Nesfatin-1 as a Potential Biomarker for Ischemic Stroke: A Case-Controlled Study of a Comparative Analysis of Patients with and Without Internal Carotid Artery Stenosis
Abstract
:1. Introduction
2. Methods
2.1. Patients and Study Design
2.2. Blood Collection and Human Nesfatin-1 Quantification
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; et al. Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) and the GBD Stroke Experts Group. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2014, 383, 245–254, Erratum in Lancet 2014, 383, 218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, N.; Shu, H.; Jiang, W.; Wang, Y.; Zhang, S. Mean platelet volume and mean platelet volume/platelet count ratio in nonvalvular atrial fibrillation stroke and large artery atherosclerosis stroke. Medicine 2020, 99, e21044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flaherty, M.L.; Kissela, B.; Khoury, J.C.; Alwell, K.; Moomaw, C.J.; Woo, D.; Khatri, P.; Ferioli, S.; Adeoye, O.; Broderick, J.P.; et al. Carotid artery stenosis as a cause of stroke. Neuroepidemiology 2013, 40, 36–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oh-I, S.; Shimizu, H.; Satoh, T.; Okada, S.; Adachi, S.; Inoue, K.; Eguchi, H.; Yamamoto, M.; Imaki, T.; Hashimoto, K.; et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006, 443, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Yu, Y.; Xu, Y.; Ge, J. Plasma Nesfatin-1: Potential Predictor and Diagnostic Biomarker for Cognitive Dysfunction in T2DM Patient. Diabetes Metab. Syndr. Obes. 2021, 14, 3555–3566. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lawrence, A.J.; Jarrott, B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog. Neurobiol. 1996, 48, 21–53. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Oh-I, S.; Okada, S.; Mori, M. Nesfatin-1: An overview and future clinical application. Endocr. J. 2009, 56, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Recinella, L.; Orlando, G.; Ferrante, C.; Chiavaroli, A.; Brunetti, L.; Leone, S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front. Physiol. 2020, 11, 578966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saeidi, A.; Haghighi, M.M.; Kolahdouzi, S.; Daraei, A.; Abderrahmane, A.B.; Essop, M.F.; Laher, I.; Hackney, A.C.; Zouhal, H. The effects of physical activity on adipokines in individuals with overweight/obesity across the lifespan: A narrative review. Obes. Rev. 2021, 22, e13090. [Google Scholar] [CrossRef] [PubMed]
- Naseroleslami, M.; Sharifi, M.; Rakhshan, K.; Mokhtari, B.; Aboutaleb, N. Nesfatin-1 attenuates injury in a rat model of myocardial infarction by targeting autophagy, inflammation, and apoptosis. Arch. Physiol. Biochem. 2023, 129, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Mimee, A.; Smith, P.M.; Ferguson, A.V. Nesfatin-1 influences the excitability of neurons in the nucleus of the solitary tract and regulates cardiovascular function. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2012, 302, R1297–R1304. [Google Scholar] [CrossRef] [PubMed]
- Altas, M.; Uca, A.U.; Akdag, T.; Odabas, F.O.; Tokgoz, O.S. Serum levels of irisin and nesfatin-1 in multiple sclerosis. Arq. Neuropsiquiatr. 2022, 80, 161–167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Price, C.J.; Samson, W.K.; Ferguson, A.V. Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res. 2008, 1230, 99–106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aydin, S.; Dag, E.; Ozkan, Y.; Arslan, O.; Koc, G.; Bek, S.; Kirbas, S.; Kasikci, T.; Abasli, D.; Gokcil, Z.; et al. Time-dependent changes in the serum levels of prolactin, nesfatin-1 and ghrelin as a marker of epileptic attacks young male patients. Peptides 2011, 32, 1276–1280. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, J.; Wang, H.; Wang, G. NUCB2/nesfatin-1: Expression and functions in the regulation of emotion and stress. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 81, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Vas, S.; Ádori, C.; Könczöl, K.; Kátai, Z.; Pap, D.; Papp, R.S.; Bagdy, G.; Palkovits, M.; Tóth, Z.E. Nesfatin-1/NUCB2 as a potential new element of sleep regulation in rats. PLoS ONE 2013, 8, e59809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Y.Y.; Ge, J.F.; Liang, J.; Cao, Y.; Shan, F.; Liu, Y.; Yan, C.Y.; Xia, Q.R. Nesfatin-1 and cortisol: Potential novel diagnostic biomarkers in moderate and severe depressive disorder. Psychol. Res. Behav. Manag. 2018, 11, 495–502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ge, J.F.; Xu, Y.Y.; Qin, G.; Peng, Y.N.; Zhang, C.F.; Liu, X.R.; Liang, L.C.; Wang, Z.Z.; Chen, F.H. Depression-like Behavior Induced by Nesfatin-1 in Rats: Involvement of Increased Immune Activation and Imbalance of Synaptic Vesicle Proteins. Front. Neurosci. 2015, 9, 429. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ari, M.; Ozturk, O.H.; Bez, Y.; Oktar, S.; Erduran, D. High plasma nesfatin-1 level in patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Gunay, H.; Tutuncu, R.; Aydin, S.; Dag, E.; Abasli, D. Decreased plasma nesfatin-1 levels in patients with generalized anxiety disorder. Psychoneuroendocrinology 2012, 37, 1949–1953. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Kong, T.; Shao, Z.; Liu, M.; Zhang, R.; Zhang, S.; Kong, Q.; Chen, J.; Cheng, B.; Wang, C. Orexin-A alleviates astrocytic apoptosis and inflammation via inhibiting OX1R-mediated NF-κB and MAPK signaling pathways in cerebral ischemia/reperfusion injury. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166230. [Google Scholar] [CrossRef] [PubMed]
- White, B.C.; Sullivan, J.M.; DeGracia, D.J.; O’Neil, B.J.; Neumar, R.W.; Grossman, L.I.; Rafols, J.A.; Krause, G.S. Brain ischemia and reperfusion: Molecular mechanisms of neuronal injury. J. Neurol. Sci. 2000, 179, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Erfani, S.; Moghimi, A.; Aboutaleb, N.; Khaksari, M. Protective Effects of Nucleobinding-2 After Cerebral Ischemia Via Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein Expression. Basic Clin. Neurosci. 2019, 10, 451–459. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Angelone, T.; Filice, E.; Pasqua, T.; Amodio, N.; Galluccio, M.; Montesanti, G.; Quintieri, A.M.; Cerra, M.C. Nesfatin-1 as a novel cardiac peptide: Identification, functional characterization, and protection against ischemia/reperfusion injury. Cell. Mol. Life Sci. 2013, 70, 495–509. [Google Scholar] [CrossRef]
- Ayada, C.; Toru, Ü.; Genç, O.; Akcılar, R.; Şahin, S. Balanced oxidative status by nesfatin-1 in intestinal ischemia-reperfusion. Int. J. Clin. Exp. Med. 2015, 8, 3318–3324. [Google Scholar] [PubMed] [PubMed Central]
- Kazimierczak-Kabzińska, A.; Marek, B.; Borgiel-Marek, H.; Kajdaniuk, D.; Kos-Kudła, B. Assessing the blood concentration of new adipocytokines in patients with ischaemic stroke. Endokrynol. Pol. 2020, 71, 504–511. [Google Scholar] [CrossRef]
- Mohd, A.B.; Alabdallat, Y.; Mohd, O.B.; Ghannam, R.A.; Sawaqed, S.; Hasan, H.; Ellebedy, M.; Turkmani, K.; Al-Ezzi, S. Medical and Surgical Management of Symptomatic and Asymptomatic Carotid Artery Stenosis: A Comprehensive Literature Review. Cureus 2023, 15, e43263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meng, Q.; Lu, Q.; Zhang, Z.; Liu, J.; Lou, Y.; Wang, Y.; Liu, J. Nesfatin-1 inhibits free fatty acid (FFA)-induced endothelial inflammation via Gfi1/NF-κB signaling. Biosci. Biotechnol. Biochem. 2021, 86, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Khatri, R.; McKinney, A.M.; Swenson, B.; Janardhan, V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 2012, 79 (Suppl. 1), S52–S57. [Google Scholar] [CrossRef] [PubMed]
- Rosário, M.; Fonseca, A.C. Update on Biomarkers Associated with Large-Artery Atherosclerosis Stroke. Biomolecules 2023, 13, 1251. [Google Scholar] [CrossRef] [PubMed]
- Jickling, G.C.; Sharp, F.R. Biomarker panels in ischemic stroke. Stroke 2015, 46, 915–920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kamtchum-Tatuene, J.; Jickling, G.C. Blood Biomarkers for Stroke Diagnosis and Management. Neuromol. Med. 2019, 21, 344–368. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dagonnier, M.; Donnan, G.A.; Davis, S.M.; Dewey, H.M.; Howells, D.W. Acute Stroke Biomarkers: Are We There Yet? Front. Neurol. 2021, 12, 619721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tekin, T.; Cicek, B.; Konyaligil, N. Regulatory Peptide Nesfatin-1 and its Relationship with Metabolic Syndrome. Eurasian J. Med. 2019, 51, 280–284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chinapayan, S.M.; Kuppusamy, S.; Yap, N.Y.; Perumal, K.; Gobe, G.; Rajandram, R. Potential Value of Visfatin, Omentin-1, Nesfatin-1 and Apelin in Renal Cell Carcinoma (RCC): A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 3069. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, S.; He, Y.; Jin, F.; Liu, Y. Correlation analysis of IGF-1, ZAG, nesfatin-1, HbA1c levels, and type 2 diabetes mellitus complicated with hypothyroidism. Medicine 2021, 100, e25432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, S.; Nao, J. Nesfatin-1: A Biomarker and Potential Therapeutic Target in Neurological Disorders. Neurochem. Res. 2024, 49, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Li, X.; He, T.; Wang, Y.; Wang, Z.; Wang, S.; Xing, M.; Sun, W.; Ding, H. Decreased plasma nesfatin-1 levels in patients with acute myocardial infarction. Peptides 2013, 46, 167–171. [Google Scholar] [CrossRef] [PubMed]
Stroke with ICA Stenosis n: 40 | Stroke Without ICA Stenosis n: 34 | Control Group n: 44 | p * | |
---|---|---|---|---|
Age | 71.07 ± 8.90 | 68.94 ± 14.58 | 63.37 ± 9.56 | |
Sex | ||||
Male | 31 (77.5) | 23 (67.6) | 32 (72.8) | 0.602 |
Female | 9 (22.5) | 11 (32.4) | 12 (27.2) | |
Hypertension | ||||
(−) | 11 (27.5) | 12 (35.3) | 39 (88.6) | <0.001 |
(+) | 29 (72.5) | 22 (64.7) | 5 (11.4) | |
Diabetes mellitus | ||||
(–) | 23 (57.5) | 17 (50) | 41 (93.2) | <0.001 |
(+) | 17 (42.5) | 17 (50) | 3 (6.8) | |
Chronic heart disease | ||||
(–) | 16 (40) | 17 (50) | 43 (97.7) | <0.001 |
(+) | 24 (60) | 17 (50) | 1 (2.3) | |
Hyperlipidemia | ||||
(–) | 20 (50) | 14 (41.2) | 44 (100) | <0.001 |
(+) | 20 (50) | 20 (58.8) | 0 (0) | |
Renal failure | ||||
(+) | 1 (2.5) | 0 (0) | 0 (0) | --- |
(–) | 39 (97.5) | 34 (100) | 44 (100) | |
TOAST classification | ||||
Large artery | 36 (90) | 4 (11.8) | --- | <0.001 |
Cardioembolism | 3 (7.5) | 9 (26.5) | --- | |
Small-vessel occlusion | 0 (0) | 6 (17.6) | --- | |
Undetermined etiology | 0 (0) | 15 (44.1) | --- | |
Others | 1 (2.5) | 0 (0) | --- | |
mRS | --- | |||
Good (0–2) | 32 (80) | 29 (85.3) | --- | 0.859 |
Bad (3–6) | 8 (20) | 5 (14.7) | --- |
ICA Stenosis (+) Stroke | ICA Stenosis (−) Stroke | Control Group | |||||
---|---|---|---|---|---|---|---|
n | Mean ± S. Deviation Median (Min–Max) | n | Mean ± S. Deviation Median (Min–Max) | n | Mean ± S. Deviation Median (Min–Max) | p | |
Stroke time | 40 | 1.2 ± 0.5/1 (1–3) | 34 | 1.2 ± 0.4/1 (1–2) | -- | 0.823 y | |
EF | 39 | 54.7 ± 13.3/60 (20–65) | 31 | 58.9 ± 7.6/60 (25–65) | 33 | 60 ± 3.5/60 (50–65) | 0.508 w |
LA diameter | 39 | 40.9 ± 6.1/41 (30–57) | 31 | 40.4 ± 6.8/40 (30–63) | 33 | 36.6 ± 5.4/35 (24–48) | 0.009 w |
NIHSS | 40 | 7.5 ± 6.8/6 (0–24) | 34 | 7.9 ± 6.9/5 (0–25) | -- | 0.744 y | |
mRs | 40 | 1.2 ± 1.6/1 (0–5) | 34 | 1.1 ± 1.2/1 (0–4) | 36 | 1 ± 1.2/1 (0–4) | 0.940 w |
Hb | 40 | 12.2 ± 2.4/12.3 (2.9–16.6) | 34 | 13.4 ± 1.8/13.7 (9.2–16.2) | 36 | 13.8 ± 1.9/14 (7.1–16.7) | 0.002 w |
PLT | 40 | 250.2 ± 64.8/249.5 (127–432) | 34 | 241.9 ± 85.8/232.5 (101–475) | 36 | 271.2 ± 113/246.5 (113–746) | 0.526 w |
RDW | 40 | 15.4 ± 5.3/13.5 (11.9–37.7) | 34 | 13.9 ± 2.3/13.2 (12.2–24.3) | 36 | 14 ± 1.9/13.6 (12.2–23) | 0.412 w |
MPV | 40 | 16.9 ± 22.2/10.7 (8.9–103) | 34 | 21.5 ± 62.8/10.8 (9–377) | 36 | 9.9 ± 1.3/9.9 (6.1–12.5) | 0.002 w |
GFR | 40 | 66.7 ± 22.4/65.5 (17–107) | 34 | 74.6 ± 21.2/75 (33–117) | 29 | 79.1 ± 16.5/78 (49–113) | 0.080 w |
Cr Cl | 40 | 1.2 ± 0.5/1 (0.7–3.1) | 34 | 1 ± 0.3/0.9 (0.6–1.7) | 36 | 0.9 ± 0.2/0.9 (0.6–1.5) | 0.090 w |
Ca++ | 35 | 9.1 ± 0.6/9 (7.2–10.1) | 15 | 9.1 ± 0.6/9 (8.2–10.3) | 35 | 9.5 ± 0.5/9.6 (7.8–10.2) | 0.002 w |
HDL | 39 | 41.2 ± 8.2/41 (26–59) | 33 | 43.3 ± 9.8/41 (20–69) | 36 | 47 ± 12.2/45 (30–70) | 0.216 w |
LDL | 39 | 110.6 ± 38.5/107 (38–196) | 33 | 112.2 ± 33.9/110 (17–202) | 36 | 116.9 ± 34.1/118.5 (56–203) | 0.722 w |
TG | 39 | 124.3 ± 64.2/112 (55–424) | 33 | 125.8 ± 62/109 (38–238) | 35 | 152.7 ± 90.8/122 (52–511) | 0.261 w |
TC | 39 | 174.5 ± 41.9/168 (101–263) | 33 | 180.7 ± 46.3/174 (49–277) | 36 | 192.1 ± 38.4/191 (137–300) | 0.186 w |
Fibrinogen | 35 | 358.9 ± 114.9/355 (67–627) | 28 | 352.3 ± 128.3/348 (150–722) | 17 | 321.9 ± 91.7/311 (199–481) | 0.427 w |
Ddimer | 35 | 632.6 ± 725.2/317 (96–2759) | 28 | 1503.9 ± 5375.8/317.5 (83–28,836) | 17 | 317.1 ± 288.2/229 (10–934) | 0.116 w |
INR | 40 | 1.5 ± 1/1.1 (0.9–2.7) | 33 | 1.2 ± 0.4/1.1 (0.9–2.8) | 24 | 1.1 ± 0.1/1 (0.9–1.3) | 0.052 w |
aPTT | 38 | 31.5 ± 6/31.2 (20–47.6) | 32 | 30.6 ± 6/30 (11.8–48.5) | 21 | 28.8 ± 3.8/29.1 (20–36.9) | 0.256 w |
Hba1c | 39 | 7.1 ± 2/6.3 (4.4–13.5) | 33 | 6.7 ± 1.6/5.9 (4.7–11.3) | 35 | 6.9 ± 1.9/6.1 (4.8–12.4) | 0.445 w |
FBS | 40 | 147.1 ± 62.9/130.5 (59–293) | 34 | 148.6 ± 74.9/124 (70–394) | 36 | 128.7 ± 44.4/117 (79–317) | 0.602 w |
TSH | 38 | 1.9 ± 3.7/1.1 (0–21.6) | 33 | 1.5 ± 1.3/1.1 (0–5.7) | 36 | 1.8 ± 1.3/1.5 (0–6.2) | 0.158 w |
B12 | 38 | 340.5 ± 309.2/213 (49–1526) | 33 | 239.1 ± 183.8/191 (23–891) | 36 | 255.8 ± 215.1/179.5 (61–1001) | 0.379 w |
Folate | 33 | 9.5 ± 4.6/8.1 (3.5–24.3) | 21 | 10.6 ± 12.4/7.2 (3.9–63.1) | 33 | 8.7 ± 3.6/8.5 (2.1–17.7) | 0.674 w |
Fe++ | 33 | 61.3 ± 35.8/55 (13–177) | 23 | 50.4 ± 18.8/45 (24–92) | 29 | 75.2 ± 41.9/76 (12–196) | 0.054 w |
Ferritin | 38 | 109.3 ± 165.3/55 (9–844) | 32 | 84.7 ± 52.1/68 (22–265) | 35 | 62.7 ± 65.5/42 (2–316) | 0.051 w |
Sedimentation | 37 | 19.6 ± 17.6/14.4 (2–77) | 29 | 17.4 ± 18.7/11 (2–80) | 36 | 12.6 ± 9.4/10 (2–34) | 0.148 w |
CRP | 38 | 27.5 ± 43/8.6 (0.5–199.9) | 34 | 20.7 ± 28.1/8.7 (1.2–115.6) | 36 | 6.6 ± 6.5/4.1 (0.2–26) | 0.015 w |
Procalcitonin | 13 | 0.2 ± 0.3/0.1 (0–1.2) | 24 | 0.1 ± 0/0.1 (0–0.2) | 0.403 y |
ICA Stenosis (+) | ICA Stenosis(−) | |||||
---|---|---|---|---|---|---|
Nesfatin | Nesfatin | |||||
r | p | n | r | p | N | |
Stroke time | 0.216 | 0.181 | 40 | 0.211 | 0.230 | 34 |
EF | −0.017 | 0.916 | 39 | 0.054 | 0.771 | 31 |
LA diameter | −0.048 | 0.772 | 39 | −0.004 | 0.983 | 31 |
NIHSS | 0.306 | 0.055 | 40 | 0.248 | 0.157 | 34 |
mRS | −0.075 | 0.644 | 40 | 0.173 | 0.328 | 34 |
Hb | −0.386 | 0.014 | 40 | −0.229 | 0.193 | 34 |
PLT | 0.089 | 0.586 | 40 | 0.098 | 0.583 | 34 |
RDW | 0.305 | 0.056 | 40 | 0.099 | 0.579 | 34 |
MPV | −0.069 | 0.673 | 40 | 0.112 | 0.527 | 34 |
GFR | −0.145 | 0.371 | 40 | −0.181 | 0.305 | 34 |
Cr Cl | −0.012 | 0.942 | 40 | 0.098 | 0.580 | 34 |
Ca++ | −0.233 | 0.177 | 35 | −0.304 | 0.271 | 15 |
HDL | 0.016 | 0.924 | 39 | 0.044 | 0.808 | 33 |
LDL | 0.128 | 0.438 | 39 | 0.181 | 0.313 | 33 |
TG | −0.172 | 0.296 | 39 | −0.061 | 0.737 | 33 |
TC | 0.088 | 0.596 | 39 | 0.108 | 0.549 | 33 |
Fibrinojen | 0.015 | 0.934 | 35 | 0.269 | 0.167 | 28 |
D-Dimer | 0.316 | 0.064 | 35 | 0.448 | 0.017 | 28 |
INR | 0.589 | <0.001 | 40 | −0.043 | 0.813 | 33 |
aPTT | 0.033 | 0.845 | 38 | −0.248 | 0.172 | 32 |
HbA1c | 0.086 | 0.603 | 39 | 0.036 | 0.841 | 33 |
FBS | 0.224 | 0.164 | 40 | 0.167 | 0.344 | 34 |
TSH | −0.076 | 0.648 | 38 | 0.185 | 0.303 | 33 |
B12 | −0.091 | 0.586 | 38 | 0.005 | 0.979 | 33 |
Folate | −0.285 | 0.107 | 33 | 0.165 | 0.475 | 21 |
Fe++ | 0.148 | 0.412 | 33 | −0.227 | 0.298 | 23 |
Ferritin | 0.097 | 0.563 | 38 | 0.164 | 0.371 | 32 |
Sedimentation | −0.218 | 0.194 | 37 | 0.336 | 0.075 | 29 |
CRP | −0.045 | 0.790 | 38 | 0.160 | 0.367 | 34 |
Procalcitonin | −0.413 | 0.160 | 13 | 0.015 | 0.944 | 24 |
Nesfatin | ||
n | Mean ± S. Deviation/Median (Min–Max) | |
Stroke with ICA stenosis | 40 | 25.7 ± 12.5/22 (11–70) a |
Stroke without ICA stenosis | 34 | 40 ± 52.3/24.3 (13.6–258.3) a |
Control group | 44 | 97.9 ± 107.7/46.4 (33.6–445.9) b |
p * | <0.001 |
Nesfatin | |
---|---|
Cut-off point | ≤30.62 |
AUC (%95 CI) | 0.773 (0.673–0.874) |
p | <0.001 |
Sensitivity | 77.03 |
Specificity | 83.33 |
PPV | 90.48 |
NPV | 63.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kati, Ş.D.; Özben, S.; Küçüksayan, E.; Van, M.; Cilli, E.Y.; Yaman, A.; Özben, T. Nesfatin-1 as a Potential Biomarker for Ischemic Stroke: A Case-Controlled Study of a Comparative Analysis of Patients with and Without Internal Carotid Artery Stenosis. Diagnostics 2025, 15, 664. https://doi.org/10.3390/diagnostics15060664
Kati ŞD, Özben S, Küçüksayan E, Van M, Cilli EY, Yaman A, Özben T. Nesfatin-1 as a Potential Biomarker for Ischemic Stroke: A Case-Controlled Study of a Comparative Analysis of Patients with and Without Internal Carotid Artery Stenosis. Diagnostics. 2025; 15(6):664. https://doi.org/10.3390/diagnostics15060664
Chicago/Turabian StyleKati, Şennur Delibaş, Serkan Özben, Ertan Küçüksayan, Mert Van, Esra Yeğin Cilli, Aylin Yaman, and Tomris Özben. 2025. "Nesfatin-1 as a Potential Biomarker for Ischemic Stroke: A Case-Controlled Study of a Comparative Analysis of Patients with and Without Internal Carotid Artery Stenosis" Diagnostics 15, no. 6: 664. https://doi.org/10.3390/diagnostics15060664
APA StyleKati, Ş. D., Özben, S., Küçüksayan, E., Van, M., Cilli, E. Y., Yaman, A., & Özben, T. (2025). Nesfatin-1 as a Potential Biomarker for Ischemic Stroke: A Case-Controlled Study of a Comparative Analysis of Patients with and Without Internal Carotid Artery Stenosis. Diagnostics, 15(6), 664. https://doi.org/10.3390/diagnostics15060664