Artificial Intelligence in Inflammatory Bowel Disease Endoscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Limitations of Endoscopy and Advantages of AI in IBD
4. AI in Endoscopy for IBD and Differential Diagnosis
5. AI in Endoscopy for Assessment of IBD Endoscopic Activity
6. AI in Endoscopy for Assessment of IBD Histologic Activity and Prediction of Clinical Outcomes
7. AI in Endoscopy for IBD Surveillance and Assessment of Dysplasia
8. Other AI Applications in IBD Endoscopy
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IBD | Inflammatory bowel disease |
CD | Crohn’s disease |
UC | Ulcerative colitis |
GI | Gastrointestinal |
AI | Artificial intelligence |
NLP | Natural language processing |
ML | Machine learning |
DL | Deep learning |
ANN | Artificial neural network |
CNN | Convolutional neural network |
CE | Capsule endoscopy |
DAE | Device-assisted enteroscopy |
HD | High definition |
WLE | White-light endoscopy |
DCE | Dye-based chromoendoscopy |
VCE | Virtual chromoendoscopy |
NBI | Narrow-band imaging |
OE | Optical enhancement |
BLI/LCI | Blue-light imaging and linked color imaging |
CLE | Confocal laser endomicroscopy |
EC | Endocytoscopy |
PICaSSO | Paddington International virtual ChromoendoScopy ScOre |
ECSS | EC system score |
MEI | Molecular endoscopic imaging |
MES | Mayo endoscopic score |
AUROC | Area under the receiver operating curve |
Grad-CAMs | Gradient-Weighted Class Activation Maps |
UCEIS | Ulcerative Colitis Endoscopic Index of Severity |
CAD | Computer-aided detection |
AUC | Area under curve |
UCEGS | UC Endoscopic Gradation Scale |
MCES | Mayo Clinic Endoscopic Subscore |
RNN | Recurrent neural network |
CDS | Cumulative disease score |
UC-SCALE | Ulcerative Colitis Severity Classification and Localized Extent |
ADSS | Aggregated Disease Severity Score |
GS | Geboes score |
IOIBD | International Organization for the Study of Inflammatory Bowel Diseases |
DNUC | Deep neural ulcerative colitis |
RD | Red density |
CRC | Colorectal cancer |
EMRs | Electronic medical records |
ARC | Automated retrieval console |
PHRI | Paddington International virtual ChromoendoScopy ScOre (PICaSSO) Histologic Remission Index |
RHI | Robarts Histological Index |
NHI | Nancy Histological Index |
ECAP | Extent, chronicity, activity, and plus score |
References
- Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Gros, B.K.G.; Kaplan, G.G. Ulcerative colitis in adults: A review. JAMA 2023, 330, 951–965. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F.; Vieth, M. Different levels of healing in inflammatory bowel diseases: Mucosal, histologial, transmural, barrier and complete healing. Gut 2023, 72, 2164–2183. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Jangi, S.; Dulai, P.S.; Boland, B.S.; Prokop, L.J.; Jairath, V.; Feagan, B.G.; Sandborn, W.J.; Singh, S. Incremental Benefit of Achieving Endoscopic and Histologic Remission in Patients With Ulcerative Colitis: A Systematic Review and Meta-Analysis. Gastroenterology 2020, 159, 1262–1275.e7. [Google Scholar] [CrossRef]
- Mori, Y.; East, J.E.; Hassan, C.; Halvorsen, N.; Berzin, T.M.; Byrne, M.; von Renteln, D.; Hewett, D.G.; Repici, A.; Ramchandani, M.; et al. Benefits and challenges in implementation of artificial intelligence in colonoscopy: World Endoscopy Organization position statement. Dig. Endosc. 2023, 35, 422–429. [Google Scholar] [CrossRef]
- Pal, P.; Pooja, K.; Nabi, Z.; Gupta, R.; Tandan, M.; Rao, G.V.; Reddy, N. Artificial intelligence in endoscopy related to inflammatory bowel disease: A systematic review. Indian. J. Gastroenterol. 2024, 43, 172–187. [Google Scholar] [CrossRef]
- Maeda, Y.; Kudo, S.E.; Kuroki, T.; Iacucci, M. Automated endoscopic diagnosis in IBD The emerging role of artificial intelligence. Gastrointest. Endosc. Clin. N. Am. 2025, 35, 213–233. [Google Scholar] [CrossRef]
- Santacroce, G.; Zammarchi, I.; Tan, C.K.; Coppola, G.; Varley, R.; Ghosh, S.; Iacucci, M. Present and future of endoscopy precision for inflammatory bowel disease. Dig. Endosc. 2024, 36, 292–304. [Google Scholar] [CrossRef]
- Turner, D.; Ricciuto, A.; Lewis, A.; D’Amico, F.; Dhaliwal, J.; Griffiths, A.M.; Bettenworth, D.; Sandborn, W.J.; Sands, B.E.; Reinisch, W.; et al. STRIDE-II: An update on the selecting therapeutic targets in inflammatory bowel disease (STRIDE) initiative of the international organization for the study of IBD (IOIBD): Determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology 2021, 160, 1570–1583. [Google Scholar] [CrossRef]
- Osada, T.; Ohkusa, T.; Yokoyama, T.; Shibuya, T.; Sakamoto, N.; Beppu, K.; Nagahara, A.; Otaka, M.; Ogihara, T.; Watanabe, S. Comparison of several activity indices for the evaluation of endoscopic activity in UC: Inter- and intraobserver consistency. Inflamm. Bowel Dis. 2010, 16, 192–197. [Google Scholar] [CrossRef]
- Bisschops, R.; East, J.E.; Hassan, C.; Hazewinkel, Y.; Kamiński, M.F.; Neumann, H.; Pellisé, M.; Antonelli, G.; Bustamante Balen, M.; Coron, E.; et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline—Update 2019. Endoscopy 2019, 51, 1155–1179, Erratum in Endoscopy 2019, 51, C6. [Google Scholar] [CrossRef]
- Bryant, R.V.; Burger, D.C.; Delo, J.; Walsh, A.J.; Thomas, S.; von Herbay, A.; Buchel, O.C.; White, L.; Brain, O.; Keshavet, S.; et al. Beyond endoscopic mucosal healing in UC: Histological remission better predicts corticosteroid use and hospitalisation over 6 years of follow-up. Gut 2016, 65, 408–414. [Google Scholar] [CrossRef]
- Simsek, H.D.; Basyigit, S.; Aktas, B.; Simsek, G.G.; Vargol, E.; Kucukazman, M.; Nazlıgul, Y. Assessment of the correlation between endoscopic activity and histological activity in ulcerative colitis patients. Med. Princ. Pract. 2016, 25, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.B.; Lee, K.M.; Lee, J.M.; Chung, Y.Y.; Sung, H.J.; Paik, C.N.; Chung, W.C.; Jung, J.H.; Choi, H.J. Correlation between histological activity and endoscopic, clinical, and serologic activities in patients with ulcerative colitis. Gastroenterol. Res. Pract. 2016, 2016, 5832051. [Google Scholar] [CrossRef] [PubMed]
- Fluxá, D.; Simian, D.; Flores, L.; Ibáñez, P.; Lubascher, J.; Figueroa, C.; Kronberg, U.; Pizarro, G.; Castro, M.; Piottante, A.; et al. Clinical, endoscopic and histological correlation and measures of association in ulcerative colitis. J. Dig. Dis. 2017, 18, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Frieri, G.; Galletti, B.; Di Ruscio, M.; Tittoni, R.; Capannolo, A.; Serva, D.; Latella, G.; Sollima, L.; Leocata, P.; Necozione, S.; et al. The prognostic value of histology in ulcerative colitis in clinical remission with mesalazine. Therap. Adv. Gastroenterol. 2017, 10, 749–759. [Google Scholar] [CrossRef]
- Nardone, O.M.; Snir, Y.; Hodson, J.; Cannatelli, R.; Labarile, N.; Siau, K.; Hassan, C.; Yanai, H.; Dotan, I.; Ghosh, S.; et al. Advanced technology for assessment of endoscopic and histological activity in ulcerative colitis: A systematic review and meta-analysis. Therap. Adv. Gastroenterol. 2022, 15, 17562848221092594. [Google Scholar] [CrossRef]
- Tontini, G.E.; Vecchi, M.; Neurath, M.F. Review article: Newer optical and digital chromoendoscopy techniques vs. dye-based chromoendoscopy for diagnosis and surveillance in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013, 38, 1198–1208. [Google Scholar] [CrossRef]
- ASGE Technology Committee; Wong Kee Song, L.M.; Adler, D.G.; Chand, B.; Conway, J.D.; Croffie, J.M.B.; Disario, J.A.; Mishkin, D.S.; Shah, R.J.; Somogyi, L.; et al. Chromoendoscopy. Gastrointest. Endosc. 2007, 66, 639–649. [Google Scholar] [CrossRef]
- Dekker, E.; Houwen, B.B.S.L.; Puig, I.; Bustamante-Balén, M.; Coron, E.; Dobru, D.E.; Kuvaev, R.; Neumann, H.; Johnson, G.; Pimentel-Nunes, P.; et al. Curriculum for optical diagnosis training in Europe: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2020, 52, 899–923, Erratum in Endoscopy 2020, 52, C10. [Google Scholar] [CrossRef] [PubMed]
- Sinonquel, P.; Vermeire, S.; Maes, F.; Bisschops, R. Advanced imaging in gastrointestinal endoscopy: A literature review of the current state of the art. GE Port. J. Gastroenterol. 2022, 30, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Gui, X.; Bazarova, A.; Del Amor, R.; de Hertogh, G.; Villanacci, V.; Zardo, D.; Parigi, T.L.; Røyset, E.S.; Shivaji, U.N.; Monica, M.A.T.; et al. PICaSSO Histologic Remission Index (PHRI) in ulcerative colitis: Development of a novel simplified histological score for monitoring mucosal healing and predicting clinical outcomes and its applicability in an artificial intelligence system. Gut 2022, 71, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Iacucci, M.; Smith, S.C.L.; Bazarova, A.; Shivaji, U.N.; Bhandari, P.; Cannatelli, R.; Daperno, M.; Ferraz, J.; Goetz, M.; Gui, X.; et al. An International Multicenter real-life prospective study of electronic chromoendoscopy score PICaSSO in Ulcerative Colitis. Gastroenterology 2021, 160, 1558–1569.e8. [Google Scholar] [CrossRef]
- Cannatelli, R.; Bazarova, A.; Furfaro, F.; Parigi, T.L.; Zardo, D.; Nardone, O.M.; Spaggiari, P.; Villanacci, V.; Cadei, M.; Labarile, N.; et al. Reproducibility of the electronic chromoendoscopy PICaSSO score (Paddington International Virtual ChromoendoScopy ScOre) in ulcerative colitis using multiple endoscopic platforms: A prospective multicenter international study (with video). Gastrointest. Endosc. 2022, 96, 73–83. [Google Scholar] [CrossRef]
- Tontini, G.E.; Mudter, J.; Vieth, M.; Atreya, R.; Günther, C.; Zopf, Y.; Wildner, D.; Kiesslich, R.; Vecchi, M.; Neurath, M.F.; et al. Confocal laser endomicroscopy for the differential diagnosis of ulcerative colitis and Crohn’s disease: A pilot study. Endoscopy 2015, 47, 437–443. [Google Scholar] [CrossRef]
- Buchner, A.M. Confocal laser endomicroscopy in the evaluation of inflammatory Bowel Disease. Inflamm. Bowel Dis. 2019, 25, 1302–1312. [Google Scholar] [CrossRef]
- Li, C.Q.; Xie, X.J.; Yu, T.; Gu, X.M.; Zuo, X.L.; Zhou, C.J.; Huang, W.Q.; Chen, H.; Li, Y.Q. Classification of inflammation activity in ulcerative colitis by confocal laser endomicroscopy. Am. J. Gastroenterol. 2010, 105, 1391–1396. [Google Scholar] [CrossRef]
- Neumann, H.; Vieth, M.; Atreya, R.; Grauer, M.; Siebler, J.; Bernatik, T.; Neurath, M.F.; Mudter, J. Assessment of Crohn’s disease activity by confocal laser endomicroscopy. Inflamm. Bowel Dis. 2012, 18, 2261–2269. [Google Scholar] [CrossRef]
- Karstensen, J.G.; Saftoiu, A.; Brynskov, J.; Hendel, J.; Ciocalteu, A.; Klausen, P.; Klausen, T.W.; Riis, L.B.; Vilmann, P. Confocal laser endomicroscopy in ulcerative colitis: A longitudinal study of endomicroscopic changes and response to medical therapy (with videos). Gastrointest. Endosc. 2016, 84, 279–286.e1. [Google Scholar] [CrossRef]
- Buda, A.; Hatem, G.; Neumann, H.; D’Incà, R.; Mescoli, C.; Piselli, P.; Jackson, J.; Bruno, M.; Sturniolo, G.C. Confocal laser endomicroscopy for prediction of disease relapse in ulcerative colitis: A pilot study. J. Crohns Colitis 2014, 8, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Neumann, H.; Kudo, S.E.; Kiesslich, R.; Neurath, M.F. Advanced colonoscopic imaging using endocytoscopy. Dig. Endosc. 2015, 27, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Bessho, R.; Kanai, T.; Hosoe, N.; Kobayashi, T.; Takayama, T.; Inoue, N.; Mukai, M.; Ogata, H.; Hibi, T. Correlation between endocytoscopy and conventional histopathology in microstructural features of ulcerative colitis. J. Gastroenterol. 2011, 46, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Vitali, F.; Morgenstern, N.; Eckstein, M.; Atreya, R.; Waldner, M.; Hartmann, A.; Neurath, M.F.; Rath, T. Endocytoscopy for assessing histologic inflammation in ulcerative colitis: Development and prospective validation of the ELECT (ErLangen Endocytoscopy in ColiTis) score (with videos). Gastrointest. Endosc. 2023, 97, 100–111.e1. [Google Scholar] [CrossRef]
- Kiesslich, R.; Duckworth, C.A.; Moussata, D.; Gloeckner, A.; Lim, L.G.; Goetz, M.; Pritchard, D.M.; Galle, P.R.; Neurath, M.F.; Watson, A.J.M. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut 2012, 61, 1146–1153. [Google Scholar] [CrossRef]
- Neumann, H.; Vieth, M.; Neurath, M.F.; Atreya, R. Endocytoscopy allows accurate in vivo differentiation of mucosal inflammatory cells in IBD: A pilot study. Inflamm. Bowel Dis. 2013, 19, 356–362. [Google Scholar] [CrossRef]
- Atreya, R.; Neumann, H.; Neufert, C.; Waldner, M.J.; Billmeier, U.; Zopf, Y.; Willma, M.; App, C.; Münster, T.; Kessler, H.; et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat. Med. 2014, 20, 313–318. [Google Scholar] [CrossRef]
- Rath, T.; Bojarski, C.; Neurath, M.F.; Atreya, R. Molecular imaging of mucosal a4b7 integrin expression with the fluorescent anti-adhesion antibody vedolizumab in Crohn’s disease. Gastrointest. Endosc. 2017, 86, 406–408. [Google Scholar] [CrossRef]
- Ahmad, H.A.; East, J.E.; Panaccione, R.; Travis, S.; Canavan, J.B.; Usiskin, K.; Byrne, M.F. Artificial intelligence in inflammatory bowel disease endoscopy: Implications for clinical trials. J. Crohns Colitis 2023, 17, 1342–1353. [Google Scholar] [CrossRef]
- Oh, D.J.; Hwang, Y.; Kim, S.H.; Nam, J.H.; Jung, M.K.; Lim, Y.J. Reading of small bowel capsule endoscopy after frame reduction using an artificial intelligence algorithm. BMC Gastroenterol. 2024, 24, 80. [Google Scholar] [CrossRef]
- Sutton, T.; Zai Ane, O.R.; Goebel, R.; Baumgart, D.C. Artificial intelligence enabled automated diagnosis and grading of ulcerative colitis endoscopy images. Sci. Rep. 2022, 12, 2748. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, R.; Garg, P. Deep learning-based prediction model for diagnosing gastrointestinal diseases using endoscopy images. Int. J. Med. Inform. 2023, 177, 105142. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, P.; Finkler, H.; Reichert, M.C.; Zimmer, V.; Grünhage, F.; Krawczyk, M.; Lammert, F.; Keller, A.; Casper, M. Artificial-intelligence-based decision support tools for the differential diagnosis of colitis. Eur. J. Clin. Investig. 2023, 53, e13960. [Google Scholar] [CrossRef]
- Kim, J.M.; Kang, J.G.; Kim, S.; Cheon, J.H. Deep-learning system for real-time differentiation between Crohn’s disease, intestinal Behçet’s disease, and intestinal tuberculosis. J. Gastroenterol. Hepatol. 2021, 36, 2141–2148. [Google Scholar] [CrossRef]
- Tong, Y.; Lu, K.; Yang, Y.; Li, J.; Lin, Y.; Wu, D.; Yang, A.; Li, Y.; Yu, S.; Qian, J. Can natural language processing helpdifferentiate inflammatory intestinal diseases in China? Models applying random forest and convolutional neural network approaches. BMC Med. Inform. Decis. Mak. 2020, 20, 248. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Park, S.J.; Hong, S.P.; Kim, T.I.; Kim, W.H.; Cheon, J.H. Su1932 Differential diagnosis between intestinal tuberculosis and Crohn’s disease by ileocolonoscopic findings. Gastroenterology 2012, 142, S-539. [Google Scholar] [CrossRef]
- Lu, K.; Tong, Y.; Yu, S.; Lin, Y.; Yang, Y.; Xu, H.; Li, Y.; Yu, S. Building a trustworthy AI differential diagnosis application for Crohn’s disease and intestinal tuberculosis. BMC Med. Inform. Decis. Mak. 2023, 23, 160. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, Y.; Peng, X.; Yao, J.; Zhong, W.; Li, C.; Zhi, M. Development and validation of a new algorithm model for differential diagnosis between Crohn’s disease and intestinal tuberculosis: A combination of laboratory, imaging and endoscopic characteristics. BMC Gastroenterol. 2021, 21, 291. [Google Scholar] [CrossRef]
- Ruan, G.; Qi, J.; Cheng, Y.; Liu, R.; Zhang, B.; Zhi, M.; Chen, J.; Xiao, F.; Shen, X.; Fan, L.; et al. Development and validation of a deep neural network for accurate identification of endoscopic images from patients with ulcerative colitis and Crohn’s disease. Front. Med. 2022, 9, 854677. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Wang, X.; Liu, K.; Li, T.; Yu, Y.; Han, J.; Xing, S.; Xu, J.; Tian, D.; et al. Development of a Convolutional Neural Network-Based Colonoscopy Image Assessment Model for Differentiating Crohn’s Disease and Ulcerative Colitis. Front. Med. 2022, 9, 789862. [Google Scholar] [CrossRef]
- Chierici, M.; Puica, N.; Pozzi, M.; Capistrano, A.; Donzella, M.D.; Colangelo, A.; Osmani, V.; Jurman, G. Automatically detecting Crohn’s disease and ulcerative colitis from endoscopic imaging. BMC Med. Inform. Decis. Mak. 2022, 22 (Suppl. S6), 300. [Google Scholar] [CrossRef] [PubMed]
- Quénéhervé, L.; David, G.; Bourreille, A.; Hardouin, J.B.; Rahmi, G.; Neunlist, M.; Brégeon, J.; Coron, E. Quantitative assessment of mucosal architecture using computer based analysis of confocal laser endomicroscopy in inflammatory bowel diseases. Gastrointest. Endosc. 2019, 89, 626–636. [Google Scholar] [CrossRef]
- Higuchi, N.; Hiraga, H.; Sasaki, Y.; Hiraga, N.; Igarashi, S.; Hasui, K.; Ogasawara, K.; Maeda, T.; Murai, Y.; Tatsuta, T.; et al. Automated evaluation of colon capsule endoscopic severity of ulcerative colitis using ResNet50. PLoS ONE 2022, 17, e0269728. [Google Scholar] [CrossRef]
- Majtner, T.; Brodersen, J.B.; Herp, J.; Kjeldsen, J.; Halling, M.L.; Jensen, M.D. A deep learning framework for autonomous detection and classification of Crohn’s disease lesions in the small bowel and colon with capsule endoscopy. Endosc. Intern. Open 2021, 9, E1361–E1370. [Google Scholar] [CrossRef]
- Brodersen, J.B.; Jensen, M.D.; Leenhardt, R.; Kjeldsen, J.; Histace, A.; Knudsen, T.; Dray, X. Artificial intelligence-assisted analysis of pan-enteric capsule endoscopy in patients with suspected Crohn’s disease: A study on diagnostic performance. J. Crohns Colitis 2024, 18, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Charisis, V.S.; Hadjileontiadis, L.J. Potential of hybrid adaptive filtering in inflammatory lesion detection from capsule endoscopy images. World J. Gastroenterol. 2016, 22, 8641–8657. [Google Scholar] [CrossRef]
- Aoki, T.; Yamada, A.; Aoyama, K.; Saito, H.; Tsuboi, A.; Nakada, A.; Niikura, R.; Fujishiro, M.; Oka, S.; Ishihara, S.; et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest. Endosc. 2019, 89, 357–363.e2. [Google Scholar] [CrossRef]
- Klang, E.; Barash, Y.; Margalit, R.Y.; Soffer, S.; Shimon, O.; Albshesh, A.; Ben-Horin, S.; Amitai, M.M.; Eliakim, R.; Kopylov, U. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointest. Endosc. 2020, 91, 606–612.e2. [Google Scholar] [CrossRef]
- Barash, Y.; Azaria, L.; Soffer, S.; Yehuda, R.M.; Shlomi, O.; Ben-Horin, S.; Eliakim, R.; Klang, E.; Kopylov, U. Ulcer severity grading in video capsule images of patients with Crohn’s disease: An ordinal neural network solution. Gastrointest. Endosc. 2021, 93, 187–192. [Google Scholar] [CrossRef]
- Klang, E.; Grinman, A.; Soffer, A.; Yehuda, R.M.; Barzilay, O.; Amitai, M.M.; Konen, E.; Ben-Horin, S.; Eliakim, R.; Barash, Y.; et al. Automated detection of Crohn’s disease intestinal strictures on capsule endoscopy images using deep neural networks. J. Crohn Colitis. 2021, 15, 749–756. [Google Scholar] [CrossRef]
- De Maissin, A.; Vallee, R.; Flamant, M.; Fondain-Bossiere, M.; Le Berre, C.; Coutrot, A.; Normand, N.; Mouchère, H.; Coudol, S.; Trang, C.; et al. Multi-expert annotation of Crohn’s disease images of the small bowel for automatic detection using a convolutional recurrent attention neural network. Endosc. Int. Open 2021, 9, E1136–E1144. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.S.; de Mascarenhas Saraiva, M.J.; Afonso, J.P.L.; Carneiro Ribeiro, T.F.; Casal Cardoso, H.M.; Ribeiro Andrade, A.P.; de Mascarenhas Saraiva, M.N.G.; Lages Parente, M.P.; Jorge, R.N.; Oliveira Lopes, S.I.; et al. Identification of ulcers and erosions by the novel PillCam Crohn’s capsule using a convolutional neural network: A multicentre pilot study. J. Crohns Colitis 2022, 16, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Kratter, T.; Shapira, N.; Lev, Y.; Mauda, O.; Moshkovitz, Y.; Shitrit, R.; Konyo, S.; Ukashi, O.; Dar, L.; Shlomi, O.; et al. Deep learning multi-domain model provides accurate detection and grading of mucosal ulcers in different capsule endoscopy types. Diagnostics 2022, 12, 2490. [Google Scholar] [CrossRef]
- Ribeiro, T.; Mascarenhas, M.; Afonso, J.; Cardoso, H.; Andrade, P.; Lopes, S.; Ferreira, J.; Mascarenhas Saraiva, M.; Macedo, G. Artificial intelligence and colon capsule endoscopy: Automatic detection of ulcers and erosions using a convolutional neural network. J. Gastroenterol. Hepatol. 2022, 37, 2282–2288. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xing, Y.; Zhang, L.; Gao, H.; Zhang, H. A systematic evaluation and optimization of automatic detection of ulcers in wireless capsule endoscopy on a large dataset using deep convolutional neural networks. Phys. Med. Biol. 2019, 64, 235014. [Google Scholar] [CrossRef]
- Christensen, B.; Rubin, D.T. Understanding endoscopic disease activity in IBD: How to incorporate it into practice. Curr. Gastroenterol. Rep. 2016, 18, 5. [Google Scholar] [CrossRef]
- Ikeya, K.; Hanai, H.; Sugimoto, K.; Osawa, S.; Kawasaki, S.; Iida, T.; Maruyama, Y.; Watanabe, F. The ulcerative colitis endoscopic index of severity more accurately reflects clinical outcomes and long-term prognosis than the Mayo endoscopic score. J. Crohns Colitis 2016, 10, 286–295. [Google Scholar] [CrossRef]
- Kim, J.E.; Choi, Y.H.; Lee, Y.C.; Seong, G.; Song, J.H.; Kim, T.J.; Kim, E.R.; Hong, S.N.; Chang, D.K.; Kim, Y.H.; et al. Deep learning model for distinguishing Mayo endoscopic subscore 0 and 1 in patients with ulcerative colitis. Sci. Rep. 2023, 13, 11351. [Google Scholar] [CrossRef]
- Wang, G.; Zahng, S.; Li, J.; Zhao, K.; Ding, Q.; Tian, D.; Li, R.; Zou, F.; Yu, Q. CB-HRNet: A Class-Balanced High-Resolution Network for the evaluation of endoscopic activity in patients with ulcerative colitis. Clin. Transl. Sci. 2023, 16, 1421–1430. [Google Scholar] [CrossRef]
- Polat, G.; Kani, H.T.; Ergenc, I.; Alahdab, Y.O.; Temizel, A.; Atug, O. Improving the Computer-Aided Estimation of Ulcerative Colitis Severity According to Mayo Endoscopic Score by Using Regression-Based Deep Learning. Inflamm. Bowel Dis. 2023, 29, 1431–1439. [Google Scholar] [CrossRef]
- Qi, J.; Ruan, G.; Ping, Y.; Xiao, Z.; Liu, K.; Cheng, Y.; Liu, R.; Zhang, B.; Zhi, M.; Chen, J.; et al. Development and validation of a deep learning-based approach to predict the Mayo endoscopic score of ulcerative colitis. Ther. Adv. Gastroenterol. 2023, 16, 17562848231170945. [Google Scholar] [CrossRef]
- Turan, M.; Durmus, F. UC-NfNet: Deep learning-enabled assessment of ulcerative colitis from colonoscopy images. Med. Image Anal. 2022, 82, 102587. [Google Scholar] [CrossRef] [PubMed]
- Iacucci, M.; Cannatelli, R.; Parigi, T.L.; Nardone, O.M.; Tontini, G.E.; Labarile, N.; Buda, A.; Rimondi, A.; Bazarova, A.; Bisschops, R.; et al. A virtual chromoendoscopy artificial intelligence system to detect endoscopic and histologic activity/remission and predict clinical outcomes in ulcerative colitis. Endoscopy 2023, 55, 332–341. [Google Scholar] [CrossRef]
- Patel, M.; Gulati, S.; Iqbal, F.; Hayee, B. Rapid development of accurate artificial intelligence scoring for colitis disease activity using applied data science techniques. Endosc. Int. Open 2022, 10, E539–E543. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, K.; Kobayashi, T.; Matsuoka, K.; Levesque, B.G.; Kawamura, T.; Tanaka, K.; Kadota, T.; Bise, R.; Uchida, S.; Kanai, T.; et al. Artificial intelligence quantifying endoscopic severity of ulcerative colitis in gradation scale. Dig. Endosc. 2024, 36, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Lo, B.; Liu, Z.; Bendtsen, F.; Igel, C.; Vind, I.; Burisch, J. High Accuracy in Classifying Endoscopic Severity in Ulcerative Colitis Using Convolutional Neural Network. Am. J. Gastroenterol. 2022, 117, 1648–1654. [Google Scholar] [CrossRef]
- Yao, H.; Najarian, K.; Gryak, J.; Bishu, S.; Rice, M.D.; Waljee, A.K.; Wilkins, H.J.; Stidham, R.W. Fully automated endoscopic disease activity assessment in ulcerative colitis. Gastrointest. Endosc. 2021, 93, 728–736.e1. [Google Scholar] [CrossRef]
- Stidham, R.W.; Liu, W.; Bishu, S.; Rice, M.D.; Higgins, P.D.R.; Zhu, J.; Nallamothu, B.K.; Waljee, A.K. Performance of a Deep Learning Model vs Human Reviewers in Grading Endoscopic Disease Severity of Patients With Ulcerative Colitis. JAMA Netw. Open 2019, 2, e193963. [Google Scholar] [CrossRef]
- Byrne, M.F.; Panaccione, R.; East, J.E.; Iacucci, M.; Parsa, N.; Kalapala, R.; Reddy, D.N.; Rughwani, H.R.; Singh, A.P.; Berry, S.K.; et al. Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems. J. Crohns Colitis 2023, 17, 463–471. [Google Scholar] [CrossRef]
- Ozawa, T.; Ishihara, S.; Fujishiro, M.; Saito, H.; Kumagai, Y.; Shichijo, S.; Aoyama, K.; Tada, T. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest. Endosc. 2019, 89, 416–421.e1. [Google Scholar] [CrossRef]
- Huang, T.Y.; Zhan, S.Q.; Chen, P.J.; Yang, C.W.; Lu, H.H.S. Accurate diagnosis of endoscopic mucosal healing in ulcerative colitis using deep learning and machine learning. J. Chin. Med. Assoc. 2021, 84, 678–681. [Google Scholar] [CrossRef]
- Barreiro-de Acosta, M.; Vallejo, N.; de la Iglesia, D.; Uribarri, L.; Bastón, I.; Ferreiro-Iglesias, R.; Lorenzo, A.; Domínguez-Muñoz, J.E. Evaluation of the risk of relapse in ulcerative colitis according to the degree of mucosal healing (Mayo 0 vs 1): A longitudinal cohort study. J. Crohns Colitis 2016, 10, 13–19. [Google Scholar] [CrossRef]
- Bhambhvani, H.P.; Zamora, A. Deep learning enabled classification of Mayo endoscopic subscore in patients with ulcerative colitis. Eur. J. Gastroenterol. Hepatol. 2021, 33, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez Becker, B.; Arcadu, F.; Thalhammer, A.; Gamez Serna, C.; Feehan, O.; Drawnel, F.; Oh, Y.S.; Prunotto, M. Training and deploying a deep learning model for endoscopic severity grading in ulcerative colitis using multicenter clinical trial data. Ther. Adv. Gastrointest. Endosc. 2021, 14, 2631774521990623. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, K.; Requa, J.; Karnes, W.; Gudivada, R.C.; Shen, J.; Rael, E.; Arora, V.; Dao, T.; Ninh, A.; McGill, J. Central Reading of Ulcerative Colitis Clinical Trial Videos Using Neural Networks. Gastroenterology 2021, 160, 710–719.e2. [Google Scholar] [CrossRef]
- Fan, Y.; Mu, R.; Xu, H.; Xie, C.; Zhang, Y.; Liu, L.; Wang, L.; Shi, H.; Hu, Y.; Ren, J.; et al. Novel deep learning-based computer-aided diagnosis system for predicting inflammatory activity in ulcerative colitis. Gastrointest. Endosc. 2023, 97, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Stidham, R.W.; Cai, L.; Cheng, S.; Rajaei, F.; Hiatt, T.; Wittrup, E.; Rice, M.D.; Bishu, S.; Wehkamp, J.; Schultz, W.; et al. Using computer vision to improve endoscopic disease quantification in therapeutic clinical trials of ulcerative colitis. Gastroenterology 2024, 166, 155–167.e2. [Google Scholar] [CrossRef]
- Gutierrez Becker, B.; Fraessle, S.; Yao, H.; Luscher, J.; Girycki, R.; Machura, B.; Czornik, J.; Goslinsky, J.; Pitura, M.; Levitte, S.; et al. Ulcerative Colitis Severity Classification and Localised Extent (UCSCALE): An Artificial Intelligence scoring system for a spatial assessment of disease severity in Ulcerative Colitis. J. Crohns Colitis 2025, 19, jjae187. [Google Scholar] [CrossRef]
- Akiyama, S.; Sakamoto, T.; Kobayashi, M.; Matsubara, D.; Tsuchiya, K. Clinical usefulness of hypoxia imaging colonoscopy for the objective measurement of ulcerative colitis disease activity. Gastrointest. Endosc. 2024, 99, 1006–1016.e4. [Google Scholar] [CrossRef]
- Martins, M.; Mascarenhas, M.; Afonso, J.; Ribeiro, T.; Cardoso, P.; Mendes, F.; Cardoso, H.; Andrade, P.; Ferreira, J.; Macedo, G. Deep-Learning and Device-Assisted Enteroscopy: Automatic Panendoscopic Detection of Ulcers and Erosions. Medicina 2023, 59, 172. [Google Scholar] [CrossRef]
- Xie, W.; Ju, J.; Liang, P.; Mei, Q.; Wang, A.; Liu, Q.; Liu, X.; Wu, J.; Yang, X.; Zhu, N.; et al. Deep learning-based lesion detection and severity grading of small-bowel Crohn’s disease ulcers on double-balloon endoscopy images. Gastrointest. Endosc. 2024, 99, 767–777.e5. [Google Scholar] [CrossRef] [PubMed]
- Udristoiu, A.L.; Stefanescu, D.; Gruionu, G.; Iacob, A.V.; Karstensen, J.G.; Vilman, P.; Saftoiu, A. Deep Learning Algorithm for the Confirmation of Mucosal Healing in Crohn’s Disease, Based on Confocal Laser Endomicroscopy Images. J. Gastrointest. Liver Dis. 2021, 30, 59–65. [Google Scholar] [CrossRef]
- Colombel, J.F.; Keir, M.E.; Scherl, A.; Zhao, R.; de Hertogh, G.; Faubion, W.A.; Lu, T.T. Discrepancies between patient-reported outcomes, and endoscopic and histological appearance in UC. Gut 2016, 66, 2063–2068. [Google Scholar] [CrossRef] [PubMed]
- Rutter, M.; Saunders, B.; Wilkinson, K.; Rumbles, S.; Schofield, G.; Kamm, M.; Williams, C.; Price, A.; Talbot, I.; Forbes, A. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 2004, 126, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Iacucci, M.; Fort Gasia, M.; Hassan, C.; Panaccione, R.; Kaplan, G.G.; Ghosh, S.; Gui, X. Complete mucosal healing defined by endoscopic Mayo subscore still demonstrates abnormalities by novel high definition colonoscopy and refined histological gradings. Endoscopy 2015, 47, 726–734. [Google Scholar] [CrossRef]
- Pessarelli, T.; Tontini, G.E.; Neumann, H. Advanced Endoscopic Imaging for Assessing Mucosal Healing and Histologic Remission in Inflammatory Bowel Diseases. Gastrointest. Endosc. Clin. N. Am. 2025, 35, 159–177. [Google Scholar] [CrossRef]
- Kiesslich, R.; Neurath, M.F. Advanced endoscopy imaging in inflammatory bowel diseases. Gastrointest. Endosc. 2017, 85, 496–508. [Google Scholar] [CrossRef]
- Iacucci, M.; Daperno, M.; Lazarev, M.; Arsenascu, R.; Tontini, G.E.; Akinola, O.; Gui, X.S.; Villanacci, V.; Goetz, M.; Lowerison, M.; et al. Development and reliability of the new endoscopic virtual chromoendoscopy score: The PICaSSO (Paddington International Virtual ChromoendoScopy ScOre) in ulcerative colitis. Gastrointest. Endosc. 2017, 86, 1118–1127. [Google Scholar] [CrossRef]
- Nakazato, Y.; Naganuma, M.; Sugimoto, S.; Bessho, R.; Arai, M.; Kiyohara, H.; Ono, K.; Nanki, K.; Mutaguchi, M.; Mizuno, S.; et al. Endocytoscopy can be used to assess histological healing in ulcerative colitis. Endoscopy 2017, 49, 560–563. [Google Scholar] [CrossRef]
- Maeda, Y.; Kudo, S.E.; Mori, Y.; Misawa, M.; Ogata, N.; Sasanuma, S.; Wakamura, K.; Oda, M.; Mori, K.; Ohtsuka, K. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest. Endosc. 2019, 89, 408–415. [Google Scholar] [CrossRef]
- Omori, T.; Yamamoto, T.; Murasugi, S.; Koroku, M.; Yonezawa, M.; Nonaka, K.; Nagashima, Y.; Nakamura, S.; Tokushige, K. Comparison of Endoscopic and Artificial Intelligence Diagnoses for Predicting the Histological Healing of Ulcerative Colitis in a Real-World Clinical Setting. Crohns Colitis 360 2024, 6, otae005. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, K.; Ohtsuka, K.; Fujii, T.; Negi, M.; Suzuki, K.; Shimizu, H.; Oshima, S.; Akiyama, S.; Motobayashi, M.; Nagahori, M.; et al. Development and validation of a deep neural network for accurate evaluation of endoscopic images from patients with ulcerative colitis. Gastroenterology 2020, 158, 2150–2157. [Google Scholar] [CrossRef]
- Takenaka, K.; Ohtsuka, K.; Fujii, T.; Oshima, S.; Okamoto, R.; Watanabe, M. Deep Neural Network Accurately Predicts Prognosis of Ulcerative Colitis Using Endoscopic Images. Gastroenterology 2021, 160, 2175–2177.e3. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, K.; Fujii, T.; Kawamoto, A.; Suzuki, K.; Shimizu, H.; Maeyashiki, C.; Yamaji, O.; Motobayashi, M.; Igarashi, A.; Hanazawa, R.; et al. Deep neural network for video colonoscopy of ulcerative colitis: A cross-sectional study. Lancet Gastroenterol. Hepatol. 2022, 7, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, P.; Nakase, H.; Vermeire, S.; de Hertogh, G.; Eelbode, T.; Ferrante, M.; Hasegawa, T.; Willekens, H.; Ikemoto, Y.; Makino, T.; et al. Automatic, computer-aided determination of endoscopic and histological inflammation in patients with mild to moderate ulcerative colitis based on red density. Gut 2020, 69, 1778–1786. [Google Scholar] [CrossRef]
- Sinonquel, P.; Bossuyt, P.; Sabino, J.P.G.; Verstockt, B.; Makino, T.; Vermeire, S.; Bisschops, R. Long-term follow-up of the red density pilot trial: A basis for long-term prediction of sustained clinical remission in ulcerative colitis? Endosc. Int. Open 2023, 11, E880–E884. [Google Scholar] [CrossRef]
- Sinonquel, P.; Lenfant, M.; Eelbode, T.; Watanabe, H.; Callaerts, B.; Bossuyt, P.; Verstockt, B.; Sabino, J.P.G.; De Hertogh, G.; Maes, F.; et al. Development of an Automated Tool for the Estimation of Histological Remission in Ulcerative Colitis Using Single Wavelength Endoscopy Technology. J. Crohns Colitis, 2024; jjae180, online ahead of print. [Google Scholar] [CrossRef]
- Bossuyt, P.; De Hertogh, G.; Eelbode, T.; Vermeire, S.; Bisschops, R. Computer-Aided Diagnosis With Monochromatic Light Endoscopy for Scoring Histologic Remission in Ulcerative Colitis. Gastroenterology 2021, 160, 23–25. [Google Scholar] [CrossRef]
- Maeda, Y.; Kudo, S.E.; Ogata, N.; Misawa, M.; Iacucci, M.; Homma, M.; Nemoto, T.; Takishima, K.; Mochida, K.; Miyachi, H.; et al. Evaluation in real-time use of artificial intelligence during colonscopy to predict relapse of ulcerative colitis: A prospective study. Gastrointest. Endosc. 2022, 95, 747–756.e2. [Google Scholar] [CrossRef]
- Kuroki, T.; Maeda, Y.; Kudo, S.E.; Ogata, N.; Iacucci, M.; Takishima, K.; Ide, Y.; Shibuya, T.; Semba, S.; Kawashima, J.; et al. A novel artificial intelligence-assisted “vascular healing” diagnosis for prediction of future clinical relapse in patients with ulcerative colitis: A prospective cohort study (with video). Gastrointest. Endosc. 2024, 100, 97–108. [Google Scholar] [CrossRef]
- Ogata, N.; Maeda, Y.; Misawa, M.; Takenaka, K.; Takabayashi, K.; Iacucci, M.; Kuroki, T.; Takishima, K.; Sasabe, K.; Niimura, Y.; et al. Artificial Intelligence-assisted Video Colonoscopy for Disease Monitoring of Ulcerative Colitis: A Prospective Study. J. Crohns Colitis 2025, 19, jjae080. [Google Scholar] [CrossRef]
- Eaden, J.A.; Abrams, K.R.; Mayberry, J.F. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut 2001, 48, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Beaugerie, L.; Itzkowitz, S.H. Cancers complicating inflammatory bowel disease. N. Engl. J. Med. 2015, 372, 1441–1452. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Kudo, S.E.; Ogata, N.; Misawa, M.; Mori, Y.; Mori, K.; Ohtsuka, K. Can artificial intelligence help to detect dysplasia in patients with ulcerative colitis? Endoscopy 2021, 53, E273–E274. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, S.; Kusaba, Y.; Ohuchi, A.; Nagata, T.; Mitsuyama, K.; Tsuruta, O.; Torimura, T. Is artificial intelligence a superior diagnostician in ulcerative colitis? Endoscopy 2021, 53, E75–E76. [Google Scholar] [CrossRef]
- Guerrero Vinsard, D.; Fetzer, J.R.; Agrawal, U.; Singh, J.; Damani, D.N.; Sivasubramaniam, P.; Arunachalam, S.P.; Leggett, C.L.; Raffals, L.E.; Coelho-Prabhu, N. Development of an artificial intelligence tool for detecting colorectal lesions in inflammatory bowel disease. iGIE 2023, 2, 91–101.E6. Available online: https://www.igiejournal.org/article/S2949-7086(23)00042-0/fulltext (accessed on 27 December 2024).
- Abdelrahim, M.; Siggens, K.; Iwadate, Y.; Maeda, N.; Htet, H.; Bhandari, P. New AI model for neoplasia detection and characterisation in inflammatory bowel disease. Gut 2024, 73, 725–728. [Google Scholar] [CrossRef]
- Yamamoto, S.; Kinugasa, H.; Hamada, K.; Tomiya, M.; Tanimoto, T.; Ohto, A.; Toda, A.; Takei, D.; Matsubara, M.; Suzuki, S.; et al. The diagnostic ability to classify neoplasias occurring in inflammatory bowel disease by artificial intelligence and endoscopists: A pilot study. J. Gastroenterol. Hepatol. 2022, 37, 1610–1616. [Google Scholar] [CrossRef]
- Hou, J.K.; Chang, M.; Nguyen, T.; Kramer, J.R.; Richardson, P.; Sansgiry, S.; D’Avolio, L.W.; El-Serag, H.B. Automated identification of surveillance colonoscopy in inflammatory bowel disease using natural language processing. Dig. Dis. Sci. 2013, 58, 936–941. [Google Scholar] [CrossRef]
- Iacucci, M.; Parigi, T.L.; Del Amor, R.; Meseguer, P.; Mandelli, G.; Bozzola, A.; Bazarova, A.; Bhandari, P.; Bisschops, R.; Danese, S.; et al. Artificial Intelligence Enabled Histological Prediction of Remission or Activity and Clinical Outcomes in Ulcerative Colitis. Gastroenterology 2023, 164, 1180–1188.e2. [Google Scholar] [CrossRef]
- Vande Casteele, N.; Leighton, J.A.; Pasha, S.F.; Cusimano, F.; Mookhoek, A.; Hagen, C.E.; Rosty, C.; Pai, R.K.; Pai, R.K. Utilizing deep learning to analyze whole slide images of colonic biopsies for associations between eosinophil density and clinicopathologic features in active ulcerative colitis. Inflamm. Bowel Dis. 2022, 28, 539–546. [Google Scholar] [CrossRef]
- Ozaki, R.; Kobayashi, T.; Okabayashi, S.; Nakano, M.; Morinaga, S.; Hara, A.; Ohbu, M.; Matsuoka, K.; Toyonaga, T.; Saito, E.; et al. Histological risk factors to predict clinical relapse in ulcerative colitis with endoscopically normal mucosa. J. Crohns Colitis 2018, 12, 1288–1294. [Google Scholar] [CrossRef]
- Ohara, J.; Nemoto, T.; Maeda, Y.; Ogata, N.; Kudo, S.E.; Yamochi, T. Deep learning-based automated quantification of goblet cell mucus using histological images as a predictor of clinical relapse of ulcerative colitis with endoscopic remission. J. Gastroenterol. 2022, 57, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Iacucci, M.; Jeffery, L.; Acharjee, A.; Grisan, E.; Buda, A.; Nardone, C.M.; Smith, S.C.L.; Labarile, N.; Zardo, D.; Ungar, B.; et al. Computer-Aided Imaging Analysis of Probe-Based Confocal Laser Endomicroscopy With Molecular Labeling and Gene Expression Identifies Markers of Response to Biological Therapy in IBD Patients: The Endo-Omics Study. Inflamm. Bowel Dis. 2023, 29, 1409–1420. [Google Scholar] [CrossRef]
- Kellerman, R.; Bleiweiss, A.; Samuel, S.; Margalit-Yehuda, R.; Aflalo, E.; Barzilay, O.; Ben-Horin, S.; Eliakim, R.; Zimlichman, E.; Soffer, S.; et al. Spatiotemporal analysis of small bowel capsule endoscopy videos for outcomes prediction in Crohn’s disease. Ther. Adv. Gastroenterol. 2023, 16, 17562848231172556. [Google Scholar] [CrossRef]
- Silverman, A.L.; Shung, D.; Stidham, R.E.; Kochhar, G.S.; Iacucci, M. How artificial intelligence will transform clinical care, research, and trials for inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2024, 23, 428–439.e4. [Google Scholar] [CrossRef] [PubMed]
- Rimondi, A.; Gottlieb, K.; Despott, E.J.; Iacucci, M.; Murino, A.; Tontini, G.E. Can artificial intelligence replace endoscopists when assessing mucosal healing in ulcerative colitis? A systematic review and diagnostic test accuracy meta-analysis. Dig. Liver Dis. 2024, 56, 1164–1172. [Google Scholar] [CrossRef]
- Pal, P.; Ramchandani, M.; Patel, R.; Banerjee, R.; Kanaganti, S.; Gupta, R.; Tandan, M.; Reddy, D.N. Role of ultra-high definition endoscopy (endomicroscopy and endocytoscopy) and real-time histologic examination in inflammatory bowel disease: Scoping review. Dig. Endosc. 2024, 36, 274–289. [Google Scholar] [CrossRef]
Study | Year of Publication | Study Design | Endoscopic Technique | Artificial Intelligence Platform | N. of pts | Study Endpoints | Results | Comparator |
---|---|---|---|---|---|---|---|---|
Sutton et al. [41] | 2022 | Retrospective Single-center | WLE | Inception-V3 ResNet-50 VGG-19 DenseNet-121 | N/R | Diagnosing UC vs. non-UC | AUROCs: =0.999 DenseNet-121 =0.9978 Inception-V3 =0.9958 ResNet-50 =0.9988 VGG-19 | One expert and two trainee endoscopists |
Sharma et al. [42] | 2023 | Retrospective Single-center | WLE | ResNet-50 VGG-16 Inception-V3 | N/R | Diagnosing UC, polyps, esophagitis, and healthy colons | Accuracies:
=92.18% VGG-16 =94.6% Inception-V3
=93.44% VGG-16 =96.82% Inception-V3 | Kvasir database |
Guimarães et al. [43] | 2023 | Retrospective Single-center | WLE | DenseNet + GBDT (five clinical parameters) | Training: 444 pts Test: 50 pts | Differentiating between IBD and infectious and ischemic colitis | Overall accuracy: =70.9% DenseNet =79.2% GBDT algorithm =76.6% DenseNet + GBDT | Three expert endoscopists |
Kim et al. [44] | 2021 | Retrospective Single-center | WLE | ResNet-34 | 211 CD, 299 intestinal BD, and 217 ITB pts | Differentiating between CD and intestinal BD and ITB | AUROC = 0.78–0.86 Accuracies:
=78.15% CD vs. BD =78.09% BD vs. ITB =69.59% CD vs. ITB
=85.62% CD vs. BD =83.52% BD vs. ITB =75.66% CD vs. ITB | Two experienced endoscopists |
Tong et al. [45] | 2020 | Retrospective Single-center | WLE | CNN using the Phyton framework | 6399 pts | Differentiating between UC, CD, and ITB | AUROCs: =0.936 UC vs. CD =0.892 UC vs. ITB =0.910 CD vs. ITB | Endoscopists (number and expertise N/R) |
Lu et al. [47] | 2023 | Retrospective Single-center | WLE | Text-CNN | 875 CD 396 ITB | Differentiating between CD and ITB | Accuracies: =83% standard TextCNN (Robust) =70% noisy TextCNN (Robust) | Endoscopists (number and expertise N/R) |
Lu et al. [48] | 2021 | Retrospective Single-center | WLE | CART model | Training: 84 CD, 84 ITB Validation: 22 CD, 22 ITB | Differentiating between CD and ITB | Accuracy = 88.64% ≥4 segments involved, longitudinal ulcers, aphthous ulcers suggestive of CD | Endoscopists (number and expertise N/R) |
Ruan et al. [49] | 2022 | Retrospective Multi-center | WLE | ResNet-50 | Training: 1358 pts Test: 218 pts External data: 196 pts | Differentiating between UC, CD, and normal colons | Accuracies: =99.1% per patient (vs. 78% and 92.2% of trainee and competent endoscopists) =90.4% per lesion (vs. 59.7% and 69.9% of trainee and competent endoscopists) | Five expert and five trainee endoscopists |
Wang et al. [50] | 2022 | Retrospective Multi-center | WLE | ResNeXt-101 | Training: 217 CD pts, 279 UC pts, and 100 healthy controls | Differentiating between CD, UC, and normal colons | Accuracies: =92.04% per image =90.91% per patient =92.39% CD per image =93.35% UC per image =98.35% normal per image (vs. 91.7% CD, 92.39% UC, and 97.26% normal for best-performing endoscopists) | Six endoscopists of different seniorities |
Chierici et al. [51] | 2022 | Retrospective Multi-center | WLE | ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 | N/R | Differentiating between CD, UC, and normal colons | Matthews correlation coefficient: >0.9 IBD vs. normal and UC vs. normal (ResNet34-50-101 best performing) >0.6 UC vs. CD (ResNet34-50-101 best performing) | Endoscopists (number and expertise N/R) |
Quénéhervé et al. [52] | 2019 | Retrospective Single-center | CLE | CAD system | 23 CD, 27 UC pts, and 9 healthy controls | Diagnosing IBD Differentiating between UC and CD | IBD diagnosis: Sensitivity = 100% Specificity = 100% CD vs. UC: Sensitivity = 92% Specificity = 91% | N/A |
Higuchi et al. [53] | 2022 | Prospective Single-center | CE | ResNet-50 | 22 UC pts | Diagnosing UC | Accuracies: =99.2% training =98.3% validation | Five well-trained endoscopists |
Majtner et al. [54] | 2021 | Prospective Multi-center | CE | ResNet-50 | 38 pts with suspected or known CD | Diagnosing CD | Accuracies: =98.58% random split =98.38% patient split Agreement on severity disease: κ = 0.90 random split κ = 0.72 patient split | Three experienced gastroenterologists |
Brodersen et al. [55] | 2023 | Prospective Multi-center | CE | AXARO® framework | 131 suspected CD | Diagnosing IBD and CD | AUROCs: =0.91–0.94 CD =0.93–0.94 IBD Sensitivity: =92–96% CD =97% IBD Specificity: =90–83% CD =90–91% IBD | Two specialized observers |
Charisis et al. [56] | 2016 | Retrospective Single-center | CE | Hybrid Adaptive Filtering- Differential Lacunarity analysis | 13 CD pts | Diagnosing CD | Accuracy: =93.8% Precision: =92.6% | N/R |
Aoki et al. [57] | 2019 | Retrospective Single-center | CE | CNN based on Single-Shot Multibox Detector | 65 CD pts | Diagnosing CD | AUROC: =0.958 Accuracy: =90.8% at a cut-off value of 0.481 for the probability score | Two expert endoscopists |
Klang et al. [58] | 2020 | Retrospective Single-center | CE | Xception CNN | 49 CD pts | Diagnosing CD | AUROCs: =0.99 random split =0.94–0.99 patient level Accuracy: =95.4–96.7% | One experienced endoscopist |
Barash et al. [59] | 2021 | Retrospective Single-center | CE | Deep Ordinal Ranking model | 49 CD pts | Grading of ulcer severity | Agreement between consensus reading and automatic algorithm = 67%; AUROCs: =0.958 grade 1 vs. grade 3 ulcer severity =0.565 grade 1 vs. 2 ulcer severity =0.939 grade 2 vs. 3 ulcer severity | Two and three capsule readers (experiments 1 and 2) |
Klang et al. [60] | 2021 | Retrospective Single-center | CE | EfficientNet-B5 | N/R | Detecting CD strictures | AUROCs: =0.971 strictures vs. non-strictures =0.989 strictures vs. normal mucosa =0.942 strictures vs. all ulcers; AUROCs between different grades of ulcers: =0.992 for mild grade =0.975 for moderate grade =0.889 for severe grade | N/R |
De Maissin et al. [61] | 2021 | Retrospective Single-center | CE | ResNet-34 VGGNet-16-19 | 63 CD pts | Diagnosing IBD vs. non-IBD | Overall precision = 93.7%; Overall k = 0.79; Accuracies: =94.58% ResNet-34 = 94.4% VGGNet-16 = 94.35% VGGNet-19 | Three IBD experts |
Ferreira et al. [62] | 2022 | Retrospective Multi-center | CE | CNN using Xception model | N/R | Detecting CD ulcers and erosions | Precision = 97.1% Accuracy = 92.4%, Detection of ulcers: Sensitivity = 83% Specificity = 98% Detection of erosions: Sensitivity = 91% Specificity = 93% | Three CE experts |
Kratter et al. [63] | 2022 | Retrospective Single-center | CE | EfficientNet-B4 | N/R | Detecting CD ulcers | Average AUROC = 0.99 Average mean patient accuracy = 97.4% | Gastroenterology fellows supervised by capsule experts (number N/R) |
Ribeiro et al. [64] | 2022 | Retrospective Multi-center | CE | CNN using Xception model | 124 CD pts | Detecting CD ulcers and erosions | Accuracy = 99.6% AUROC = 1.00 | Three CE experts |
Wang et al. [65] | 2019 | Retrospective Single-center | CE | Second glance detection framework | 1504 pts (1076 ulcers, 428 normal mucosa) | Detecting CD ulcers | AUROC = 0.9469 (vs. 0.9014 Faster-RCNN and 0.8355 SSD-300) Accuracies: =90.1% overall =85% for ulcers <1% of the full image size =92% for ulcers >1% of the full image size | N/R |
Study | Year of Publication | Study Design | Endoscopic Technique | Artificial Intelligence Platform | N. of Patients | N. of Images | Study Endpoints | Results | Comparator |
---|---|---|---|---|---|---|---|---|---|
Sutton et al. [41] | 2022 | Retrospective Single-center | WLE | Inception-V3 ResNet-50 VGG-19 DenseNet-121 | N/R | 851 still images from the HyperKvasir dataset | Distinguishing MES 0–1 (inactive/mild) from 2 to 3 (moderate/severe) in UC | AUROCs: =0.90 DenseNet-121 =0.90 Inception-V3 =0.66 ResNet-50 =0.83 VGG-19 | One expert and two trainee endoscopists |
Higuchi et al. [53] | 2022 | Prospective Single-center | CE | ResNet-50 | 22 UC pts | Training: 483,644 images Validation: 255,377 images | Assessing endoscopic severity in UC along the entire length of the colon | Accuracy validation dataset: =99.4% MES 0 =94.8% MES 1 =91.3% MES 2 =95.2% MES 3 | Five well-trained endoscopists |
Barash et al. [59] | 2021 | Retrospective Single-center | CE | Deep Ordinal Ranking model | 49 CD pts | 7391 CD images; 10,249 normal mucosa images | Grading of ulcer severity in CD | Overall agreement between manual reading and automatic algorithm = 67% AUROCs: =0.958 grade 1 vs. grade 3 ulcer severity =0.565 grade 1 vs. 2 ulcer severity =0.939 grade 2 vs. 3 ulcer severity | Three capsule readers |
Kim et al. [67] | 2023 | Retrospective Single-center | WLE | VGG-16 | 492 UC pts | 984 still images | Differentiating MES 0 vs. 1 | F1-score = 0.92 AUROC = 0.97 AUPRC = 0.98 External test: F1-score = 0.89 AUROC = 0.86 AUPRC = 0.97 | Three IBD experts and seven fellow doctors External test: HyperKvasir dataset |
Wang et al. [68] | 2023 | Retrospective Single-center | WLE | High-Resolution Network with Class-Balanced Loss | 308 UC pts | 12,163 still images | Assessing endoscopic activity in UC | MES 0 vs. 123: Accuracy = 93.73% κ = 0.8433 AUROC = 0.9754 MES 01 vs. 23: Accuracy = 95.1% κ = 0.8836 AUROC = 0.9834 | Three IBD experts |
Polat et al. [69] | 2023 | Retrospective Single-center | WLE | ResNet-18 ResNet-50 DenseNet-121 Inception-V3 MobileNet-V3-large | 564 UC pts | 11,276 still images | Assessing endoscopic activity in UC | QWK Mayo subscores = 0.847 (MobileNet-V3-large)—0.854 (ResNet-18) κ remission = 0.834 (MobileNet-V3-large)—0.852 (ResNet-50) | Two experienced gastroenterologists |
Qi et al. [70] | 2023 | Retrospective Multi-center | HD endoscopy | ViT network | 768 UC pts | 15,120 still images | Predicting MES in UC | AUROCs: =0.998 MES 0 =0.984 MES 1 =0.973 MES 2 =0.990 MES 3 Overall accuracy = 87.1% (vs. 90.8% of endoscopists) | Six expert endoscopists |
Turan et al. [71] | 2022 | Retrospective Single-center | HD endoscopy | UC-NfNet | N/R | 673 still images from the HyperKvasir dataset | Classifying colonoscopic UC images | Accuracy = 84.91% Precision score = 85.27% Recall score = 84.91% F1-score = 85.14% MCC = 79.89% | Five board-certified endoscopists with <5 years of experience |
Iacucci et al. [72] | 2023 | Retrospective Multi-center | WLE and VCE videos | ResNet-50 | 283 UC pts | 1090 endoscopic videos (67,280 frames) | Distinguishing UC endoscopic remission (ER) | WLE videos: AUROC = 0.85 (UCEIS ≤ 1) Cohen’s κ coefficient = 0.51 VCE videos: AUROC = 0.94 (PICaSSO ≤ 3) Cohen’s κ coefficient = 0.73 | Experienced endoscopists from the PICaSSO group |
Patel et al. [73] | 2022 | Prospective Single-center | HD endoscopic videos | Multi-task learning algorithm (MLA) | 73 UC pts | 38,124 frames | Distinguishing UCEIS 0 vs. active disease, UCEIS 0–3 vs. moderate/severe disease | UCEIS 0 vs. ≥1: Accuracy = 0.90 κ = 0.90; UCEIS 0–3 vs. ≥4: Accuracy = 0.98 κ = 0.96; MLA vs. experts: Total UCEIS κ = 0.92 Vascular pattern κ = 0.81 Bleeding κ = 0.83 Ulceration κ = 0.88 | Three IBD experts |
Takabayashi et al. [74] | 2024 | Retrospective Multi-center | HD endoscopy | Ranking-CNN | 812 UC pts | 13,826 pairs of still images | Grading UC severity by UC Endoscopic Gradation Scale (UCEGS) | Spearman’s correlation coefficients: =0.89 UCEGS vs. MES =0.96–0.98 UCEGS vs. IBD expert endoscopists | Seven IBD expert endoscopists |
Lo et al. [75] | 2022 | Retrospective Single-center | WLE | Inception Net-V3 EfficientNet-B0, B1, B2, B3, and B4 | 467 UC pts | 1484 still images | Distinguishing active vs. healed mucosa; differentiating levels of endoscopic disease activity |
=0.94 MES 0 vs. 1–3 =0.91 MES 0–1 vs. 2–3
=0.94 MES 0 vs. 1–3 =0.93 MES 0–1 vs. 2–3 | Two IBD experts |
Yao et al. [76] | 2021 | Retrospective Multi-center | HD endoscopic videos | Inception-V3 | 157 UC pts | 175 videos | Grading endoscopic UC disease | Informative image classifier: AUROC = 0.93; Correct prediction of MES: 78%; Correct classification MES 0–1 vs. 2–3: 83.7% Accuracies: =0.947 MES 0 =0.888 MES 1 =0.678 MES 2 =0.711 MES 3 | Two IBD experts |
Stidham et al. [77] | 2019 | Retrospective Single-center | HD endoscopy | Inception-V3 | 3082 UC pts | 16,514 still images; 30 endoscopic videos | Grading endoscopic UC disease | MES 0–1 vs. MES 2–3: AUROC = 0.97 still images/0.966 videos Agreement CNN vs. experts: κ = 0.84 still images/0.75 videos | Two IBD experts |
Byrne et al. [78] | 2023 | Prospective Single-center | HD endoscopy | EfficientNet-B3 | N/R | 134 videos (1,550,030 frames) | Predicting MES and UCEIS in UC pts | At section level: MES κ = 0.886 UCEIS κ = 0.904 Vascular pattern κ = 0.905 Bleeding κ = 0.754 Erosions and ulcers κ = 0.800; At video level: MES κ = 0.821 UCEIS κ = 0.646 Vascular pattern κ = 0.879 Bleeding κ = 0.391 Erosions and ulcers κ = 0.600 | One global central reading expert, six gastrointestinal specialists, and twenty gastrointestinal trainees |
Ozawa et al. [79] | 2019 | Retrospective Single-center | WLE | CNN-based CAD system on GoogLeNet architecture | 841 UC pts | 26,304 still images | Identifying normal mucosa (MES 0) vs. healing state (MES 0–1) | AUROCs MES 0 vs. 1–3: =0.86 overall =0.92 rectum =0.83 right side =0.83 left side =0.95 topical treatment =0.95 no topical treatment AUROCs MES 0–1 vs. 2–3: =0.98 overall =0.99 rectum =0.99 right side =0.94 left side =0.89 topical treatment =0.96 no topical treatment | N/R |
Huang et al. [80] | 2021 | Retrospective Single-center | HD endoscopy | DNN, support vector machine, k-nearest neighbor network | 54 UC pts | 856 still images | Diagnosing mucosal healing in UC | Accuracies: =94.5% MES 0–1 vs. 2–3 =89.1% MES 0 vs. 1 | Two reviewers |
Bhambhvani et al. [82] | 2021 | Retrospective Single-center | HD endoscopy | ResNeXt-101 | 777 active UC pts | 777 representative still images from the HyperKvasir dataset | Grading individual MES in UC | AUROCs: =0.96 MES 3 =0.86 MES 2 =0.89 MES 1 Overall accuracy: 77.2% Overall specificity: 85.7% Overall sensitivity: 72.4% | One experienced gastroenterologist and one fellowship physician in gastroenterology |
Gutierrez Becker et al. [83] | 2021 | Retrospective Multi-center | WLE videos from etrolizumab Phase II Eucalyptus and Phase III Hickory and Laurel clinical trials | Quality control model-CNN | 1105 UC pts | 1672 videos | Grading individual MES in UC | AUROCs: =0.84 MES ≥ 1 =0.85 MES ≥ 2 =0.85 MES ≥ 3 | Expert gastroenterologists |
Gottlieb et al. [84] | 2023 | Prospective Multi-center | WLE videos from a phase II trial of mirikizumab | Recurrent neural network | 249 UC pts | 795 videos | Predicting central reader scores | MES: QWK = 0.844 UCEIS: QWK = 0.855 | Expert central readers |
Fan et al. [85] | 2023 | Retrospective Single-center | WLE | ResNet-50 | 332 UC pts | 5875 still images and 20 full-length videos | Scoring full-length intestinal inflammatory activity | Mayo-scored task: Accuracy = 86.5% κ = 0.813 UCEIS-scored task:
κ = 0.822
κ = 0.784
κ = 0.702 | Four endoscopists with 30, 11, 4, and 6 years of experience |
Stidham et al. [86] | 2024 | Retrospective Single-center | WLE videos from the UNIFI clinical trial | Computer vision analysis that spatially mapped MES to generate the cumulative disease score (CDS) | 748 induction and 348 maintenance UC pts | N/R | Quantifying endoscopic severity in UC; CDS vs. MES for differentiating response to ustekinumab vs. placebo | CDS:
Stratification by pretreatment CDS: Ustekinumab more effective vs. placebo, with increasing effect in severe vs. mild disease (p < 0.0001) | N/R |
Gutierrez Becker et al. [87] | 2024 | Retrospective Multi-center | WLE videos from phase III Etrolizumab clinical trials | QC model-V7 platform | 1953 UC pts | 4326 sigmoidoscopy videos | Evaluating endoscopic severity and disease extent in UC using Ulcerative Colitis Severity Classification and Localized Extent (UC-SCALE) | QWK between UC-SCALE and MCES by central reading: =0.79 full video =0.80 colon section QWK between central and local reading = 0.84 AUROCs for MCES at colon section/video level: =0.87/0.89 all MCES =0.94/0.97 MCES 0 =0.81/0.89 MCES 1 =0.82/0.81 MCES 2 =0.91/0.90 MCES 3 UC-SCALE correlated with calprotectin, C-reactive protein, patient-reported outcomes, physician global assessment and Geboes histologic scores (rs = 0.40–0.55, p < 0.0001) | Central and local reading (leading IBD gastroenterologists) |
Akiyama et al. [88] | 2024 | Retrospective Single-center | WLE | EP-0002 function by Fujifilm | 100 UC pts | 490 images | Assessing colonic tissue oxygen saturation (StO2) for evaluation of clinical, endoscopic, and histologic activity in UC | Rectal StO2 correlated with Simple Clinical Colitis Activity Index (p < 0.001) Accuracy to predict bowel urgency at 40.5% cut-off: AUROC = 0.74 Median StO2 values for Mayo endoscopic subscores 0, 1, 2, and 3 = 52%, 47%, 42%, and 39.5% (significant differences for all pairs) Median StO2 values for UCEIS 0–1, UCEIS 2–4, and UCEIS 5–8 = 50%, 44%, and 39.5% (significant differences for all pairs) Median StO2 for Geboes scores 0 to 2 = 49%, significantly higher than histologically active disease (Geboes score ≥ 3) AUROCs for endoscopically and histologically active disease: 0.79 and 0.72 at a colonic StO2 cut-off of 45.5% | Three board-certified endoscopists and two board-certified pathologists |
Martins et al. [89] | 2023 | Retrospective Single-center | DAE | XCeption model multi-brand CNN | 250 DAE exams | 6772 images | Detecting ulcers and erosions in CD | Sensitivity = 88.5% Specificity = 99.7% Accuracy = 98.7% AUPRC = 1.00 CNN processed 293.6 frames per second | Two experienced endoscopists |
Xie et al. [90] | 2024 | Retrospective Single-center | DBE | EfficientNet-B5 | 628 pts | 28,155 small-bowel DBE images | Detecting and objectively assessing small-bowel CD | Accuracy: =96.3% for ulcers =95.7% for non-inflammatory stenosis =96.7% for inflammatory stenosis =87.3% for grading the ulcerated surface =87.8% for grading the size of ulcers =85.2% for ulcer depth | Two experienced endoscopists |
Udristoiu et al. [91] | 2021 | Retrospective Single-center | CLE | DL combined with CNN and long short-term memory (LSTM) | 54 UC pts (32 with known active disease, 22 controls) | 6205 images | Distinguishing between normal and inflamed colonic mucosa in CD | Normal colonic mucosa: round crypts Inflamed mucosa: irregular crypts and tortuous and dilated blood vessels Accuracy = 95.3% Specificity = 92.78% Sensitivity = 94.6% AUROC= 0.98 | N/R |
Study | Year of Publication | Study Design | Endoscopic Technique | Artificial Intelligence Platform | N. of Patients | N. of Images | Study Endpoints | Results | Comparator |
---|---|---|---|---|---|---|---|---|---|
Iacucci et al. [72] | 2023 | Retrospective Multi-center | WLE and VCE videos | ResNet-50 | 283 UC pts | 1090 endoscopic videos (67,280 frames) | Predicting histology and risk of flare | VCE videos:
| Experienced endoscopists from the PICaSSO group Six expert pathologists |
Maeda et al. [99] | 2019 | Retrospective Single-center | EC | CAD system (EB-01) | 187 UC pts | Training: 12,900 EC images Validation: 9935 EC images | Predicting persistent histologic inflammation in UC |
Specificity = 97% Accuracy = 91%
Specificity = 98% Accuracy = 91%
Specificity = 93% Accuracy = 89% | Endoscopists (number and experience N/R) Experienced pathologists |
Omori et al. [100] | 2024 | Retrospective Single-center | WLE ultra-magnifying endoscopy vs. conventional light non-magnifying endoscopy | EndoBRAIN-UC system | 52 UC pts | N/R | Diagnosing histologic healing in UC |
Specificity = 93.8% Accuracy = 77.5%
Specificity = 90.6% Accuracy = 81.2% AI identified GS < 3.1 in MES 1 (p = 0.017) | Three endoscopists |
Takenaka et al. [101] | 2020 | Prospective Single-center | WLE | DNUC (deep neural network for evaluation of UC) | Training: 2012 UC pts Validation: 875 UC pts | Training: 40,758 still images Validation: 4187 still images | Predicting endoscopic and histologic remission |
κ = 0.798
κ = 0.859 | Three endoscopists with 11, 13, and 32 years’ experience in IBD-endoscopy Three expert gastrointestinal pathologists |
Takenaka et al. [102] | 2021 | Prospective Single-center | WLE | DNUC (deep neural network for evaluation of UC) | 875 UC pts | 4187 still images | Predicting UC pts prognosis |
Specificity = 91.3%
For colectomy = 46.4 For steroid use = 10.2 For clinical relapse = 8.8 | Three endoscopists with 11, 13, and 32 years’ experience in IBD endoscopy |
Takenaka et al. [103] | 2022 | Prospective Multi-center | WLE videos | DNUC (deep neural network for evaluation of UC) | 770 UC pts | Colonoscopy full videos (number N/R) | Real-time detection of UC histologic mucosal inflammation |
Specificity = 94.6%
Specificity = 94.7%
| Two central reviewer endoscopists with 12 and 14 years’ experience Two central reading pathologists with 10 and 19 years’ experience |
Bossuyt et al. [104] | 2020 | Prospective Multi-center | WLE with red density (RD) function | CAD RD-based algorithm | 29 UC pts, six healthy controls | Number of images N/R | Determining UC endoscopic and histologic activity | RD correlated (p < 0.0001) with the following:
| Two groups of two IBD endoscopists (two with >10 years’ experience) |
Sinonquel et al. [105] | 2023 | Retrospective Single-center | WLE with red density (RD) function | CAD RD-based algorithm | 39 UC pts from RD pilot study, 6 healthy controls | Number of images N/R | Predicting sustained clinical remission using RD | RD ≥ 65:
| N/R |
Sinonquel et al. [106] | 2024 | Prospective Single-center | WLE and SWE | CAD models CNN-based (ResNet-50, VoVNet) | 112 UC pts | 6926 images | Assessing accuracy of WLE-CAD and SWE-CAD systems for UC histologic activity | SWE-CAD: Sensitivity = 88% (96.4% on section level) Specificity = 71.7% (92.9% on section level) Accuracy = 83.3% (95.2% on section level) WLE-CAD: Sensitivity = 73.9% Specificity = 65.6% Accuracy = 67.5% SWE- vs. WLE-CAD = p < 0.005 | Number and experience of endoscopists N/R Dedicated gastrointestinal pathologist and fellow |
Bossuyt et al. [107] | 2021 | Prospective Single-center | SWE | CAD model | 58 UC pts | 113 still images | Automatically evaluating changes in mucosal peri-cryptal vascular structures associated with UC activity (number of bleeding pixels, number of pixels with high density) | CAD histologic remission: Sensitivity = 79% (vs. 95% UCEIS, 98% MES) Specificity = 90% (vs. 69% UCEIS, 61% MES) Accuracy = 86% (vs. 79% UCEIS, 74% MES) | Number and experience of endoscopists N/R |
Maeda et al. [108] | 2022 | Prospective Single-center | EC | Endo-BRAIN-UC | 61 UC pts healing group, 74 UC pts active group | 44,097 images | Stratifying relapse risk of UC pts in clinical remission |
=4.9% AI healing group (p < 0.001)
| Two endoscopists trained on the AI system in at least three UC cases |
Kuroki et al. [109] | 2024 | Prospective Single-center | NBI endoscopy | EB-03 prototype | 167 UC pts | 8853 images | Diagnosing vascular healing and predicting outcomes in UC |
=3% AI vascular healing group (p = 0.01)
| Three endoscopists (expertise N/R but registered) |
Ogata et al. [110] | 2024 | Prospective Single-center | WLE | EB-UC2 prototype | 110 UC pts in clinical remission | 11,472 images | Predicting clinical relapse during 12-month follow-up |
=3.2% AI-based MES 0 p = 0.01 =16.2% AI-based MES 0–1 =50% AI-based MES 2–3 p = 0.03
Specificity = 77.2% Accuracy = 87.1%
| Two expert endoscopists and six non-specialist endoscopists |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testoni, S.G.G.; Albertini Petroni, G.; Annunziata, M.L.; Dell’Anna, G.; Puricelli, M.; Delogu, C.; Annese, V. Artificial Intelligence in Inflammatory Bowel Disease Endoscopy. Diagnostics 2025, 15, 905. https://doi.org/10.3390/diagnostics15070905
Testoni SGG, Albertini Petroni G, Annunziata ML, Dell’Anna G, Puricelli M, Delogu C, Annese V. Artificial Intelligence in Inflammatory Bowel Disease Endoscopy. Diagnostics. 2025; 15(7):905. https://doi.org/10.3390/diagnostics15070905
Chicago/Turabian StyleTestoni, Sabrina Gloria Giulia, Guglielmo Albertini Petroni, Maria Laura Annunziata, Giuseppe Dell’Anna, Michele Puricelli, Claudia Delogu, and Vito Annese. 2025. "Artificial Intelligence in Inflammatory Bowel Disease Endoscopy" Diagnostics 15, no. 7: 905. https://doi.org/10.3390/diagnostics15070905
APA StyleTestoni, S. G. G., Albertini Petroni, G., Annunziata, M. L., Dell’Anna, G., Puricelli, M., Delogu, C., & Annese, V. (2025). Artificial Intelligence in Inflammatory Bowel Disease Endoscopy. Diagnostics, 15(7), 905. https://doi.org/10.3390/diagnostics15070905