Electromyography for Temporomandibular Disorders
- Pharmacological: NSAIDs and muscle relaxants reduce inflammation and hyperactivity, while tricyclics and SNRIs modulate descending pain pathways, reducing hyperalgesia and central sensitization.
- Physical therapy and behavioral interventions: Jaw exercises and postural correction relieve muscle tension. Cognitive–Behavioral Therapy (CBT) helps manage stress-related pain, with hypnosis showing a 47% pain reduction in TMD patients but no significant BR changes.
- Occlusal splints and bruxism monitoring: Splints reduce muscle hyperactivity and nociceptive input. The Bruxoff device, combining EMG and ECG, improves bruxism detection, correlating well with polysomnography.
5. Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jääskeläinen, S.K. Differential Diagnosis of Chronic Neuropathic Orofacial Pain: Role of Clinical Neurophysiology. J. Clin. Neurophysiol. 2019, 36, 422–429. [Google Scholar] [CrossRef]
- MacFarlane, T. Epidemiology of Orofacial Pain. In Orofacial Pain: Recent Advances in Assessment, Management, and Understanding of Mechanisms IASP; IASP Press: Beijing, China, 2014; ISBN 0931092175/9780931092176. [Google Scholar]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef]
- Valesan, L.F.; Da-Cas, C.D.; Réus, J.C.; Denardin, A.C.S.; Garanhani, R.R.; Bonotto, D.; Januzzi, E.; de Souza, B.D.M. Prevalence of temporomandibular joint disorders: A systematic review and meta-analysis. Clin. Oral Investig. 2021, 25, 441–453. [Google Scholar] [CrossRef]
- Zieliński, G.; Pająk-Zielińska, B.; Ginszt, M. A Meta-Analysis of the Global Prevalence of Temporomandibular Disorders. J. Clin. Med. 2024, 13, 1365. [Google Scholar] [CrossRef]
- Macfarlane, T.V.; Blinkhorn, A.S.; Davies, R.M.; Kincey, J.; Worthington, H.V. Association between female hormonal factors and oro-facial pain: Study in the community. Pain 2002, 97, 5–10. [Google Scholar] [CrossRef]
- Zieliński, G.; Pająk-Zielińska, B. Association between Estrogen Levels and Temporomandibular Disorders: An Updated Systematic Review. Int. J. Mol. Sci. 2024, 25, 9867. [Google Scholar] [CrossRef]
- Sipilä, K.; Ylöstalo, P.V.; Joukamaa, M.; Knuuttila, M.L. Comorbidity between facial pain, widespread pain, and depressive symptoms in young adults. J. Orofac. Pain 2006, 20, 24–30. [Google Scholar]
- Ferrillo, M.; Lippi, L.; Giudice, A.; Calafiore, D.; Paolucci, T.; Renò, F.; Migliario, M.; Fortunato, L.; Invernizzi, M.; de Sire, A. Temporomandibular Disorders and Vitamin D Deficiency: What Is the Linkage between These Conditions? A Systematic Review. J. Clin. Med. 2022, 11, 6231. [Google Scholar] [CrossRef]
- Bragdon, E.E.; Light, K.C.; Costello, N.L.; Sigurdsson, A.; Bunting, S.; Bhalang, K.; Maixner, W. Group differences in pain modulation: Pain-free women compared to pain-free men and to women with TMD. Pain 2002, 96, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Monaco, A.; Cattaneo, R.; Mesin, L.; Ortu, E.; Giannoni, M.; Pietropaoli, D. Dysregulation of the descending pain system in temporomandibular disorders revealed by low-frequency sensory transcutaneous electrical nerve stimulation: A pupillometric study. PLoS ONE 2015, 10, e0122826. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; He, S.; Xu, J.; You, W.; Li, Q.; Long, J.; Luo, L.; Kemp, G.J.; Sweeney, J.A.; Li, F.; et al. The neuro-pathophysiology of temporomandibular disorders-related pain: A systematic review of structural and functional MRI studies. J. Headache Pain 2020, 21, 78. [Google Scholar] [CrossRef]
- de Leeuw, R.; Albuquerque, R.; Okeson, J.; Carlson, C. The contribution of neuroimaging techniques to the understanding of supraspinal pain circuits: Implications for orofacial pain. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 100, 308–314. [Google Scholar] [CrossRef]
- Ferrillo, M.; Giudice, A.; Marotta, N.; Fortunato, F.; Di Venere, D.; Ammendolia, A.; Fiore, P.; de Sire, A. Pain Management and Rehabilitation for Central Sensitization in Temporomandibular Disorders: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 12164. [Google Scholar] [CrossRef]
- Kapos, F.P.; Exposto, F.G.; Oyarzo, J.F.; Durham, J. Temporomandibular disorders: A review of current concepts in aetiology, diagnosis and management. Oral Surg. 2020, 13, 321–334. [Google Scholar] [CrossRef]
- Emshoff, R.; Bertram, S.; Rudisch, A.; Gassner, R. The diagnostic value of ultrasonography to determine the temporomandibular joint disk position. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1997, 84, 688–696. [Google Scholar] [CrossRef]
- Maranini, B.; Ciancio, G.; Mandrioli, S.; Galiè, M.; Govoni, M. The Role of Ultrasound in Temporomandibular Joint Disorders: An Update and Future Perspectives. Front. Med. 2022, 9, 926573. [Google Scholar] [CrossRef]
- Hussain, A.M.; Packota, G.; Major, P.W.; Flores-Mir, C. Role of different imaging modalities in assessment of temporomandibular joint erosions and osteophytes: A systematic review. Dentomaxillofac. Radiol. 2008, 37, 63–71. [Google Scholar] [CrossRef]
- Costa, Y.M.; Porporatti, A.L.; Calderon, P.D.; Conti, P.C.; Bonjardim, L.R. Can palpation-induced muscle pain pattern contribute to the differential diagnosis among temporomandibular disorders, primary headaches phenotypes and possible bruxism? Med. Oral Patol. Oral Cir. Bucal. 2016, 21, e59–e65. [Google Scholar] [CrossRef]
- Ferrillo, M.; Migliario, M.; Marotta, N.; Fortunato, F.; Bindi, M.; Pezzotti, F.; Ammendolia, A.; Giudice, A.; Foglio Bonda, P.L.; de Sire, A. Temporomandibular disorders and neck pain in primary headache patients: A retrospective machine learning study. Acta Odontol. Scand. 2023, 81, 151–157. [Google Scholar] [CrossRef]
- Handa, S.; Heffernan, M.R.; Tan, S.; Keith, D.A.; Rosén, A.; Cheng, H.T. Correlation Between Orofacial Pain and Sensory and Autonomic Neuropathies. J. Pain Res. 2024, 17, 3287–3295. [Google Scholar] [CrossRef]
- Maarbjerg, S.; Gozalov, A.; Olesen, J.; Bendtsen, L. Trigeminal neuralgia--a prospective systematic study of clinical characteristics in 158 patients. Headache 2014, 54, 1574–1582. [Google Scholar] [CrossRef]
- Hallett, M. Dystonia: Clinical Features, Diagnosis, And Principles of Treatment. Annals Neurol. 2011, 64, S3–S12. [Google Scholar]
- Okeson, J.P. Management of Temporomandibular Disorders and Occlusion, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780323242080. [Google Scholar]
- Patel, S.; Smith, C.H.; Bates, D. Multiple Sclerosis and The Cranial Nerves. J. Neurol. Neurosurg. Psych. 2018, 89, 407–414. [Google Scholar]
- Mills, E.P.; Akhter, R.; Di Pietro, F.; Murray, G.M.; Peck, C.C.; Macey, P.M.; Henderson, L.A. Altered Brainstem Pain Modulating Circuitry Functional Connectivity in Chronic Painful Temporomandibular Disorder. J. Pain 2021, 22, 219–232. [Google Scholar] [CrossRef]
- Svensson, P.; Graven-Nielsen, T. Craniofacial muscle pain: Review of mechanisms and clinical manifestations. J. Orofac. Pain 2001, 15, 117–145. [Google Scholar]
- Svensson, P. Could painful temporomandibular disorders be nociplastic in nature? A critical review and new proposal. Acta Odontol. Scand. 2024, 83, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Christoforou, J. Neuropathic Orofacial Pain. Dent. Clin. N. Am. 2018, 62, 565–584. [Google Scholar] [CrossRef]
- Rotpenpian, N.; Yakkaphan, P. Review of Literatures: Physiology of Orofacial Pain in Dentistry. eNeuro 2021, 8, ENEURO.0535-20.2021. [Google Scholar] [CrossRef]
- Dubner, R.; Ruda, M.A. Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci. 1992, 15, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.C.; Allison, J.R.; Finkelmeyer, A.; Newton, J.; Durham, J. Brain Responses in CFS and TMD to Autonomic Challenges: An Exploratory fMRI Study. JDR Clin. Trans. Res. 2020, 5, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Sessle, B.J. Neurophysiology of orofacial pain. Dent. Clin. N. Am. 1987, 31, 595–613. [Google Scholar] [CrossRef]
- Perry, S.K.; Emrick, J.J. Trigeminal somatosensation in the temporomandibular joint and associated disorders. Front. Pain Res. 2024, 5, 1374929. [Google Scholar] [CrossRef]
- Huff, T.; Weisbrod, L.J.; Daly, D.T. Neuroanatomy, Cranial Nerve 5 (Trigeminal). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Chusid, J.G. Correlative Neuroanatomy and Functional Neurology, 18th ed.; Lange Medical Publications: Sacramento, CA, USA, 1982. [Google Scholar]
- John, J. The Management of Pain, 2nd ed.; Lea & Febiger: Philadelphia, PA, USA, 1990. [Google Scholar]
- Badel, T.; Zadravec, D.; Bašić Kes, V.; Smoljan, M.; Kocijan Lovko, S.; Zavoreo, I.; Krapac, L.; Anić Milošević, S. Orofacial pain—Diagnostic and therapeutic challenges. Acta Clin. Croat. 2019, 58, 82–89. [Google Scholar] [CrossRef]
- Arendt-Nielsen, L.; Morlion, B.; Perrot, S.; Dahan, A.; Dickenson, A.; Kress, H.G.; Wells, C.; Bouhassira, D.; Drewes, A.M. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur. J. Pain 2018, 22, 216–241. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Sanchez, J.M.; Espinosa-Campos, L.; Batuecas-Caletrío, Á. Lorente de Nó: From Neuroanatomy to Neurophysiology. Anat. Rec. 2020, 303, 1221–1231. [Google Scholar] [CrossRef]
- Wilcox, S.L.; Gustin, S.M.; Macey, P.M.; Peck, C.C.; Murray, G.M.; Henderson, L.A. Anatomical changes within the medullary dorsal horn in chronic temporomandibular disorder pain. Neuroimage 2015, 117, 258–266. [Google Scholar] [CrossRef]
- Domin, M.; Grimm, N.K.; Klepzig, K.; Schmidt, C.O.; Kordass, B.; Lotze, M. Gray Matter Brain Alterations in Temporomandibular Disorder Tested in a Population Cohort and Three Clinical Samples. J. Pain 2021, 22, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Mårtensson, J.; Westergren, H.; Svensson, P.; Sundgren, P.C.; Alstergren, P. Structural MRI findings in the brain related to pain distribution in chronic overlapping pain conditions: An explorative case-control study in females with fibromyalgia, temporomandibular disorder-related chronic pain and pain-free controls. J. Oral Rehabil. 2024, 51, 2415–2426. [Google Scholar] [CrossRef]
- International Classification of Orofacial Pain, 1st edition (ICOP). Cephalalgia 2020, 40, 129–221. [CrossRef]
- Pigg, M.; Nixdorf, D.R.; Law, A.S.; Renton, T.; Sharav, Y.; Baad-Hansen, L.; List, T. New International Classification of Orofacial Pain: What Is in It for Endodontists? J. Endod. 2021, 47, 345–357. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, C.H.; Oh, U. Painful channels in sensory neurons. Mol. Cells 2005, 20, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Romaniello, A.; Arendt-Nielsen, L.; Cruccu, G.; Svensson, P. Modulation of trigeminal laser evoked potentials and laser silent periods by homotopical experimental pain. Pain 2002, 98, 217–228. [Google Scholar] [CrossRef]
- Katsarava, Z.; Ellrich, J.; Diener, H.C.; Kaube, H. Optimized stimulation and recording parameters of human ‘nociception specific’ blink reflex recordings. Clin. Neurophysiol. 2002, 113, 1932–1936. [Google Scholar] [CrossRef]
- Koh, C.W.; Drummondm, P.D. Dissociation between pain and the nociceptive blink reflex during psychological arousal. Clin. Neurophysiol. 2006, 117, 851–854. [Google Scholar] [CrossRef]
- Jääskeläinen, S.K. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function. J. Orofac. Pain 2004, 18, 85–107. [Google Scholar]
- Maillou, P.; Cadden, S.W. Characteristics of a jaw reflex in humans with temporomandibular disorders: A preliminary report. J. Oral Rehabil. 2007, 34, 329–335. [Google Scholar] [CrossRef]
- Welte-Jzyk, C.; Pfau, D.B.; Hartmann, A.; Daubländer, M. Somatosensory profiles of patients with chronic myogenic temporomandibular disorders in relation to their painDETECT score. BMC Oral Health 2018, 18, 138. [Google Scholar] [CrossRef]
- Marcelino, V.; De Rovere, S.; Paço, M.; Gonçalves, M.; Marcelino, S.; Guimarães, A.S.; Pinho, T. Masticatory Function in Individuals with Temporomandibular Disorders: A Systematic Review and Meta-Analysis. Life 2023, 13, 472. [Google Scholar] [CrossRef]
- Dinsdale, A.; Liang, Z.; Thomas, L.; Treleaven, J. Is jaw muscle activity impaired in adults with persistent temporomandibular disorders? A systematic review and meta-analysis. J. Oral Rehabil. 2021, 48, 487–516. [Google Scholar] [CrossRef] [PubMed]
- Szyszka-Sommerfeld, L.; Sycińska-Dziarnowska, M.; Spagnuolo, G.; Woźniak, K. Surface electromyography in the assessment of masticatory muscle activity in patients with pain-related temporomandibular disorders: A systematic review. Front. Neurol. 2023, 14, 1184036. [Google Scholar] [CrossRef] [PubMed]
- Massaroto Barros, B.; Biasotto-Gonzalez, D.A.; Bussadori, S.K.; Gomes, C.A.F.P.; Politti, F. Is there a difference in the electromyographic activity of the masticatory muscles between individuals with temporomandibular disorder and healthy controls? A systematic review with meta-analysis. J. Oral Rehabil. 2020, 47, 672–682. [Google Scholar] [CrossRef]
- Suvinen, T.I.; Kemppainen, P. Review of clinical EMG studies related to muscle and occlusal factors in healthy and TMD subjects. J. Oral Rehabil. 2007, 34, 631–644. [Google Scholar] [CrossRef]
- Vig, P.S. Electromyography in Dental Science: A Review. Aust. Dent. J. 1963, 8, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Szyszka-Sommerfeld, L.; Sycińska-Dziarnowska, M.; Budzyńska, A.; Woźniak, K. Accuracy of Surface Electromyography in the Diagnosis of Pain-Related Temporomandibular Disorders in Children with Awake Bruxism. J. Clin. Med. 2022, 11, 1323. [Google Scholar] [CrossRef]
- de Sousa, B.M.; López-Valverde, A.; Caramelo, F.; Rodrigues, M.J.; López-Valverde, N. Use of antidepressants in the treatment of chronic orofacial pain caused by temporomandibular disorders: A randomized controlled clinical trial. Med. Clin. 2024, 163, 74–77. [Google Scholar] [CrossRef]
- Deregibus, A.; Ferrillo, M.; Piancino, M.G.; Domini, M.C.; de Sire, A.; Castroflorio, T. Are occlusal splints effective in reducing myofascial pain in patients with muscle-related temporomandibular disorders? A randomized-controlled trial. Turk J. Phys. Med. Rehabil. 2021, 67, 32–40. [Google Scholar] [CrossRef]
- Szyszka-Sommerfeld, L.; Machoy, M.; Lipski, M.; Woźniak, K. Electromyography as a Means of Assessing Masticatory Muscle Activity in Patients with Pain-Related Temporomandibular Disorders. Pain Res. Manag. 2020, 2020, 9750915. [Google Scholar] [CrossRef]
- Dorosz, T.; Mańko, A.; Ginszt, M. Use of Surface Electromyography to Evaluate Effects of Therapeutic Methods on Masticatory Muscle Activity in Patients with Temporomandibular Disorders: A Narrative Review. J Clin Med. 2024, 13, 920. [Google Scholar] [CrossRef]
- Frisardi, G.; Barone, S.; Razionale, A.V.; Paoli, A.; Frisardi, F.; Tullio, A.; Lumbau, A.; Chessa, G. Biomechanics of the press-fit phenomenon in dental implantology: An image-based finite element analysis. Head Face Med. 2012, 8, 18. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Sforza, C. Electromyographic standardization in facial muscle studies: Reliability and reproducibility. J. Oral Rehabil. 2000, 27, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Zieliński, G.; Gawda, P. Surface Electromyography in Dentistry—Past, Present and Future. J. Clin. Med. 2024, 13, 1328. [Google Scholar] [CrossRef]
- Al-Saleh, M.A.; Armijo-Olivo, S.; Flores-Mir, C.; Thie, N.M. Electromyography in diagnosing temporomandibular disorders. J. Am. Dent. Assoc. 2012, 143, 351–362. [Google Scholar] [CrossRef]
- SENIAM Project. European Recommendations for Surface Electromyography; Roessingh Research and Development: Enschede, The Netherlands, 1999; Available online: www.seniam.org (accessed on 14 April 2025).
- Garrett, A.; Gonzalez, D.A.B.; Sonza, A. Therapeutic exercises, manual therapy, and health education program for adolescents with temporomandibular disorders: Face-to-face and online multimodal rehabilitation protocol for a randomized controlled clinical trial. Trials 2025, 26, 54. [Google Scholar] [CrossRef] [PubMed]
- Marotta, N.; Ferrillo, M.; Demeco, A.; Drago Ferrante, V.; Inzitari, M.T.; Pellegrino, R.; Pino, I.; Russo, I.; de Sire, A.; Ammendolia, A. Effects of Radial Extracorporeal Shock Wave Therapy in Reducing Pain in Patients with Temporomandibular Disorders: A Pilot Randomized Controlled Trial. Appl. Sci. 2022, 12, 3821. [Google Scholar] [CrossRef]
- Ferrillo, M.; Marotta, N.; Giudice, A.; Calafiore, D.; Curci, C.; Fortunato, L.; Ammendolia, A.; de Sire, A. Effects of Occlusal Splints on Spinal Posture in Patients with Temporomandibular Disorders: A Systematic Review. Healthcare 2022, 10, 739. [Google Scholar] [CrossRef]
- Patra, R.C.; Kanungo, B.; Yashudas, A.; Mohanty, P.; Kaur, G. Multimodal physical therapy approach for the management of patients with temporomandibular disorder: Randomized control trial. J. Oral Biol. Craniofac. Res. 2025, 15, 515–524. [Google Scholar] [CrossRef]
- de Sire, A.; Marotta, N.; Agostini, F.; Drago Ferrante, V.; Demeco, A.; Ferrillo, M.; Inzitari, M.T.; Pellegrino, R.; Russo, I.; Ozyemisci Taskiran, O.; et al. A Telerehabilitation Approach to Chronic Facial Paralysis in the COVID-19 Pandemic Scenario: What Role for Electromyography Assessment? J. Pers. Med. 2022, 12, 497. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Byun, S.H.; Yang, B.E.; Kim, D.; Kim, B.; Lee, J.H.; Kim, Y.K. Randomized controlled trial of digital therapeutics for temporomandibular disorder: A pilot study. J. Dent. 2024, 147, 105030. [Google Scholar] [CrossRef]
Authors | Aspect | Findings |
---|---|---|
Yin et al., 2020 [12] Mills et al., 2021 [26] | Trigemino-thalamo-cortical pathway | Alterations in the trigeminal nerve root, spinal trigeminal nucleus, thalamus, and primary somatosensory cortex (S1). Structural changes include reduced/increased gray matter volume and disrupted white matter microstructure. |
Yin et al., 2020 [12] Domin et al., 2021 [42] | Lateral and medial pain systems | Changes in anterior insula and anterior cingulate cortex (ACC) connectivity and volume, correlating with pain intensity and duration. Highlighted GMV reductions in ACC and medial prefrontal cortex (mPFC). |
Yin et al., 2020 [12] | Default Mode Network (DMN) | Increased functional connectivity linked to heightened pain rumination and emotional responses. |
Yin et al., 2020 [12] Mills et al., 2021 [26] | Descending pain modulation systems | Structural alterations in the periaqueductal gray–raphe magnus pathway impair descending pain inhibition. Functional connectivity changes in the rostral ventromedial medulla (RVM), subnucleus reticularis dorsalis, and spinal trigeminal nucleus suggest enhanced pain signal facilitation. |
Yin et al., 2020 [12] | Motor system | Abnormal activations in primary motor cortex and supplementary motor areas lead to disrupted motor control and jaw dysfunction. |
Yin et al., 2020 [12] | Neurochemical imbalances | Altered glutamate and choline levels in the insula reflect disrupted pain processing. |
Yin et al., 2020 [12] Lam et al., 2024 [43] | Abnormal brain responses | Increased activity in anterior cingulate cortex and amygdala in response to mechanical stimuli. Enhanced thalamic involvement correlates with pain intensity and disability. |
Yin et al., 2020 [12] | Effects of splint therapy | Functional reorganization observed with improved symptoms and normalized brain activity in motor and pain-processing regions. |
Category | Description |
---|---|
1. Dentoalveolar and related structures | Pain arising from teeth, periodontium, or surrounding tissues |
2. Myofascial orofacial pain | Pain from masticatory muscles, often associated with TMD |
3. Temporomandibular joint (TMJ) pain | Pain originating from the TMJ and its components |
4. Neuropathic orofacial pain | Pain caused by lesion or disease of the somatosensory nervous system |
5. Orofacial pain resembling primary headache disorders | Pain mimicking migraine, cluster, or tension-type headache |
6. Idiopathic orofacial pain | Persistent pain without clear structural or neurological cause |
Psychosocial assessment | Evaluation of psychological and social factors influencing pain perception |
Classification | Definition | Neurophysiological Mechanisms |
---|---|---|
Acute pain | Lasts less than 3 months | Mainly peripheral nociceptive activation |
Chronic pain | Persists ≥ 3 months | Central sensitization, neuroplastic changes |
Nociceptive pain | Related to tissue damage or inflammation | Activation of nociceptors (e.g., in TMJ, muscles) |
Neuropathic pain | Caused by nerve injury or disease | Abnormal somatosensory processing, ectopic activity |
Inflammatory pain | Due to immune response and tissue inflammation | Peripheral sensitization with possible central effects |
Tool | What It Measures | Findings in TMD Patients | Interpretation |
---|---|---|---|
Laser-Evoked Potentials (LEPs) | Cortical response to nociceptive stimuli via Aδ and C fibers | Reduced cortical amplitudes and delayed latencies | Impaired cortical nociceptive processing |
Laser Silent Period (LSP) | Inhibitory spinal reflex following laser stimulus | Shortened or absent silent period | Brainstem/spinal disinhibition, altered nociceptive reflexes |
Blink Reflex (BR) | Brainstem reflex involving trigeminal and facial nerves (R1, R2) | Delayed or absent R2 component | Central sensitization and brainstem hyperexcitability |
Somatosensory-Evoked Potentials (SSEPs) | Cortical response to peripheral somatosensory stimuli | Altered waveform morphology, prolonged latencies | Disrupted sensory transmission and central integration |
Jaw Reflex and Silent Period (SP) | Reflex motor inhibition following mandibular stimulation | Prolonged or unchanged SP duration | Altered motor control, possible central modulation dysfunction |
Parameter | Recommended Value/Description |
---|---|
Sampling rate | ≥2000 Hz |
Bandwidth | 20–500 Hz (for masticatory muscles) |
Baseline noise | <1 µV RMS |
Input impedance | >100 MΩ |
Common Mode Rejection Ratio (CMRR) | >100 dB (ideally > 130 dB at 60 Hz) |
Electrode placement | According to SENIAM guidelines (e.g., over masseter and temporalis muscles) |
Patient positioning | Seated posture, head in natural position |
Resting recording duration | 10 s |
MVC protocol | 2 × 3 s with 3 s pause, or 3 × 5 s with 60 s pause |
Treatment Type | Mechanism | Effects | References |
---|---|---|---|
Pharmacological Interventions | |||
NSAIDs and muscle relaxants | NSAIDs reduce local inflammation and peripheral nociceptor activation, leading to reduced pain transmission to the CNS | Decreases peripheral sensitization, indirectly lowering central sensitization and hyperactivity in muscles | Szyszka-Sommerfeld et al., 2022 [59] |
Antidepressants | Modulate descending inhibitory pathways, regulate neurotransmitters like serotonin and norepinephrine | Reduces central sensitization and hyperalgesia | de Sousa BM et al., 2024 [60] |
Physical therapy | |||
Exercises and manual therapy | Improves jaw mobility and decreases muscle tension, as reflected in reduced muscle hyperactivity in sEMG | Alleviates TMD symptoms by targeting abnormal muscle activation | Dinsdale et al., 2021 [54] |
Postural correction | Reduces abnormal loading on TMJ and masticatory muscles, decreasing nociceptive input from overloaded structures | Lowers both peripheral and central sensitization | Al-Saleh et al., 2012 [68] |
Cognitive–Behavioral Therapy (CBT) | |||
Managing psychosocial factors | Addresses chronic pain-related psychosocial factors, reducing activity in stress-related brain regions | Lowers stress-related activity in amygdala, normalizes ACC and insula hyperactivity | Koh and Drummond, 2006 [49] |
Biofeedback integration | Uses sEMG in CBT to help patients control muscle activity consciously | Improves muscle relaxation, decreases pain perception | Szyszka-Sommerfeld et al., 2023 [62] |
Splint therapy | |||
Stabilization splints | Reduces excessive muscle activity in masseter and temporalis muscles | Lowers nociceptive input, decreases central sensitization | Suvinen et al., 2007 [57] |
Reduction in bruxism | Reduces bruxism, thereby decreasing repetitive mechanical stress on TMJ and masticatory muscles | Alleviates pain and other TMD symptoms | Frisardi et al., 2012 [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raciti, L.; Ferrillo, M.; Ammendolia, A.; Raciti, G.; Curci, C.; Calafiore, D.; Onesta, M.P.; Calabrò, R.S.; Longo, U.G.; de Sire, A. Neurophysiological Examination for the Diagnosis of Orofacial Pain and Temporomandibular Disorders: A Literature Review. Diagnostics 2025, 15, 1035. https://doi.org/10.3390/diagnostics15081035
Raciti L, Ferrillo M, Ammendolia A, Raciti G, Curci C, Calafiore D, Onesta MP, Calabrò RS, Longo UG, de Sire A. Neurophysiological Examination for the Diagnosis of Orofacial Pain and Temporomandibular Disorders: A Literature Review. Diagnostics. 2025; 15(8):1035. https://doi.org/10.3390/diagnostics15081035
Chicago/Turabian StyleRaciti, Loredana, Martina Ferrillo, Antonio Ammendolia, Gianfranco Raciti, Claudio Curci, Dario Calafiore, Maria Pia Onesta, Rocco Salvatore Calabrò, Umile Giuseppe Longo, and Alessandro de Sire. 2025. "Neurophysiological Examination for the Diagnosis of Orofacial Pain and Temporomandibular Disorders: A Literature Review" Diagnostics 15, no. 8: 1035. https://doi.org/10.3390/diagnostics15081035
APA StyleRaciti, L., Ferrillo, M., Ammendolia, A., Raciti, G., Curci, C., Calafiore, D., Onesta, M. P., Calabrò, R. S., Longo, U. G., & de Sire, A. (2025). Neurophysiological Examination for the Diagnosis of Orofacial Pain and Temporomandibular Disorders: A Literature Review. Diagnostics, 15(8), 1035. https://doi.org/10.3390/diagnostics15081035