Artificial Intelligence Applications in Pediatric Craniofacial Surgery
Abstract
:1. Introduction
2. Cleft Lip and Palate
2.1. Velopharyngeal Insufficiency
2.2. Orthognathic Surgery
3. Craniosynostosis
4. Craniofacial Microsomia
Domain | AI Applications | Key Findings | References |
---|---|---|---|
Cleft Lip and Palate |
|
| [19,20,21,22,23,24,25,26,27,28,29,30,31,32,33] |
Velopharyngeal Insufficiency (VPI) |
|
| [53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81] |
Orthognathic Surgery |
|
| [82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109] |
Craniosynostosis |
|
| [110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149] |
Craniofacial Microsomia and Microtia |
|
| [150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168] |
5. Limitations and Gaps
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahmani, A.M.; Yousefpoor, E.; Yousefpoor, M.S.; Mehmood, Z.; Haider, A.; Hosseinzadeh, M.; Ali Naqvi, R. Machine Learning (ML) in Medicine: Review, Applications, and Challenges. Mathematics 2021, 9, 2970. [Google Scholar] [CrossRef]
- Quazi, S. Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 2022, 39, 120. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef]
- Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
- Alaskar, H.; Saba, T. Machine Learning and Deep Learning: A Comparative Review. In Proceedings of the Integrated Intelligence Enable Networks and Computing, Gopeshwar, India, 25–27 May 2020; Springer: Singapore, 2021. [Google Scholar]
- Hallac, R.R.; Lee, J.; Pressler, M.; Seaward, J.R.; Kane, A.A. Identifying Ear Abnormality from 2D Photographs Using Convolutional Neural Networks. Sci. Rep. 2019, 9, 18198. [Google Scholar] [CrossRef]
- Thakur, G.K.; Thakur, A.; Kulkarni, S.; Khan, N.; Khan, S. Deep Learning Approaches for Medical Image Analysis and Diagnosis. Cureus 2024, 16, e59507. [Google Scholar] [CrossRef]
- Mall, P.K.; Singh, P.K.; Srivastav, S.; Narayan, V.; Paprzycki, M.; Jaworska, T.; Ganzha, M. A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities. Healthc. Anal. 2023, 4, 100216. [Google Scholar] [CrossRef]
- Li, M.; Jiang, Y.; Zhang, Y.; Zhu, H. Medical image analysis using deep learning algorithms. Front. Public Health 2023, 11, 1273253. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Hallac, R.R.; Jackson, S.A.; Grant, J.; Fisher, K.; Scheiwe, S.; Wetz, E.; Perez, J.; Lee, J.; Chitta, K.; Seaward, J.R.; et al. Assessing outcomes of ear molding therapy by health care providers and convolutional neural network. Sci. Rep. 2021, 11, 17875. [Google Scholar] [CrossRef]
- Rosero, K.; Salman, A.N.; Hallac, R.R.; Busso, C. Lip abnormality detection for patients with repaired cleft lip and palate: A lip normalization approach. In Proceedings of the 26th International Conference on Multimodal Interaction (ICMI 2024), San José, Costa Rica, 4–8 November 2024. [Google Scholar] [CrossRef]
- Loftus, T.J.; Tighe, P.J.; Filiberto, A.C.; Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Rashidi, P.; Upchurch, G.R., Jr.; Bihorac, A. Artificial Intelligence and Surgical Decision-making. JAMA Surg. 2020, 155, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Najjar, R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, D.; Zhou, F.; Song, D.; Zhang, Y.; Jiang, J.; Kong, K.; Liu, X.; Qiao, Y.; Chang, R.T. Understanding natural language: Potential application of large language models to ophthalmology. Asia-Pac. J. Ophthalmol. 2024, 13, 100085. [Google Scholar]
- Sezgin, E.; Jackson, D.I.; Kocaballi, A.B.; Bibart, M.; Zupanec, S.; Landier, W.; Audino, A.; Ranalli, M.; Skeens, M. Can Large Language Models Aid Caregivers of Pediatric Cancer Patients in Information Seeking? A Cross-Sectional Investigation. Cancer Med. 2025, 14, e70554. [Google Scholar]
- Mossey, P.; Catilla, E. WHO Registry Meeting on Craniofacial Anomalies. In WHO Human Genetics Programme & WHO Meeting on International Collaborative Research on Craniofacial Anomalies; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Dai, Y.; Itai, T.; Pei, G.; Yan, F.; Chu, Y.; Jiang, X.; Weinberg, S.M.; Mukhopadhyay, N.; Marazita, M.L.; Simon, L.M.; et al. DeepFace: Deep-learning-based framework to contextualize orofacial-cleft-related variants during human embryonic craniofacial development. HGG Adv. 2024, 5, 100322. [Google Scholar] [CrossRef]
- Kang, G.; Baek, S.H.; Kim, Y.H.; Kim, D.H.; Park, J.W. Genetic Risk Assessment of Nonsyndromic Cleft Lip with or without Cleft Palate by Linking Genetic Networks and Deep Learning Models. Int. J. Mol. Sci. 2023, 24, 4557. [Google Scholar] [CrossRef]
- Jurek, J.; Wojtowicz, W.; Wojtowicz, A. Syntactic pattern recognition-based diagnostics of fetal palates. Pattern Recognit. Lett. 2020, 133, 144–150. [Google Scholar]
- Li, Y.; Cai, P.; Huang, Y.; Yu, W.; Liu, Z.; Liu, P. Deep learning brosased detection and classification of fetal lip in ultrasound images. J. Perinat. Med. 2024, 52, 769–777. [Google Scholar] [CrossRef]
- Kuwada, C.; Ariji, Y.; Kise, Y.; Fukuda, M.; Nishiyama, M.; Funakoshi, T.; Takeuchi, R.; Sana, A.; Kojima, N.; Ariji, E. Deep-learning systems for diagnosing cleft palate on panoramic radiographs in patients with cleft alveolus. Oral Radiol. 2023, 39, 349–354. [Google Scholar] [CrossRef]
- Kuwada, C.; Ariji, Y.; Kise, Y.; Funakoshi, T.; Fukuda, M.; Kuwada, T.; Gotoh, K.; Ariji, E. Detection and classification of unilateral cleft alveolus with and without cleft palate on panoramic radiographs using a deep learning system. Sci. Rep. 2021, 11, 16044. [Google Scholar] [CrossRef] [PubMed]
- Kuwada, C.; Ariji, Y.; Kise, Y.; Fukuda, M.; Ota, J.; Ohara, H.; Kojima, N.; Ariji, E. Detection of unilateral and bilateral cleft alveolus on panoramic radiographs using a deep-learning system. Dentomaxillofacial Radiol. 2023, 52, 20210436. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Hallac, R.; Mishra, R.; Li, C.; Daescu, O.; Kane, A. Images based detection of craniofacial abnormalities using feature extraction by classical convolutional neural network. In Proceedings of the 2018 IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences, Las Vegas, NV, USA, 8–20 October 2018; pp. 1–6. [Google Scholar]
- Rosero, K.; Salman, A.N.; Harrison, L.M.; Kane, A.A.; Busso, C.; Hallac, R.R. Deep Learning-Based Assessment of Lip Symmetry for Patients with Repaired Cleft Lip. Cleft Palate Craniofacial J. 2025, 62, 289–299. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.; Ly, S.; Auslander, A.; Yao, C.; Campbell, A.; Scherer, S.; Magee, W.P. Convolutional Neural Network Models for Automatic Preoperative Severity Assessment in Unilateral Cleft Lip. Plast. Reconstr. Surg. 2021, 148, 162–169. [Google Scholar] [CrossRef]
- Hayajneh, A.; Shaqfeh, M.; Serpedin, E.; Stotland, M.A. Unsupervised anomaly appraisal of cleft faces using a StyleGAN2-based model adaptation technique. PLoS ONE 2023, 18, e0288228. [Google Scholar] [CrossRef]
- Schiebl, J.; Bauer, F.X.; Grill, F.; Loeffelbein, D.J. RapidNAM: Algorithm for the Semi-Automated Generation of Nasoalveolar Molding Device Designs for the Presurgical Treatment of Bilateral Cleft Lip and Palate. IEEE Trans. Biomed. Eng. 2020, 67, 1263–1271. [Google Scholar] [CrossRef]
- Lee, G.K.; Moshrefi, S.; Fuertes, V.; Veeravagu, L.; Nazerali, R.; Lin, S.J. What Is Your Reality? Virtual, Augmented, and Mixed Reality in Plastic Surgery Training, Education, and Practice. Plast. Reconstr. Surg. 2021, 147, 505–511. [Google Scholar] [CrossRef]
- Chahine, E.M.; Kantar, R.S.; Kassam, S.N.; Vyas, R.M.; Ghotmi, L.H.; Haddad, A.G.; Hamdan, U.S. Sustainable Cleft Care: A Comprehensive Model Based on the Global Smile Foundation Experience. Cleft Palate Craniofacial J. 2021, 58, 647–652. [Google Scholar] [CrossRef]
- Vyas, R.M.; Sayadi, L.R.; Bendit, D.; Hamdan, U.S. Using Virtual Augmented Reality to Remotely Proctor Overseas Surgical Outreach: Building Long-Term International Capacity and Sustainability. Plast. Reconstr. Surg. 2020, 146, 622e–629e. [Google Scholar] [CrossRef]
- Wang, X.; Pastewait, M.; Wu, T.H.; Lian, C.; Tejera, B.; Lee, Y.T.; Lin, F.C.; Wang, L.; Shen, D.; Li, S.; et al. 3D morphometric quantification of maxillae and defects for patients with unilateral cleft palate via deep learning-based CBCT image auto-segmentation. Orthod. Craniofacial Res. 2021, 24 (Suppl. S2), 108–116. [Google Scholar] [CrossRef]
- Fujii, Y.; Sugiyama-Tamura, T.; Sugisaki, R.; Chujo, Y.; Honda, A.; Kono, M.; Chikazu, D. New Assessment Method of Alveolar Bone Grafting Using Automatic Registration and AI-based Segmentation. J. Craniofacial Surg. 2024. [Google Scholar] [CrossRef] [PubMed]
- Miranda, F.; Choudhari, V.; Barone, S.; Anchling, L.; Hutin, N.; Gurgel, M.; Al Turkestani, N.; Yatabe, M.; Bianchi, J.; Aliaga-Del Castillo, A.; et al. Interpretable artificial intelligence for classification of alveolar bone defect in patients with cleft lip and palate. Sci. Rep. 2023, 13, 15861. [Google Scholar] [CrossRef]
- Sayadi, L.R.; Hamdan, U.S.; Zhangli, Q.; Hu, J.; Vyas, R.M. Harnessing the Power of Artificial Intelligence to Teach Cleft Lip Surgery. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4451. [Google Scholar] [CrossRef]
- Xu, M.; Liu, B.; Luo, Z.; Ma, H.; Sun, M.; Wang, Y.; Yin, N.; Tang, X.; Song, T. Using a New Deep Learning Method for 3D Cephalometry in Patients with Cleft Lip and Palate. J. Craniofacial Surg. 2023, 34, 1485–1488. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheng, J.; Mei, H.; Ma, H.; Chen, Z. CLPNet: Cleft Lip and Palate Surgery Support with Deep Learning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 23–27 July 2019; pp. 3666–3672. [Google Scholar] [CrossRef]
- Patcas, R.; Timofte, R.; Volokitin, A.; Agustsson, E.; Eliades, T.; Eichenberger, M.; Bornstein, M.M. Facial attractiveness of cleft patients: A direct comparison between artificial-intelligence-based scoring and conventional rater groups. Eur. J. Orthod. 2019, 41, 428–433. [Google Scholar] [CrossRef]
- Wu, J.; Heike, C.; Birgfeld, C.; Evans, K.; Maga, M.; Morrison, C.; Saltzman, B.; Shapiro, L.; Tse, R. Measuring Symmetry in Children with Unrepaired Cleft Lip: Defining a Standard for the Three-Dimensional Midfacial Reference Plane. Cleft Palate Craniofacial J. 2016, 53, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Fazilat, A.Z.; Berry, C.E.; Churukian, A.; Lavin, C.; Kameni, L.; Brenac, C.; Podda, S.; Bruckman, K.; Lorenz, H.P.; Khosla, R.K.; et al. AI-based Cleft Lip and Palate Surgical Information is Preferred by Both Plastic Surgeons and Patients in a Blind Comparison. Cleft Palate Craniofacial J. 2024, 10556656241266368. [Google Scholar] [CrossRef]
- Shehab, A.A.; Shedd, K.E.; Alamah, W.; Mardini, S.; Bite, U.; Gibreel, W. Bridging Gaps in Health Literacy for Cleft Lip and Palate: The Role of Artificial Intelligence and Interactive Educational Materials. Cleft Palate Craniofacial J. 2024, 10556656241289653. [Google Scholar] [CrossRef]
- Chaker, S.C.; Hung, Y.C.; Saad, M.; Golinko, M.S.; Galdyn, I.A. Easing the Burden on Caregivers—Applications of Artificial Intelligence for Physicians and Caregivers of Children with Cleft Lip and Palate. Cleft Palate Craniofacial J. 2024, 10556656231223596. [Google Scholar] [CrossRef]
- Duran, G.S.; Yurdakurban, E.; Topsakal, K.G. The Quality of CLP-Related Information for Patients Provided by ChatGPT. Cleft Palate Craniofacial J. 2023, 10556656231222387. [Google Scholar] [CrossRef]
- Manasyan, A.; Lasky, S.; Jolibois, M.; Moshal, T.; Roohani, I.; Munabi, N.; Urata, M.M.; Hammoudeh, J.A. Expanding Accessibility in Cleft Care: The Role of Artificial Intelligence in Improving Literacy of Alveolar Bone Grafting Information. Cleft Palate Craniofacial J. 2024, 10556656241281453. [Google Scholar] [CrossRef]
- Alkhamees, A. Evaluation of Artificial Intelligence as a Search Tool for Patients: Can ChatGPT-4 Provide Accurate Evidence-Based Orthodontic-Related Information? Cureus 2024, 16, e65820. [Google Scholar] [CrossRef]
- Aziz, A.A.A.; Abdelrahman, H.H.; Hassan, M.G. The use of ChatGPT and Google Gemini in responding to orthognathic surgery-related questions: A comparative study. J. World Fed. Orthod. 2024, 14, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Fatima, K.; Singh, P.; Amipara, H.; Chaudhary, G. Accuracy of Artificial Intelligence-Based Virtual Assistants in Responding to Frequently Asked Questions Related to Orthognathic Surgery. J. Oral Maxillofac. Surg. 2024, 82, 916–921. [Google Scholar] [CrossRef]
- Lo, S.J.; Chapman, P.; Young, D.; Drake, D.; Devlin, M.; Russell, C. The Cleft Lip Education with Augmented Reality (CLEAR) VR Phase 2 Trial: A Pilot Randomized Crossover Trial of a Novel Patient Information Leaflet. Cleft Palate Craniofacial J. 2023, 60, 179–188. [Google Scholar] [CrossRef]
- Mahedia, M.; Rohrich, R.N.; Sadiq, K.O.S.; Bailey, L.; Harrison, L.M.; Hallac, R.R. Exploring the Utility of ChatGPT in Cleft Lip Repair Education. J. Clin. Med. 2025, 14, 993. [Google Scholar] [CrossRef] [PubMed]
- Lebhar, M.S.; Velazquez, A.; Goza, S.; Hoppe, I.C. Dr. ChatGPT: Utilizing Artificial Intelligence in Surgical Education. Cleft Palate Craniofacial J. 2024, 61, 2067–2073. [Google Scholar] [CrossRef]
- Mathad, V.C.; Scherer, N.; Chapman, K.; Liss, J.M.; Berisha, V. A Deep Learning Algorithm for Objective Assessment of Hypernasality in Children with Cleft Palate. IEEE Trans. Biomed. Eng. 2021, 68, 2986–2996. [Google Scholar] [CrossRef]
- He, F.; Wang, X.; Yin, H.; Zhang, H.; Yang, G.; He, L. Acoustic analysis and detection of pharyngeal fricative in cleft palate speech using correlation of signals in independent frequency bands and octave spectrum prominent peak. Biomed. Eng. Online 2020, 19, 36. [Google Scholar] [CrossRef]
- Maier, A.; Hönig, F.; Bocklet, T.; Nöth, E.; Stelzle, F.; Nkenke, E.; Schuster, M. Automatic detection of articulation disorders in children with cleft lip and palate. J. Acoust. Soc. Am. 2009, 126, 2589–2602. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Li, W.; Yin, H.; He, L. Automatic Detection System for Velopharyngeal Insufficiency Based on Acoustic Signals from Nasal and Oral Channels. Diagnostics 2023, 13, 2714. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, J.; Liu, Q.; Yin, H.; Lech, M. Automatic Evaluation of Hypernasality and Consonant Misarticulation in Cleft Palate Speech. IEEE Signal Process. Lett. 2014, 21, 1298–1301. [Google Scholar] [CrossRef]
- He, L.; Tan, J.; Hao, H.; Tang, M.; Yin, H.; Lech, M. Automatic evaluation of resonance and articulation disorders in cleft palate speech. In Proceedings of the 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), Chengdu, China, 12–15 July 2015. [Google Scholar]
- Golabbakhsh, M.; Abnavi, F.; Kadkhodaei Elyaderani, M.; Derakhshandeh, F.; Khanlar, F.; Rong, P.; Kuehn, D.P. Automatic identification of hypernasality in normal and cleft lip and palate patients with acoustic analysis of speech. J. Acoust. Soc. Am. 2017, 141, 929. [Google Scholar] [CrossRef]
- Bocklet, T.; Riedhammer, K.; Esyholdt, U.; Noth, E. Automatic phoneme analysis in children with Cleft Lip and Palate. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 7572–7576. [Google Scholar]
- Mathad, V.C.; Liss, J.M.; Chapman, K.; Scherer, N.; Berisha, V. Consonant-Vowel Transition Models Based on Deep Learning for Objective Evaluation of Articulation. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 31, 86–95. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Tang, M.; Yin, H.; Huang, H.; He, L. HypernasalityNet: Deep recurrent neural network for automatic hypernasality detection. Int. J. Med. Inform. 2019, 129, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.; Torres-Guzman, R.; James, A.J.; Corlew, S.; Stone, A.; Powell, M.E.; Golinko, M.; Pontell, M.E. Machine Learning for Automatic Detection of Velopharyngeal Dysfunction: A Preliminary Report. J. Craniofacial Surg. 2024. [Google Scholar] [CrossRef]
- Saxon, M.; Tripathi, A.; Jiao, Y.; Liss, J.; Berisha, V. Robust Estimation of Hypernasality in Dysarthria with Acoustic Model Likelihood Features. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 2511–2522. [Google Scholar] [CrossRef]
- Dubey, A.; Prasanna, M.; Dandapat, S. Sinusoidal model-based hypernasality detection in cleft palate speech using CVCV sequence. Speech Commun. 2020, 124, 1–12. [Google Scholar] [CrossRef]
- Cornefjord, M.; Bluhme, J.; Jakobsson, A.; Klintö, K.; Lohmander, A.; Mamedov, T.; Stiernman, M.; Svensson, R.; Becker, M. Using Artificial Intelligence for Assessment of Velopharyngeal Competence in Children Born with Cleft Palate with or Without Cleft Lip. Cleft Palate Craniofacial J. 2024, 10556656241271646. [Google Scholar] [CrossRef]
- Mathad, V.; Prasanna, S. Vowel onset point based screening of misarticulated stops in cleft lip and palate speech. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 450–460. [Google Scholar] [CrossRef]
- Ha, J.H.; Lee, H.; Kwon, S.M.; Joo, H.; Lin, G.; Kim, D.Y.; Kim, S.; Hwang, J.Y.; Chung, J.H.; Kong, H.J. Deep Learning-Based Diagnostic System for Velopharyngeal Insufficiency Based on Videofluoroscopy in Patients with Repaired Cleft Palates. J. Craniofacial Surg. 2023, 34, 2369–2375. [Google Scholar] [CrossRef]
- Cho, H.N.; Gwon, E.; Kim, K.A.; Baek, S.H.; Kim, N.; Kim, S.J. Accuracy of convolutional neural networks-based automatic segmentation of pharyngeal airway sections according to craniofacial skeletal pattern. Am. J. Orthod. Dentofac. Orthop. 2022, 162, e53–e62. [Google Scholar] [CrossRef] [PubMed]
- Shujaat, S.; Jazil, O.; Willems, H.; Van Gerven, A.; Shaheen, E.; Politis, C.; Jacobs, R. Automatic segmentation of the pharyngeal airway space with convolutional neural network. J. Dent. 2021, 111, 103705. [Google Scholar] [CrossRef]
- Ruthven, M.; Miquel, M.E.; King, A.P. Deep-learning-based segmentation of the vocal tract and articulators in real-time magnetic resonance images of speech. Comput. Methods Programs Biomed. 2021, 198, 105814. [Google Scholar] [CrossRef]
- Leeraha, C.; Kusakunniran, W.; Yodrabum, N.; Chaisrisawadisuk, S.; Vathanophas, V.; Siriapisith, T. Performance enhancement of deep learning based solutions for pharyngeal airway space segmentation on MRI scans. Sci. Rep. 2024, 14, 19671. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Woo, S.; Roh, J.Y.; Choi, J.Y.; Kim, K.A.; Cha, J.Y.; Kim, N.; Kim, S.J. Subregional pharyngeal changes after orthognathic surgery in skeletal Class III patients analyzed by convolutional neural networks-based segmentation. J. Dent. 2023, 135, 104565. [Google Scholar] [CrossRef]
- de Blacam, C.; Smith, S.; Orr, D. Surgery for Velopharyngeal Dysfunction: A Systematic Review of Interventions and Outcomes. Cleft Palate Craniofacial J. 2018, 55, 405–422. [Google Scholar] [CrossRef]
- He, S.; Li, Y.; Zhang, C.; Li, Z.; Ren, Y.; Li, T.; Wang, J. Deep learning technique to detect craniofacial anatomical abnormalities concentrated on middle and anterior of face in patients with sleep apnea. Sleep Med. 2023, 112, 12–20. [Google Scholar] [CrossRef]
- Hanif, U.; Leary, E.; Schneider, L.; Paulsen, R.; Morse, A.M.; Blackman, A.; Schweitzer, P.; Kushida, C.A.; Liu, S.; Jennum, P.; et al. Estimation of Apnea-Hypopnea Index Using Deep Learning On 3-D Craniofacial Scans. IEEE J. Biomed. Health Inform. 2021, 25, 4185–4194. [Google Scholar] [CrossRef]
- Monna, F.; Ben Messaoud, R.; Navarro, N.; Baillieul, S.; Sanchez, L.; Loiodice, C.; Tamisier, R.; Joyeux-Faure, M.; Pépin, J.L. Machine learning and geometric morphometrics to predict obstructive sleep apnea from 3D craniofacial scans. Sleep Med. 2022, 95, 76–83. [Google Scholar] [CrossRef]
- Tsuiki, S.; Nagaoka, T.; Fukuda, T.; Sakamoto, Y.; Almeida, F.R.; Nakayama, H.; Inoue, Y.; Enno, H. Machine learning for image-based detection of patients with obstructive sleep apnea: An exploratory study. Sleep Breath. 2021, 25, 2297–2305. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Lee, K.; Kim, H.J.; Park, H.C.; Hwang, J.Y.; Park, S.W.; Kong, H.J.; Kim, J.Y. Predicting Obstructive Sleep Apnea Based on Computed Tomography Scans Using Deep Learning Models. Am. J. Respir. Crit. Care Med. 2024, 210, 211–221. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Huang, H.T.; Cheng, H.C.; Wang, J.; Duh, P.J.; Hsu, W.H.; Stettler, M.; Kuan, Y.C.; Lin, Y.T.; Hsu, C.R.; et al. Screening for Obstructive Sleep Apnea Risk by Using Machine Learning Approaches and Anthropometric Features. Sensors 2022, 22, 8630. [Google Scholar] [CrossRef]
- Chen, Q.; Liang, Z.; Wang, Q.; Ma, C.; Lei, Y.; Sanderson, J.E.; Hu, X.; Lin, W.; Liu, H.; Xie, F.; et al. Self-helped detection of obstructive sleep apnea based on automated facial recognition and machine learning. Sleep Breath. 2023, 27, 2379–2388. [Google Scholar] [CrossRef]
- Charles, D.; Harrison, L.; Hassanipour, F.; Hallac, R.R. Nasal Airflow Dynamics following LeFort I Advancement in Cleft Nasal Deformities: A Retrospective Preliminary Study. Diagnostics 2024, 14, 1294. [Google Scholar] [CrossRef] [PubMed]
- Kamei, G.; Batra, P.; Singh, A.K.; Arora, G.; Kaushik, S. Development of an Artificial Intelligence-Based Algorithm for the Assessment of Skeletal Age and Detection of Cervical Vertebral Anomalies in Patients with Cleft Lip and Palate. Cleft Palate Craniofacial J. 2024, 10556656241299890. [Google Scholar] [CrossRef]
- Alam, M.K.; Alfawzan, A.A. Dental Characteristics of Different Types of Cleft and Non-cleft Individuals. Front. Cell Dev. Biol. 2020, 8, 789. [Google Scholar] [CrossRef]
- Khosravi-Kamrani, P.; Qiao, X.; Zanardi, G.; Wiesen, C.A.; Slade, G.; Frazier-Bowers, S.A. A machine learning approach to determine the prognosis of patients with Class III malocclusion. Am. J. Orthod. Dentofac. Orthop. 2022, 161, e1–e11. [Google Scholar] [CrossRef]
- Knoops, P.G.M.; Papaioannou, A.; Borghi, A.; Breakey, R.W.F.; Wilson, A.T.; Jeelani, O.; Zafeiriou, S.; Steinbacher, D.; Padwa, B.L.; Dunaway, D.J.; et al. A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery. Sci. Rep. 2019, 9, 13597. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, X.; Huang, J.; Mo, S.; Gu, M.; Kang, N.; Song, S.; Zhang, X.; Liang, B.; Tang, M. Machine Learning Algorithms for the Diagnosis of Class III Malocclusions in Children. Children 2024, 11, 762. [Google Scholar] [CrossRef]
- Alam, M.K.; Alfawzan, A.A.; Haque, S.; Mok, P.L.; Marya, A.; Venugopal, A.; Jamayet, N.B.; Siddiqui, A.A. Sagittal Jaw Relationship of Different Types of Cleft and Non-cleft Individuals. Front. Pediatr. 2021, 9, 651951. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y.; Lei, Y.; Wang, Q.; Gao, X. Automatic Classification for Sagittal Craniofacial Patterns Based on Different Convolutional Neural Networks. Diagnostics 2022, 12, 1359. [Google Scholar] [CrossRef]
- Xiao, D.; Deng, H.; Lian, C.; Kuang, T.; Liu, Q.; Ma, L.; Lang, Y.; Chen, X.; Kim, D.; Gateno, J.; et al. Unsupervised learning of reference bony shapes for orthognathic surgical planning with a surface deformation network. Med. Phys. 2021, 48, 7735–7746. [Google Scholar] [CrossRef]
- Xiao, D.; Lian, C.; Deng, H.; Kuang, T.; Liu, Q.; Ma, L.; Kim, D.; Lang, Y.; Chen, X.; Gateno, J.; et al. Estimating Reference Bony Shape Models for Orthognathic Surgical Planning Using 3D Point-Cloud Deep Learning. IEEE J. Biomed. Health Inform. 2021, 25, 2958–2966. [Google Scholar] [CrossRef]
- de Oliveira, P.H.J.; Li, T.; Li, H.; Gonçalves, J.R.; Santos-Pinto, A.; Gandini Junior, L.G.; Cevidanes, L.S.; Toyama, C.; Feltrin, G.P.; Campanha, A.A.; et al. Artificial intelligence as a prediction tool for orthognathic surgery assessment. Orthod. Craniofacial Res. 2024, 27, 785–794. [Google Scholar] [CrossRef]
- Lee, H.; Ahmad, S.; Frazier, M.; Dundar, M.M.; Turkkahraman, H. A novel machine learning model for class III surgery decision. J. Orofac. Orthop. 2024, 85, 239–249. [Google Scholar] [CrossRef]
- Taraji, S.; Atici, S.F.; Viana, G.; Kusnoto, B.; Allareddy, V.S.; Miloro, M.; Elnagar, M.H. Novel Machine Learning Algorithms for Prediction of Treatment Decisions in Adult Patients with Class III Malocclusion. J. Oral Maxillofac. Surg. 2023, 81, 1391–1402. [Google Scholar] [CrossRef]
- Shin, W.; Yeom, H.G.; Lee, G.H.; Yun, J.P.; Jeong, S.H.; Lee, J.H.; Kim, H.K.; Kim, B.C. Deep learning based prediction of necessity for orthognathic surgery of skeletal malocclusion using cephalogram in Korean individuals. BMC Oral Health 2021, 21, 130. [Google Scholar] [CrossRef]
- Jeong, S.H.; Yun, J.P.; Yeom, H.G.; Lim, H.J.; Lee, J.; Kim, B.C. Deep learning based discrimination of soft tissue profiles requiring orthognathic surgery by facial photographs. Sci. Rep. 2020, 10, 16235. [Google Scholar] [CrossRef]
- Choi, H.I.; Jung, S.K.; Baek, S.H.; Lim, W.H.; Ahn, S.J.; Yang, I.H.; Kim, T.W. Artificial Intelligent Model with Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery. J. Craniofacial Surg. 2019, 30, 1986–1989. [Google Scholar] [CrossRef]
- Lin, G.; Kim, P.J.; Baek, S.H.; Kim, H.G.; Kim, S.W.; Chung, J.H. Early Prediction of the Need for Orthognathic Surgery in Patients with Repaired Unilateral Cleft Lip and Palate Using Machine Learning and Longitudinal Lateral Cephalometric Analysis Data. J. Craniofacial Surg. 2021, 32, 616–620. [Google Scholar] [CrossRef]
- Chang, J.S.; Ma, C.Y.; Ko, E.W. Prediction of surgery-first approach orthognathic surgery using deep learning models. Int. J. Oral Maxillofac. Surg. 2024, 53, 942–949. [Google Scholar] [CrossRef]
- Tanikawa, C.; Yamashiro, T. Development of novel artificial intelligence systems to predict facial morphology after orthognathic surgery and orthodontic treatment in Japanese patients. Sci. Rep. 2021, 11, 15853. [Google Scholar] [CrossRef]
- Park, J.A.; Moon, J.H.; Lee, J.M.; Cho, S.J.; Seo, B.M.; Donatelli, R.E.; Lee, S.J. Does artificial intelligence predict orthognathic surgical outcomes better than conventional linear regression methods? Angle Orthod. 2024, 94, 549–556. [Google Scholar] [CrossRef]
- Ma, Q.; Kobayashi, E.; Fan, B.; Hara, K.; Nakagawa, K.; Masamune, K.; Sakuma, I.; Suenaga, H. Machine-learning-based approach for predicting postoperative skeletal changes for orthognathic surgical planning. Int. J. Med. Robot. Comput. Assist. Surg. 2022, 18, e2379. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, X.; Wang, J.; Yang, Y.; Li, M.; Zhao, H.; Huang, J.; Zhang, C.; Qian, D.; Yu, H. Prediction of orthognathic surgery plan from 3D cephalometric analysis via deep learning. BMC Oral Health 2023, 23, 161. [Google Scholar] [CrossRef]
- Ma, L.; Xiao, D.; Kim, D.; Lian, C.; Kuang, T.; Liu, Q.; Deng, H.; Yang, E.; Liebschner, M.A.K.; Gateno, J.; et al. Simulation of Postoperative Facial Appearances via Geometric Deep Learning for Efficient Orthognathic Surgical Planning. IEEE Trans. Med. Imaging 2023, 42, 336–345. [Google Scholar] [CrossRef]
- Yuan, Z.; He, S.; Jiang, T.; Xie, Q.; Zhou, N.; Huang, X. Augmented reality hologram combined with pre-bent distractor enhanced the accuracy of distraction vector transfer in maxillary distraction osteogenesis, a study based on 3D printed phantoms. Front. Surg. 2022, 9, 1018030. [Google Scholar] [CrossRef]
- Choi, J.W.; Park, H.; Kim, I.H.; Kim, N.; Kwon, S.M.; Lee, J.Y. Surgery-First Orthognathic Approach to Correct Facial Asymmetry: Artificial Intelligence-Based Cephalometric Analysis. Plast. Reconstr. Surg. 2022, 149, 496e–499e. [Google Scholar] [CrossRef]
- Patcas, R.; Bernini, D.A.J.; Volokitin, A.; Agustsson, E.; Rothe, R.; Timofte, R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int. J. Oral Maxillofac. Surg. 2019, 48, 77–83. [Google Scholar] [CrossRef]
- Ma, Q.; Kobayashi, E.; Jin, S.; Masamune, K.; Suenaga, H. 3D evaluation model of facial aesthetics based on multi-input 3D convolution neural networks for orthognathic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2024, 20, e2651. [Google Scholar] [CrossRef]
- Lo, L.J.; Yang, C.T.; Ho, C.T.; Liao, C.H.; Lin, H.H. Automatic Assessment of 3-Dimensional Facial Soft Tissue Symmetry Before and After Orthognathic Surgery Using a Machine Learning Model: A Preliminary Experience. Ann. Plast. Surg. 2021, 86 (Suppl. S2), S224–S228. [Google Scholar] [CrossRef]
- Mizutani, K.; Miwa, T.; Sakamoto, Y.; Toda, M. Application of Deep Learning Techniques for Automated Diagnosis of Non-Syndromic Craniosynostosis Using Skull. J. Craniofacial Surg. 2022, 33, 1843–1846. [Google Scholar] [CrossRef]
- Schaufelberger, M.; Ktihle, R.P.; Kaiser, C.; Wachter, A.; Weichel, F.; Hagen, N.; Ringwald, F.; Eisenmann, U.; Freudlsperger, C.; Nahml, W. CNN-Based Classification of Craniosynostosis Using 2D Distance Maps. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Glasgow, UK, 11–15 July 2022; pp. 446–449. [Google Scholar] [CrossRef]
- Sabeti, M.; Boostani, R.; Moradi, E.; Shakoor, M. Machine learning-based identification of craniosynostosis in newborns. Mach. Learn. Appl. 2022, 8, 100292. [Google Scholar]
- Paro, M.; Lambert, W.A.; Leclair, N.K.; Romano, R.; Stoltz, P.; Martin, J.E.; Hersh, D.S.; Bookland, M.J. Machine Learning-Driven Clinical Image Analysis to Identify Craniosynostosis: A Pilot Study of Telemedicine and Clinic Patients. Neurosurgery 2022, 90, 613–618. [Google Scholar] [CrossRef]
- Porras, A.R.; Tu, L.; Tsering, D.; Mantilla, E.; Oh, A.; Enquobahrie, A.; Keating, R.; Rogers, G.F.; Linguraru, M.G. Quantification of Head Shape from Three-Dimensional Photography for Presurgical and Postsurgical Evaluation of Craniosynostosis. Plast. Reconstr. Surg. 2019, 144, 1051e–1060e. [Google Scholar] [CrossRef]
- Tabatabaei, S.A.H.; Fischer, P.; Wattendorf, S.; Sabouripour, F.; Howaldt, H.P.; Wilbrand, M.; Wilbrand, J.F.; Sohrabi, K. Automatic detection and monitoring of abnormal skull shape in children with deformational plagiocephaly using deep learning. Sci. Rep. 2021, 11, 17970. [Google Scholar] [CrossRef]
- Watt, A.; Lee, J.; Toews, M.; Gilardino, M.S. Smartphone Integration of Artificial Intelligence for Automated Plagiocephaly Diagnosis. Plast. Reconstr. Surg. Glob. Open 2023, 11, e4985. [Google Scholar] [CrossRef]
- Bookland, M.J.; Ahn, E.S.; Stoltz, P.; Martin, J.E. Image processing and machine learning for telehealth craniosynostosis screening in newborns. J. Neurosurg. Pediatr. 2021, 27, 581–588. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Obinero, C.G.; Wang, E.; Boyd, A.K.; Cepeda, A.; Talanker, M.; Mumford, D.; Littlefield, T.; Greives, M.R.; Nguyen, P.D. Artificial Intelligence Methods for the Argenta Classification of Deformational Plagiocephaly to Predict Severity and Treatment Recommendation. J. Craniofacial Surg. 2024, 35, 1917–1920. [Google Scholar] [CrossRef]
- Schaufelberger, M.; Kühle, R.; Wachter, A.; Weichel, F.; Hagen, N.; Ringwald, F.; Eisenmann, U.; Hoffmann, J.; Engel, M.; Freudlsperger, C.; et al. A Radiation-Free Classification Pipeline for Craniosynostosis Using Statistical Shape Modeling. Diagnostics 2022, 12, 1516. [Google Scholar] [CrossRef]
- Geisler, E.L.; Agarwal, S.; Hallac, R.R.; Daescu, O.; Kane, A.A. A Role for Artificial Intelligence in the Classification of Craniofacial Anomalies. J. Craniofacial Surg. 2021, 32, 967–969. [Google Scholar] [CrossRef]
- de Jong, G.; Bijlsma, E.; Meulstee, J.; Wennen, M.; van Lindert, E.; Maal, T.; Aquarius, R.; Delye, H. Combining deep learning with 3D stereophotogrammetry for craniosynostosis diagnosis. Sci. Rep. 2020, 10, 15346. [Google Scholar] [CrossRef]
- Kim, S.M.; Yang, J.S.; Han, J.W.; Koo, H.I.; Roh, T.H.; Yoon, S.H. Convolutional neural network-based classification of craniosynostosis and suture lines from multi-view cranial X-rays. Sci. Rep. 2024, 14, 26729. [Google Scholar] [CrossRef]
- Mendoza, C.S.; Safdar, N.; Okada, K.; Myers, E.; Rogers, G.F.; Linguraru, M.G. Personalized assessment of craniosynostosis via statistical shape modeling. Med. Image Anal. 2014, 18, 635–646. [Google Scholar] [CrossRef]
- Abdel-Alim, T.; Tapia Chaca, F.; Mathijssen, I.M.J.; Dirven, C.M.F.; Niessen, W.J.; Wolvius, E.B.; van Veelen, M.C.; Roshchupkin, G.V. Quantifying dysmorphologies of the neurocranium using artificial neural networks. J. Anat. 2024, 245, 903–913. [Google Scholar] [CrossRef]
- Kuehle, R.; Ringwald, F.; Bouffleur, F.; Hagen, N.; Schaufelberger, M.; Nahm, W.; Hoffmann, J.; Freudlsperger, C.; Engel, M.; Eisenmann, U. The Use of Artificial Intelligence for the Classification of Craniofacial Deformities. J. Clin. Med. 2023, 12, 7082. [Google Scholar] [CrossRef]
- Cho, M.J.; Hallac, R.R.; Effendi, M.; Seaward, J.R.; Kane, A.A. Comparison of an unsupervised machine learning algorithm and surgeon diagnosis in the clinical differentiation of metopic craniosynostosis and benign metopic ridge. Sci. Rep. 2018, 8, 6312. [Google Scholar] [CrossRef]
- Bloch, K.; Geoffroy, M.; Taverne, M.; van de Lande, L.; O’Sullivan, E.; Liang, C.; Paternoster, G.; Moazen, M.; Laporte, S.; Khonsari, R.H. New diagnostic criteria for metopic ridges and trigonocephaly: A 3D geometric approach. Orphanet J. Rare Dis. 2024, 19, 204. [Google Scholar] [CrossRef]
- Bruce, M.K.; Tao, W.; Beiriger, J.; Christensen, C.; Pfaff, M.J.; Whitaker, R.; Goldstein, J.A. 3D Photography to Quantify the Severity of Metopic Craniosynostosis. Cleft Palate Craniofacial J. 2023, 60, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Beiriger, J.W.; Tao, W.; Bruce, M.K.; Anstadt, E.; Christensen, C.; Smetona, J.; Whitaker, R.; Goldstein, J.A. CranioRate: An Image-Based, Deep-Phenotyping Analysis Toolset and Online Clinician Interface for Metopic Craniosynostosis. Plast. Reconstr. Surg. 2024, 153, 112e–119e. [Google Scholar] [CrossRef]
- Anstadt, E.E.; Tao, W.; Guo, E.; Dvoracek, L.; Bruce, M.K.; Grosse, P.J.; Wang, L.; Kavan, L.; Whitaker, R.; Goldstein, J.A. Quantifying the Severity of Metopic Craniosynostosis Using Unsupervised Machine Learning. Plast. Reconstr. Surg. 2023, 151, 396–403. [Google Scholar] [CrossRef]
- Bhalodia, R.; Dvoracek, L.A.; Ayyash, A.M.; Kavan, L.; Whitaker, R.; Goldstein, J.A. Quantifying the Severity of Metopic Craniosynostosis: A Pilot Study Application of Machine Learning in Craniofacial Surgery. J. Craniofacial Surg. 2020, 31, 697–701. [Google Scholar] [CrossRef]
- Junn, A.; Dinis, J.; Hauc, S.C.; Bruce, M.K.; Park, K.E.; Tao, W.; Christensen, C.; Whitaker, R.; Goldstein, J.A.; Alperovich, M. Validation of Artificial Intelligence Severity Assessment in Metopic Craniosynostosis. Cleft Palate Craniofacial J. 2023, 60, 274–279. [Google Scholar] [CrossRef]
- Blum, J.D.; Beiriger, J.; Villavisanis, D.F.; Morales, C.; Cho, D.Y.; Tao, W.; Whitaker, R.; Bartlett, S.P.; Taylor, J.A.; Goldstein, J.A.; et al. Machine Learning in Metopic Craniosynostosis: Does Phenotypic Severity Predict Long-Term Esthetic Outcome? J. Craniofacial Surg. 2023, 34, 58–64. [Google Scholar] [CrossRef]
- Long, A.S.; Hauc, S.C.; Almeida, M.N.; Alper, D.P.; Beiriger, J.; Rivera, J.C.; Goldstein, J.; Mayes, L.; Persing, J.A.; Alperovich, M. Morphologic Severity and Age at Surgery Are Associated with School-Age Neurocognitive Outcomes in Metopic Craniosynostosis. Plast. Reconstr. Surg. 2024, 154, 824–835. [Google Scholar] [CrossRef]
- Foti, S.; Rickart, A.J.; Koo, B.; O’ Sullivan, E.; van de Lande, L.S.; Papaioannou, A.; Khonsari, R.; Stoyanov, D.; Jeelani, N.U.O.; Schievano, S.; et al. Latent disentanglement in mesh variational autoencoders improves the diagnosis of craniofacial syndromes and aids surgical planning. Comput. Methods Programs Biomed. 2024, 256, 108395. [Google Scholar] [CrossRef]
- O’ Sullivan, E.; van de Lande, L.S.; Papaioannou, A.; Breakey, R.W.F.; Jeelani, N.O.; Ponniah, A.; Duncan, C.; Schievano, S.; Khonsari, R.H.; Zafeiriou, S.; et al. Convolutional mesh autoencoders for the 3-dimensional identification of FGFR-related craniosynostosis. Sci. Rep. 2022, 12, 2230. [Google Scholar] [CrossRef]
- Hennocq, Q.; Paternoster, G.; Collet, C.; Amiel, J.; Bongibault, T.; Bouygues, T.; Cormier-Daire, V.; Douillet, M.; Dunaway, D.J.; Jeelani, N.O.; et al. AI-based diagnosis and phenotype—Genotype correlations in syndromic craniosynostoses. J. Cranio-Maxillofac. Surg. 2024, 52, 1172–1187. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Yang, X.; Wu, S.; Fan, S.; Chen, X.; Aung, Z.M.; Liu, T.; Zhang, Y.; Gu, S.; Chai, G. A new method for cranial vault reconstruction: Augmented reality in synostotic plagiocephaly surgery. J. Cranio-Maxillofac. Surg. 2019, 47, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Alshomer, F.; Alazzam, A.; Alturki, A.; Almeshal, O.; Alhusainan, H. Smartphone-assisted Augmented Reality in Craniofacial Surgery. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3743. [Google Scholar] [CrossRef]
- Garcia-Mato, D.; Moreta-Martinez, R.; Garcia-Sevilla, M.; Ochadiano, S.; Garcia-Leal, R.; Perez-Mananes, R.; Calvo-Haro, J.; Salmeron, J.; Pascau, J. Augmented reality visualization for craniosynostosis surgery. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2021, 9, 392–399. [Google Scholar]
- Coelho, G.; Rabelo, N.N.; Vieira, E.; Mendes, K.; Zagatto, G.; Santos de Oliveira, R.; Raposo-Amaral, C.E.; Yoshida, M.; de Souza, M.R.; Fagundes, C.F.; et al. Augmented reality and physical hybrid model simulation for preoperative planning of metopic craniosynostosis surgery. Neurosurg. Focus 2020, 48, E19. [Google Scholar] [CrossRef]
- Thabit, A.; Benmahdjoub, M.; van Veelen, M.C.; Niessen, W.J.; Wolvius, E.B.; van Walsum, T. Augmented reality navigation for minimally invasive craniosynostosis surgery: A phantom study. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 1453–1460. [Google Scholar] [CrossRef]
- Zhu, M.; Chai, G.; Lin, L.; Xin, Y.; Tan, A.; Bogari, M.; Zhang, Y.; Li, Q. Effectiveness of a Novel Augmented Reality-Based Navigation System in Treatment of Orbital Hypertelorism. Ann. Plast. Surg. 2016, 77, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, F.; Cercenelli, L.; Emiliani, N.; Badiali, G.; Bevini, M.; Zucchelli, M.; Marcelli, E.; Tarsitano, A. Preclinical Application of Augmented Reality in Pediatric Craniofacial Surgery: An Accuracy Study. J. Clin. Med. 2023, 12, 2693. [Google Scholar] [CrossRef]
- Chen, J.; Kumar, S.; Shallal, C.; Leo, K.T.; Girard, A.; Bai, Y.; Li, Y.; Jackson, E.M.; Cohen, A.R.; Yang, R. Caregiver Preferences for Three-Dimensional Printed or Augmented Reality Craniosynostosis Skull Models: A Cross-Sectional Survey. J. Craniofacial Surg. 2022, 33, 151–155. [Google Scholar] [CrossRef]
- Beiriger, J.W.; Tao, W.; Irgebay, Z.; Smetona, J.; Dvoracek, L.; Kass, N.M.; Dixon, A.; Zhang, C.; Mehta, M.; Whitaker, R.; et al. A Longitudinal Analysis of Pre- and Post-Operative Dysmorphology in Metopic Craniosynostosis. Cleft Palate Craniofacial J. 2024, 10556656241237605. [Google Scholar] [CrossRef]
- Villavisanis, D.F.; Shakir, S.; Zhao, C.; Cho, D.Y.; Barrero, C.; Blum, J.D.; Swanson, J.W.; Bartlett, S.P.; Tucker, A.M.; Taylor, J.A. Predicting Changes in Cephalic Index Following Spring-mediated Cranioplasty for Nonsyndromic Sagittal Craniosynostosis: A Stepwise and Machine Learning Algorithm Approach. J. Craniofacial Surg. 2022, 33, 2333–2338. [Google Scholar] [CrossRef]
- Anderson, M.G.; Jungbauer, D.; Leclair, N.K.; Ahn, E.S.; Stoltz, P.; Martin, J.E.; Hersh, D.S.; Bookland, M.J. Incorporation of a biparietal narrowing metric to improve the ability of machine learning models to detect sagittal craniosynostosis with 2D photographs. Neurosurg. Focus 2023, 54, E9. [Google Scholar] [CrossRef] [PubMed]
- Rickart, A.J.; Foti, S.; van de Lande, L.S.; Wagner, C.; Schievano, S.; Jeelani, N.U.O.; Clarkson, M.J.; Ong, J.; Swanson, J.W.; Bartlett, S.P.; et al. Using A Disentangled Neural Network to Objectively Assess the Outcomes of Midfacial Surgery in Syndromic Craniosynostosis. Plast. Reconstr. Surg. 2024. [Google Scholar] [CrossRef] [PubMed]
- Baek, R.M.; Cho, A.; Chung, Y.G.; Jeon, Y.; Kim, H.; Hwang, H.; Kang, J.; Myung, Y. Diagnosis and Screening of Velocardiofacial Syndrome by Evaluating Facial Photographs Using a Deep Learning-Based Algorithm. Plast. Reconstr. Surg. 2024. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Liu, B.; Luo, Z.; Sun, M.; Wang, Y.; Yin, N.; Tang, X.; Song, T. Using a New Deep Learning Method for 3D Cephalometry in Patients with Hemifacial Microsomia. Ann. Plast. Surg. 2023, 91, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Xia, W.; Zhang, Z.; Kim, B.S.; Chen, X.; Yan, Y.; Sun, M.; Lin, L.; Xu, H.; Chai, G.; et al. Radiomics and Artificial Intelligence Study of Masseter Muscle Segmentation in Patients with Hemifacial Microsomia. J. Craniofacial Surg. 2023, 34, 809–812. [Google Scholar] [CrossRef]
- Ter Horst, R.; van Weert, H.; Loonen, T.; Bergé, S.; Vinayahalingam, S.; Baan, F.; Maal, T.; de Jong, G.; Xi, T. Three-dimensional virtual planning in mandibular advancement surgery: Soft tissue prediction based on deep learning. J. Cranio-Maxillofac. Surg. 2021, 49, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lin, L.; Chai, G.; Xie, L. A feasibility study of a new method to enhance the augmented reality navigation effect in mandibular angle split osteotomy. J. Cranio-Maxillofac. Surg. 2019, 47, 1242–1248. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.; Han, W.; Kim, B.S.; Yan, Y.; Chen, X.; Lin, L.; Shen, W.; Chai, G. Accuracy and safety of robotic navigation-assisted distraction osteogenesis for hemifacial microsomia. Front. Pediatr. 2023, 11, 1158078. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Han, W.; Zhao, Z.; Kim, B.S.; Yan, Y.; Chen, X.; Wang, X.; Li, X.; Yang, X.; et al. Efficacy of navigation system-assisted distraction osteogenesis for hemifacial microsomia based on artificial intelligence for 3 to 18 years old: Study protocol for a randomized controlled single-blind trial. Trials 2024, 25, 42. [Google Scholar] [CrossRef]
- Kim, B.S.; Zhang, Z.; Sun, M.; Han, W.; Chen, X.; Yan, Y.; Shi, Y.; Xu, H.; Lin, L.; Chai, G. Feasibility of a Robot-Assisted Surgical Navigation System for Mandibular Distraction Osteogenesis in Hemifacial Microsomia: A Model Experiment. J. Craniofacial Surg. 2023, 34, 525–531. [Google Scholar] [CrossRef]
- Cai, E.Z.; Yee, T.H.; Gao, Y.; Lu, W.W.; Lim, T.C. Mixed reality guided advancement osteotomies in congenital craniofacial malformations. J. Plast. Reconstr. Aesthetic Surg. 2024, 98, 100–102. [Google Scholar] [CrossRef]
- Qu, M.; Hou, Y.; Xu, Y.; Shen, C.; Zhu, M.; Xie, L.; Wang, H.; Zhang, Y.; Chai, G. Precise positioning of an intraoral distractor using augmented reality in patients with hemifacial microsomia. J. Cranio-Maxillofac. Surg. 2015, 43, 106–112. [Google Scholar] [CrossRef]
- Zhang, Z.; Kim, B.S.; Han, W.; Sun, M.; Chen, X.; Yan, Y.; Xu, H.; Chai, G.; Lin, L. Preliminary study of the accuracy and safety of robot-assisted mandibular distraction osteogenesis with electromagnetic navigation in hemifacial microsomia using rabbit models. Sci. Rep. 2022, 12, 19572. [Google Scholar] [CrossRef]
- Liu, K.; Chen, S.; Wang, X.; Ma, Z.; Shen, S.G.F. Utilization of facial fat grafting augmented reality guidance system in facial soft tissue defect reconstruction. Head Face Med. 2024, 20, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, X.; Wu, Y.; Tang, H.; Deng, P. Artificial intelligence for assessing the severity of microtia. Front. Surg. 2022, 9, 929110. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, S.; Ma, C.; Yang, J.; He, L. A Feasibility Study of HoloLens Ear Image Guidance for Ear Reconstruction. Ann. Plast. Surg. 2025, 94, e11–e20. [Google Scholar] [CrossRef]
- Díez-Montiel, A.; Pose-Díez-de-la-Lastra, A.; González-Álvarez, A.; Salmerón, J.I.; Pascau, J.; Ochandiano, S. Tablet-based Augmented reality and 3D printed templates in fully guided Microtia Reconstruction: A clinical workflow. 3D Print. Med. 2024, 10, 17. [Google Scholar] [CrossRef]
- Nuri, T.; Mitsuno, D.; Otsuki, Y.; Ueda, K. Augmented Reality Technology for the Positioning of the Auricle in the Treatment of Microtia. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2626. [Google Scholar] [CrossRef]
- Tolba, M.; Qian, Z.J.; Lin, H.F.; Yeom, K.W.; Truong, M.T. Use of Convolutional Neural Networks to Evaluate Auricular Reconstruction Outcomes for Microtia. Laryngoscope 2023, 133, 2413–2416. [Google Scholar] [CrossRef]
- Ye, J.; Lei, C.; Wei, Z.; Wang, Y.; Zheng, H.; Wang, M.; Wang, B. Evaluation of reconstructed auricles by convolutional neural networks. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 2293–2301. [Google Scholar] [CrossRef]
- Pathak, A.; Dhamande, M.M.; Gujjelwar, S.; Das, P.; Chheda, E.V.; Puthenkandathil, R. Fabrication of Implant-Supported Auricular Prosthesis Using Artificial Intelligence. Cureus 2024, 16, e60267. [Google Scholar] [CrossRef]
- Onakpojeruo, E.P.; Mustapha, M.T.; Ozsahin, D.U.; Ozsahin, I. Enhanced MRI-based brain tumour classification with a novel Pix2pix generative adversarial network augmentation framework. Brain Commun. 2024, 6, fcae372. [Google Scholar] [CrossRef] [PubMed]
- Onakpojeruo, E.P.; Mustapha, M.T.; Ozsahin, D.U.; Ozsahin, I. A Comparative Analysis of the Novel Conditional Deep Convolutional Neural Network Model, Using Conditional Deep Convolutional Generative Adversarial Network-Generated Synthetic and Augmented Brain Tumor Datasets for Image Classification. Brain Sci. 2024, 14, 559. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrison, L.M.; Edison, R.L.; Hallac, R.R. Artificial Intelligence Applications in Pediatric Craniofacial Surgery. Diagnostics 2025, 15, 829. https://doi.org/10.3390/diagnostics15070829
Harrison LM, Edison RL, Hallac RR. Artificial Intelligence Applications in Pediatric Craniofacial Surgery. Diagnostics. 2025; 15(7):829. https://doi.org/10.3390/diagnostics15070829
Chicago/Turabian StyleHarrison, Lucas M., Ragan L. Edison, and Rami R. Hallac. 2025. "Artificial Intelligence Applications in Pediatric Craniofacial Surgery" Diagnostics 15, no. 7: 829. https://doi.org/10.3390/diagnostics15070829
APA StyleHarrison, L. M., Edison, R. L., & Hallac, R. R. (2025). Artificial Intelligence Applications in Pediatric Craniofacial Surgery. Diagnostics, 15(7), 829. https://doi.org/10.3390/diagnostics15070829