Enhancing Diagnosis in Squamous Cell Carcinoma: Non-Invasive Imaging and Multimodal Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ultrasound Acquisition
2.2. Dermoscopic Evaluation
2.3. Histopathological Evaluation
2.4. Ex Vivo Confocal Fluorescence Microscopy
2.5. Statistical Analysis
3. Results
3.1. Ultrasound
3.2. Dermatoscopy
3.3. Ex Vivo Confocal Fluorescence Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FCM | confocal fluorescence microscopy |
BCC | basal cell carcinoma |
HFUS | high-frequency ultrasound |
cSCC | cutaneous squamous cell carcinoma |
lacSCC | locally advanced squamous cell carcinoma |
mcSCC | metastatic squamous cell carcinoma |
AK | actinic keratoses |
RCM | reflectance confocal microscopy |
LC-OCT | line-field confocal optical coherence tomography (LC-OCT) |
OCT | optical coherence tomography |
BD | Bowen’s disease |
References
- Nagarajan, P.; Asgari, M.M.; Green, A.C.; Guhan, S.M.; Arron, S.T.; Proby, C.M.; Rollison, D.E.; Harwood, C.A.; Toland, A.E. Keratinocyte Carcinomas: Current Concepts and Future Research Priorities. Clin. Cancer Res. 2019, 25, 2379–2391. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; van Akkooi, A.; Bataille, V.; Bastholt, L.; Dreno, B.; Dummer, R.; Fargnoli, M.C.; et al. European consensus-based interdisciplinary guideline for invasive cutaneous squamous cell carcinoma. Part 1: Diagnostics and prevention-Update 2023. Eur. J. Cancer 2023, 193, 113251. [Google Scholar] [CrossRef] [PubMed]
- Que, S.K.; Zwald, F.O.; Schmults, C.D. Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol. 2018, 78, 237–247. [Google Scholar] [CrossRef]
- Green, A.C.; Olsen, C.M. Cutaneous squamous cell carcinoma: An epidemiological review. Br. J. Dermatol. 2017, 177, 373–381. [Google Scholar] [CrossRef]
- Pandeya, N.; Olsen, C.M.; Whiteman, D.C. The incidence and multiplicity rates of keratinocyte cancers in Australia. Med. J. Aust. 2017, 207, 339–343. [Google Scholar] [CrossRef]
- Venables, Z.C.; Autier, P.; Nijsten, T.; Wong, K.F.; Langan, S.M.; Rous, B.; Broggio, J.; Harwood, C.; Henson, K.; Proby, C.M.; et al. Nationwide incidence of metastatic cutaneous squamous cell carcinoma in England. JAMA Dermatol. 2019, 155, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Venables, Z.C.; Nijsten, T.; Wong, K.F.; Autier, P.; Broggio, J.; Deas, A.; Harwood, C.A.; Hollestein, L.M.; Langan, S.M.; Morgan, E.; et al. Epidemiology of basal and cutaneous squamous cell carcinoma in the UK 2013–15: A cohort study. Br. J. Dermatol. 2019, 181, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Robsahm, T.E.; Helsing, P.; Veierod, M.B. Cutaneous squamous cell carcinoma in Norway 1963–2011: Increasing incidence and stable mortality. Cancer Med. 2015, 4, 472–480. [Google Scholar] [CrossRef]
- Muzic, J.G.; Schmitt, A.R.; Wright, A.C.; Alniemi, D.T.; Zubair, A.S.; Olazagasti Lourido, J.M.; Sosa Seda, I.M.; Weaver, A.L.; Baum, C.L. Incidence and trends of basal cell carcinoma and cutaneous squamous cell carcinoma: A population-based study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin. Proc. 2017, 92, 890–898. [Google Scholar] [CrossRef]
- Marks, R.; Rennie, G.; Selwood, T.S. Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet 1988, 1, 795–797. [Google Scholar] [CrossRef]
- Werner, R.N.; Sammain, A.; Erdmann, R.; Hartmann, V.; Stockfleth, E.; Nast, A. The natural history of actinic keratosis: A systematic review. Br. J. Dermatol. 2013, 169, 502–518. [Google Scholar] [CrossRef] [PubMed]
- Dorrell, D.N.; Strowd, L.C. Skin Cancer detection technology. Dermatol. Clin. 2019, 37, 527–536. [Google Scholar] [CrossRef]
- Danescu, S.; Negrutiu, M.; Focsan, M.; Baican, A. An overview of cutaneous squamous cell carcinoma imaging diagnosis methods. Front. Med. 2024, 11, 1388835. [Google Scholar] [CrossRef]
- Chen, Z.T.; Yan, J.N.; Zhu, A.Q.; Wang, L.F.; Wang, Q.; Li, L.; Guo, L.H.; Li, X.L.; Xu, H.X. High-frequency ultrasound for differentiation between high-risk basal cell carcinoma and cutaneous squamous cell carcinoma. Skin. Res. Technol. 2022, 28, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Rishpon, A.; Kim, N.; Scope, A.; Porges, L.; Oliviero, M.C.; Braun, R.P.; Marghoob, A.A.; Fox, C.A.; Rabinovitz, H.S. Reflectance confocal microscopy criteria for squa-mous cell carcinomas and actinic keratoses. Arch. Dermatol. 2009, 145, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, M.; Longo, C.; Ferrari, B.; Piana, S.; Benati, E.; Casari, A.; Pellacani, G.; Moscarella, E. Dermoscopic and reflectance confocal microscopy features of cutaneous squamous cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1828–1833. [Google Scholar] [CrossRef]
- Dinnes, J.; Deeks, J.J.; Chuchu, N.; Saleh, D.; Bayliss, S.E.; Takwoingi, Y.; Davenport, C.; Patel, L.; Matin, R.N.; O’Sullivan, C.; et al. Reflectance confocal microscopy for diagnosing keratinocyte skin cancers in adults. Cochrane Database Syst. Rev. 2018, 12, CD013191. [Google Scholar] [CrossRef]
- Boone, M.A.; Marneffe, A.; Suppa, M.; Miyamoto, M.; Alarcon, I.; Hofmann-Wellenhof, R.; Malvehy, J.; Pellacani, G.; Del Marmol, V. High-definition optical coher-ence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcino-ma. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1606–1615. [Google Scholar] [CrossRef]
- Themstrup, L.; Pellacani, G.; Welzel, J.; Holmes, J.; Jemec, G.B.E.; Ulrich, M. In vivo microvascular imaging of cutaneous actinic keratosis, Bowen’s disease and squamous cell carcinoma using dynamic optical coherence tomography. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1655–1662. [Google Scholar] [CrossRef]
- Ferrante di Ruffano, L.; Dinnes, J.; Deeks, J.J.; Chuchu, N.; Bayliss, S.E.; Davenport, C.; Takwoingi, Y.; Godfrey, K.; O’Sullivan, C.; Matin, R.N.; et al. Optical coherence tomography for diagnosing skin cancer in adults. Cochrane Database Syst. Rev. 2018, 12, CD013189. [Google Scholar] [CrossRef]
- El-Ammari, S.; Elloudi, S.; Baybay, H.; Soughi, M.; Douhi, Z.; Mernissi, F.Z.; Omari, M.; El Fakir, S.; Tahiri, L. Cutaneous Squamous Cell Carcinoma: Clinico-Dermoscopic and Histological Correlation: About 72 Cases. Dermatol. Pract. Concept. 2024, 14, e2024042. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, C.; Lallas, A.; Manoli, S.M.; Longo, C.; Lai, M.; Liopyris, K.; Lallas, K.; Lazaridou, E.; Apalla, Z. Evaluation of dermatoscopic criteria for early detection of squamous cell carcinoma arising on an actinic keratosis. J. Am. Acad. Dermatol. 2022, 86, 791–796. [Google Scholar] [CrossRef]
- Hartmann, D.; Krammer, S.; Bachmann, M.R.; Mathemeier, L.; Ruzicka, T.; Bagci, I.S.; von Braunmühl, T. Ex vivo confocal microscopy features of cutaneous squamous cell carcinoma. J. Biophotonics. 2018, 11, e201700318. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, D.; Shah, K.; Wysong, A.; Wortsman, X.; Humphreys, T.R. The role of imaging in the management of patients with nonmelanoma skin cancer: Diagnostic modalities and applications. J. Am. Acad. Dermatol. 2017, 76, 579–588. [Google Scholar] [CrossRef]
- Catalano, O.; Corvino, A. Utrasound of Skin Cancer: What We Need to Know. Semin. Ultrasound CT MR. 2024, 45, 216–232. [Google Scholar] [CrossRef]
- Zhu, A.Q.; Wang, L.F.; Li, X.L.; Wang, Q.; Li, M.X.; Ma, Y.Y.; Xiang, L.H.; Guo, L.H.; Xu, H.X. High-frequency ultrasound in the diagnosis of the spectrum of cutaneous squamous cell carcinoma: Noninvasively distinguishing actinic keratosis, Bowen’s Disease, and invasive squamous cell carcinoma. Skin. Res. Technol. 2021, 27, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Valian, S.K.; Khorasanizadeh, F.; Kamyab, K.; Nourazar, S.; Montazeri, S.; Azizpour, A. Basal cell carcinoma and squamous cell carcinoma: Comparison of high-frequency ultrasound and pathology. Skin. Res. Technol. 2024, 30, e13897. [Google Scholar] [CrossRef]
- Bergón-Sendin, M.; Pulido-Pere, A.; López, F.C.; Diez-Sebastián, J.; Suárez-Fernánde, R. Cutaneous ultrasound for tumor thickness measurement in squamous cell carcinoma: The effect of neoadjuvant Intralesional methotrexate in 40 patients. Dermatologic Surg. 2020, 46, 530–536. [Google Scholar] [CrossRef]
- Lallas, A.; Argenziano, G.; Zendri, E.; Moscarella, E.; Longo, C.; Grenzi, L.; Pellacani, G.; Zalaudek, I. Update on non-melanoma skin cancer and the value of dermoscopy in its diagnosis and treatment monitoring. Expert. Rev. Anticancer. Ther. 2013, 13, 541–558. [Google Scholar] [CrossRef]
- Lallas, A.; Pyne, J.; Kyrgidis, A.; Andreani, S.; Argenziano, G.; Cavaller, A.; Giacomel, J.; Longo, C.; Malvestiti, A.; Moscarella, E.; et al. The clinical and dermoscopic features of inva-sive cutaneous squamous cell carcinoma depend on the histopathological grade of differentiation. Br. J. Dermatol. 2015, 172, 1308–1315. [Google Scholar] [CrossRef]
- Zalaudek, I.; Argenziano, G. Dermoscopy of actinic keratosis, intraepidermal carcinoma and squamous cell carcinoma. Curr. Probl. Dermatol. 2015, 46, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Longo, C.; Ragazzi, M.; Gardini, S.; Piana, S.; Moscarella, E.; Lallas, A.; Raucci, M.; Argenziano, G.; Pellacani, G. Ex vivo fluorescence confocal microscopy in conjunction with Mohs micrographic surgery for cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2015, 73, 321–322. [Google Scholar] [CrossRef] [PubMed]
- Warszawik-Hendzel, O.; Olszewska, M.; Maj, M.; Rakowska, A.; Czuwara, J.; Rudnicka, L. Non-invasive diagnostic techniques in the diagnosis of squamous cell carcinoma. J. Dermatol. Case Rep. 2015, 9, 89–97. [Google Scholar] [CrossRef] [PubMed]
Variable | Characteristics | |
---|---|---|
Anatomical location (%) | Forearm | 3 (8.6%) |
Arm | 1 (2.9%) | |
Lip | 1 (2.9%) | |
Thigh | 2 (5.7%) | |
Finger | 1 (2.9%) | |
Forehead | 11 (31.4%) | |
Leg | 1 (2.9%) | |
Nose | 1 (2.9%) | |
Cheek | 10 (28.6%) | |
Thorax | 3 (8.6%) | |
Ear | 1 (2.9%) | |
Total | 35 (100%) | |
Sex (%) | Male | 17 (48.6%) |
Female | 18 (51.4%) | |
Border delimitation (%) | Imprecise | 19 (54.3%) |
Precise | 16 (45.7%) | |
Phototype (%) | II | 10 (28.6%) |
III | 11 (31.4%) | |
IV | 14 (40%) | |
History of cSCC (%) | Yes | 19 (54.3%) |
No | 16 (45.7%) | |
Ulceration (%) | Yes | 28 (80%) |
No | 7 (20%) | |
Keratin on the surface (%) | Yes | 31 (88.6%) |
No | 4 (11.4%) | |
Cancerization field (%) | Yes | 5 (14.3%) |
No | 30 (85.7%) | |
Age (years) | Median (25; 75 percentile) | 81 (78; 85) |
Clinical diameter (cm) | Median (25; 75 percentile) | 2 (0.2; 4) |
Variable | Characteristics | |
---|---|---|
Shape (%) | Regular | 20 (57.1%) |
Irregular | 15 (42.9%) | |
Level of invasion (%) | I | 6 (17.1%) |
II | 4 (11.4%) | |
III | 5 (14.3%) | |
IV | 10 (28.6%) | |
V | 10 (28.6%) | |
Delimitation (%) | Imprecise | 22 (62.9%) |
Precise | 13 (37.1%) | |
Ulceration (%) | Present | 21 (60%) |
Vascularization (%) | Present | 25 (71.4%) |
Homogeneous echogenicity (%) | Present | 20 (57.1%) |
Hyperechoic points (%) | Present | 6 (17.1%) |
Posterior acoustic shadowing (%) | Present | 18 (51.4%) |
Tumor thickness (mm) | Median (25; 75 percentile) | 2.2 (0.5; 5) |
Variable | US Characteristics | ||||||||
---|---|---|---|---|---|---|---|---|---|
Vascularization (%) | p | Homogeneous Echogenicity (%) | p | Hyperechoic Points (%) | p | Posterior Acoustic Shadowing (%) | p | ||
Present | 0.027 | Present | 0.017 | Present | 1.00 | Present | 0.443 | ||
cSCC stage (%) | In situ | 3 (12%) | 8 (40%) | 1 (16.7%) | 3 (16.7%) | ||||
Invasive | 22 (88%) | 12 (60%) | 5 (83.3%) | 15 (83.3%) | |||||
Degree of differentiation (%) | G1 | 18 (72%) | 0.382 | 17 (85%) | 0.342 | 4 (66.7%) | 0.798 | 15 (83.3%) | 0.521 |
G2 | 3 (12%) | 2 (10%) | 1 (16.7%) | 1 (5.6%) | |||||
G3 | 4 (16%) | 1 (5%) | 1 (16.7%) | 2 (11.1%) | |||||
Ulceration (%) | Present | 19 (76%) | 0.006 | 10 (50%) | 0.296 | 3 (50%) | 0.664 | 13 (72.2%) | 0.241 |
Absent | 6 (24%) | 10 (50%) | 3 (50%) | 5 (27.8%) | |||||
Keratinization (%) | Present | 21 (84%) | 1.00 | 18 (90%) | 0.631 | 5 (83.3%) | 1.00 | 16 (88.9%) | 0.658 |
Absent | 4 (16%) | 2 (10%) | 1 (16.7%) | 2 (11.1%) |
Variable | Histopathological Characteristic | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dotted vessels (%) | CSS stage (%) | p | Degree of differentiation (%) | p | Ulceration (%) | p | ||||
In situ | Invasive | <0.001 | G1 | G2 | G3 | 0.16 | 0.43 | |||
7 (77.8%) | 2 (22.2%) | 9 (100%) | 0 (0%) | 0 (0%) | 4 (44%) | |||||
Glomerular vessels (%) | 1 (6.7%) | 14 (93.3%) | 0.10 | 12 (80%) | 2 (13.3%) | 1 (6.7%) | 0.72 | 9 (60%) | 1.00 | |
Linear vessels (%) | 0 (0%) | 21 (100%) | 0.00 | 13 (61.9%) | 4 (19%) | 4 (19%) | 0.03 | 15 (71.4%) | 0.15 | |
Hairpin vessels (%) | 1 (9.1%) | 10 (90.9%) | 0.38 | 9 (81.8%) | 0 (0%) | 2 (18.2%) | 0.28 | 5 (45.5%) | 0.28 | |
Serpentine/corkscrew vessels (%) | 0 (0%) | 21 (100%) | <0.001 | 13 (61.9%) | 4 (19%) | 4 (19%) | 0.03 | 15 (71.4) | 0.15 | |
Scale (%) | white | 3 (75%) | 1 (25%) | 0.02 | 4 (100%) | 0 (0%) | 0 (0%) | 0.003 | 0 (0%) | 0.004 |
yellow | 3 (33.3%) | 6 (66.7%) | 7 (77.8%) | 2 (22.2%) | 0 (0%) | 3 (33.3%) | ||||
both | 2 (13.3%) | 13 (86.7%) | 13 (86.7%) | 2 (13.3%) | 0 (0%) | 13 (86.7%) | ||||
no | 0 (0%) | 7 (100%) | 3 (42.9%) | 0 (0%) | 4 (57.1%) | 5 (71.4%) | ||||
White halos surrounding vessels (%) | 5 (33.3%) | 10 (66.7%) | 0.41 | 14 (93.3%) | 1 (6.7%) | 0 (0%) | 0.16 | 9 (60%) | 1.00 | |
White and wide follicles (%) | 6 (46.2%) | 7 (53.8%) | 0.03 | 12 (92.3%) | 1 (7.7%) | 0 (0%) | 0.27 | 5 (38.5%) | 0.038 | |
Background erythema (%) | 8 (53.3%) | 7 (46.7%) | <0.001 | 14 (93.3%) | 1 (6.7%) | 0 (0%) | 0.16 | 7 (46.7%) | 0.16 | |
Rosettes (%) | 5 (38.5%) | 8 (61.5%) | 0.21 | 13 (100%) | 0 (0%) | 0 (0%) | 0.06 | 7 (53.8%) | 0.49 | |
Ulceration/bleeding (%) | 0 (0%) | 18 (100%) | 0.001 | 12 (66.7%) | 3 (16.7%) | 3 (16.7%) | 0.12 | 16 (88.9%) | 0.001 | |
Erosions (%) | 4 (50%) | 4 (50%) | 0.06 | 8 (100%) | 0 (0%) | 0 (0%) | 0.25 | 5 (62.5%) | 1.00 | |
Blood spots (%) | 0 (0%) | 12 (100%) | 0.03 | 7 (58.3%) | 2 (16.7%) | 3 (25%) | 0.03 | 11 (91.7%) | 0.01 | |
White structureless areas (%) | 4 (14.8%) | 23 (85.2%) | 0.03 | 20 (74.1%) | 4 (14.8%) | 3 (11.1%) | 0.31 | 19 (70.4%) | 0.079 | |
White circles surrounding follicles (%) | 6 (46.2%) | 7 (53.8%) | 0.03 | 12 (92.3%) | 1 (7.7%) | 0 (0%) | 0.27 | 5 (38.5%) | 0.038 | |
Presence of pigmentation (%) | 1 (100%) | 0 (0%) | 0.23 | 1 (100%) | 0 (0%) | 0 (0%) | 0.87 | 0 (0%) | 0.38 | |
Arborizing vessels (%) | 0 (0%) | 10 (100%) | 0.07 | 6 (60%) | 1 (10%) | 3 (30%) | 0.01 | 7 (70%) | 0.70 |
Variable | Tumor Thickness (mm) | Level of Invasion | ||||
---|---|---|---|---|---|---|
Median (25; 75 Percentile) | p | Median (25; 75 Percentile) | p | |||
Dotted vessels | 0.00 (0; 0.1) | <0.001 | I (I; I) | <0.001 | ||
Glomerular vessels | 1.8 (1; 2.7) | 0.52 | IV (III; IV) | 0.94 | ||
Linear vessels | 3 (2; 8.4) | <0.001 | IV (IV; V) | <0.001 | ||
Hairpin vessels | 1.25 (1; 3.25) | 0.80 | III (II; IV) | 0.46 | ||
Serpentine/corkscrew vessels | 3.2 (2; 8.9) | <0.001 | IV (IV; V) | <0.001 | ||
Scale | White | 0.00 (0; 0.7) | 0.02 | I (I; III) | 0.19 | |
Yellow | 2 (0; 4.8) | IV (I; IV) | ||||
Both | 2.7 (1; 3.5) | III (III; IV) | ||||
No | 6.7 (0.8; 14.7) | IV (II; V) | ||||
White halos surrounding vessels | 1.1 (0; 2.2) | 0.02 | III (I; IV) | 0.04 | ||
White and wide follicles | 0.2 (0; 1.2) | 0.002 | I (I; III) | 0.007 | ||
Background erythema | 0.00 (0; 1.2) | <0.001 | I (I; III) | 0.001 | ||
Rosettes | 1 (0; 2.8) | 0.07 | III (I; III) | 0.03 | ||
Ulceration/bleeding | 3.7 (2; 9.1) | <0.001 | IV (IV; V) | <0.001 | ||
Erosions | 0.1 (0; 1) | 0.002 | I (I; III) | 0.002 | ||
Blood spots | 5.5 (3.1; 9.8) | <0.001 | IV (IV; V) | 0.001 | ||
White structureless areas | 2.2 (1; 4) | 0.068 | IV (III; V) | 0.008 | ||
White circles surrounding follicles | 0.2 (0; 1.2) | 0.002 | I (I; III) | 0.007 | ||
Arborizing vessels | 6.4 (3;11) | 0.001 | IV (IV; V) | <0.001 | ||
Keratin distribution | Absent | 6.7 (0.8; 14) | 0.12 | IV (II; V) | 0.42 | |
Central | 2.7 (0; 5.2) | IV (I; V) | ||||
Diffuse | 1.6 (0.2; 3) | III (I; IV) | ||||
Peripheral | 1 (0; 1) | IV (I; IV) |
Variable | Histopathological Characteristic | ||||||||
---|---|---|---|---|---|---|---|---|---|
CSS Stage (%) | p | Degree of Differentiation (%) | p | Ulceration (%) | p | ||||
In Situ | Invasive | G1 | G2 | G3 | |||||
Erosion/ulceration (%) | 2 (40%) | 17 (89.5%) | 0.04 | 15 (75%) | 3 (100%) | 1 (100%) | 0.53 | 17 (100%) | <0.001 |
Hyperkeratosis (%) | 5 (100%) | 18 (94.7%) | 1.00 | 20 (100%) | 3 (100%) | 0 (0%) | <0.001 | 17 (100%) | 0.29 |
Parakeratosis (%) | 4 (80%) | 18 (94.7%) | 0.38 | 19 (95%) | 3 (100%) | 0 (0%) | 0.003 | 17 (100%) | 0.07 |
Architectural disarrangement (%) | 5 (100%) | 19 (100%) | - | 20 (100%) | 3 (100%) | 1 (100%) | - | 17 (100%) | - |
Plump bright or speckled cells in the epidermis (%) | 4 (80%) | 19 (100%) | 0.20 | 19 (95%) | 3 (100%) | 1 (100%) | 0.90 | 17 (100%) | 0.29 |
Plump bright or speckled cells in the dermis (%) | 0 (0%) | 16 (84.2%) | 0.001 | 12 (60%) | 3 (100%) | 1 (100%) | 0.30 | 14 (82.4%) | 0.02 |
Nest-like structures in the dermis (%) | 0 (0%) | 16 (84.2%) | 0.001 | 12 (60%) | 3 (100%) | 1 (100%) | 0.30 | 14 (82.4%) | 0.02 |
Keratin pearls (%) | 0 (0%) | 7 (36.8%) | 0.27 | 6 (30%) | 1 (33.3%) | 0 (0%) | 0.80 | 5 (29.4%) | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrutiu, M.; Danescu, S.; Focsan, M.; Vesa, S.C.; Cadar, A.; Vaida, S.; Oiegar, A.; Baican, A. Enhancing Diagnosis in Squamous Cell Carcinoma: Non-Invasive Imaging and Multimodal Approach. Diagnostics 2025, 15, 1018. https://doi.org/10.3390/diagnostics15081018
Negrutiu M, Danescu S, Focsan M, Vesa SC, Cadar A, Vaida S, Oiegar A, Baican A. Enhancing Diagnosis in Squamous Cell Carcinoma: Non-Invasive Imaging and Multimodal Approach. Diagnostics. 2025; 15(8):1018. https://doi.org/10.3390/diagnostics15081018
Chicago/Turabian StyleNegrutiu, Mircea, Sorina Danescu, Monica Focsan, Stefan Cristian Vesa, Adelina Cadar, Stefan Vaida, Alexandra Oiegar, and Adrian Baican. 2025. "Enhancing Diagnosis in Squamous Cell Carcinoma: Non-Invasive Imaging and Multimodal Approach" Diagnostics 15, no. 8: 1018. https://doi.org/10.3390/diagnostics15081018
APA StyleNegrutiu, M., Danescu, S., Focsan, M., Vesa, S. C., Cadar, A., Vaida, S., Oiegar, A., & Baican, A. (2025). Enhancing Diagnosis in Squamous Cell Carcinoma: Non-Invasive Imaging and Multimodal Approach. Diagnostics, 15(8), 1018. https://doi.org/10.3390/diagnostics15081018