Adiponectin and Leptin—Considerations in Adult Patients with Spinal Muscular Atrophy Type 3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients’ Characteristics
2.2. Blood Analyses
2.3. Oral Glucose Tolerance Test
2.4. Statistical Analysis
3. Results
3.1. Leptin Levels
3.2. Adiponectin Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Werdnig, G. Two early infantile hereditary cases of progressive muscular atrophy simulating dystrophy, but on a neural basis. 1891. Arch Neurol. 1971, 25, 276–278. [Google Scholar] [CrossRef]
- Hoffmann, J. Über chronische spinale Muskelatrophie im Kindesalter, auf familiärer Basis. Dtsch. Z. Nervenheilkd. 1893, 3, 427–470. [Google Scholar] [CrossRef]
- Munsat, T.L.; Davies, K.E. International SMA consortium meeting. (26–28 June 1992, Bonn, Germany). Neuromuscul. Disord. 1992, 2, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Zerres, K.; Rudnik-Schöneborn, S.; Forrest, E.; Lusakowska, A.; Borkowska, J.; Hausmanowa-Petrusewicz, I. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J. Neurol. Sci. 1997, 146, 67–72. [Google Scholar] [CrossRef]
- Mercuri, E.; Finkel, R.S.; Muntoni, F.; Wirth, B.; Montes, J.; Main, M.; Mazzone, E.S.; Vitale, M.; Snyder, B.; Quijano-Roy, S.; et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul. Disord. 2018, 28, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Bowerman, M.; Swoboda, K.J.; Michalski, J.-P.; Wang, G.-S.; Reeks, C.; Beauvais, A.; Murphy, K.; Woulfe, J.; Screaton, R.A.; Scott, F.W.; et al. Glucose metabolism and pancreatic defects in spinal muscular atrophy. Ann. Neurol. 2012, 72, 256–268. [Google Scholar] [CrossRef]
- Davis, R.H.; Miller, E.A.; Zhang, R.Z.; Swoboda, K.J. Responses to fasting and glucose loading in a cohort of well children with spinal muscular atrophy type II. J. Pediatr. 2015, 167, 1362–1368. [Google Scholar] [CrossRef]
- Mehta, N.M.; Newman, H.; Tarrant, S.; Graham, R.J. Nutritional status and nutrient intake challenges in children with spinal muscular atrophy. Pediatr. Neurol. 2016, 57, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Veelen, A.; Erazo-Tapia, E.; Oscarsson, J.; Schrauwen, P. Type 2 diabetes subgroups and potential medication strategies in relation to effects on insulin resistance and beta-cell function: A step toward personalised diabetes treatment? Mol. Metab. 2021, 46, 101158. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, C.; Haffner, S.M.; Stancáková, A.; Kuusisto, J.; Laakso, M. Fasting and OGTT-derived measures of insulin resistance as compared with the euglycemic-hyperinsulinemic clamp in nondiabetic Finnish offspring of type 2 diabetic individuals. J. Clin. Endocrinol. Metab. 2015, 100, 544–550. [Google Scholar] [CrossRef]
- Xiang, A.H.; Watanabe, R.M.; Buchanan, T.A. HOMA and Matsuda indices of insulin sensitivity: Poor correlation with minimal model-based estimates of insulin sensitivity in longitudinal settings. Diabetologia 2014, 57, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Miletić, M.; Stević, Z.; Vujović, S.; Rakočević, J.; Tomić, A.; Tančić Gajić, M.; Stojanović, M.; Palibrk, A.; Žarković, M. Glucose and lipid metabolism disorders in adults with spinal muscular atrophy type 3. Diagnostics 2024, 14, 2078. [Google Scholar] [CrossRef]
- Sell, H.; Dietze-Schroeder, D.; Eckel, J. The adipocyte-myocyte axis in insulin resistance. Trends Endocrinol. Metab. 2006, 17, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, Y.; Duan, Y.; Hu, C.A.; Tang, Y.; Yin, Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017, 33, 73–82. [Google Scholar] [CrossRef]
- Nicholson, T.; Church, C.; Baker, D.J.; Jones, S.W. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J. Inflamm. 2018, 15, 9. [Google Scholar] [CrossRef]
- Collins, K.H.; Gui, C.; Ely, E.V.; Lenz, K.L.; Harris, C.A.; Guilak, F.; Meyer, G.A. Leptin mediates the regulation of muscle mass and strength by adipose tissue. J. Physiol. 2022, 600, 3795–3817. [Google Scholar] [CrossRef] [PubMed]
- Spiegelman, B.M.; Flier, J.S. Obesity and the regulation of energy balance. Cell 2001, 104, 531–543. [Google Scholar] [CrossRef]
- Fernández-Real, J.M.; Vayreda, M.; Casamitjana, R.; Gonzalez-Huix, F.; Ricart, W. The fat-free mass compartment influences serum leptin in men. Eur. J. Endocrinol. 2000, 142, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Solberg, R.; Aas, V.; Thoresen, G.H.; Kase, E.T.; Drevon, C.A.; Rustan, A.C.; Reseland, J.E. Leptin expression in human primary skeletal muscle cells is reduced during differentiation. J. Cell Biochem. 2005, 96, 89–96. [Google Scholar] [CrossRef]
- Wang, J.; Liu, R.; Hawkins, M.; Barzilai, N.; Rossetti, L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 1998, 393, 684–688. [Google Scholar] [CrossRef]
- Mygind, H.; Grondahl, T.S.; Pedersen, B.K.; van Hall, G. Human skeletal muscle releases leptin in vivo. Cytokine 2012, 60, 667–673. [Google Scholar] [CrossRef]
- Thomas, T. The complex effects of leptin on bone metabolism through multiple pathways. Curr. Opin. Pharmacol. 2004, 4, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Arounleut, P.; Bowser, M.; Upadhyay, S.; Shi, X.M.; Fulzele, S.; Johnson, M.H.; Stranahan, A.M.; Hill, W.D.; Hamrick, M.W. Absence of functional leptin receptor isoforms in the POUND (Lepr(db/lb)) mouse is associated with muscle atrophy and altered myoblast proliferation and differentiation. PLoS ONE 2013, 8, e72330. [Google Scholar] [CrossRef]
- Guerra, B.; Santana, A.; Fuentes, T.; Delgado-Guerra, S.; Cabrera-Socorro, A.; Dorado, C.; Calbet, J.A. Leptin receptors in human skeletal muscle. J. Appl. Physiol. 2007, 102, 1786–1792. [Google Scholar] [CrossRef] [PubMed]
- Crespi, E.J.; Denver, R.J. Leptin (ob gene) of the South African clawed frog Xenopus laevis. Proc. Natl. Acad. Sci. USA 2006, 103, 10092–10097. [Google Scholar] [CrossRef]
- Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta 2013, 417, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Guenther, M.; James, R.; Marks, J.; Zhao, S.; Szabo, A.; Kidambi, S. Adiposity distribution influences circulating adiponectin levels. Transl. Res. 2014, 164, 270–277. [Google Scholar] [CrossRef]
- Krause, M.P.; Liu, Y.; Vu, V.; Chan, L.; Xu, A.; Riddell, M.C.; Sweeney, G.; Hawke, T.J. Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function. Am. J. Physiol.-Cell Physiol. 2008, 295, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Skurk, C.; Wittchen, F.; Suckau, L.; Witt, H.; Noutsias, M.; Fechner, H.; Schultheiss, H.-P.; Poller, W. Description of a local cardiac adiponectin system and its deregulation in dilated cardiomyopathy. Eur. Heart J. 2008, 29, 1168–1180. [Google Scholar] [CrossRef] [PubMed]
- Yoda-Murakami, M.; Taniguchi, M.; Takahashi, K.; Kawamata, S.; Saito, K.; Choi-Miura, N.H.; Tomita, M. Change in expression of GBP28/adiponectin in carbon tetrachloride-administrated mouse liver. Biochem. Biophys. Res. Commun. 2001, 285, 372–377. [Google Scholar] [CrossRef]
- Berner, H.S.; Lyngstadaas, S.P.; Spahr, A.; Monjo, M.; Thommesen, L.; Drevon, C.A.; Syversen, U.; Reseland, J.E. Adiponectin and its receptors are expressed in bone-forming cells. Bone 2004, 35, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, T.; Yamauchi, T.; Kubota, N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett. 2008, 582, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mao, X.; Wang, L.; Liu, M.; Wetzel, M.D.; Guan, K.L.; Dong, L.Q.; Liu, F. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase mediated serine phosphorylation of IRS-1. J. Biol. Chem. 2007, 282, 7991–7996. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Kamon, J.; Ito, Y.; Tsuchida, A.; Yokomizo, T.; Kita, S.; Sugiyama, T.; Miyagishi, M.; Waki, H.; Tsuno, N.H.; et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003, 423, 762–769. [Google Scholar] [CrossRef]
- Mantzoros, C.S.; Li, T.; Manson, J.E.; Meigs, J.B.; Hu, F.B. Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes. J. Clin. Endocrinol. Metab. 2005, 90, 4542–4548. [Google Scholar] [CrossRef] [PubMed]
- Weyer, C.; Funahashi, T.; Tanaka, S.; Hotta, K.; Matsuzawa, Y.; Pratley, R.E.; Tataranni, P.A. Hypoadiponectinemia in Obesity and Type 2 Diabetes: Close Association with Insulin Resistance and Hyperinsulinemia. J. Clin. Endocrinol. Metab. 2001, 86, 1930–1935. [Google Scholar] [CrossRef]
- Motoshima, H.; Wu, X.; Sinha, M.K.; Hardy, V.E.; Rosato, E.L.; Barbot, D.J.; Rosato, F.E.; Goldstein, B.J. Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: Effects of insulin and rosiglitazone. J. Clin. Endocrinol. Metab. 2002, 87, 5662–5667. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 2006, 116, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Wannamethee, G.; Sarwar, N.; Tchernova, J.; Cherry, L.; Wallace, A.M.; Danesh, J.; Whincup, P.H. Adiponectin and Coronary Heart Disease: A Prospective Study and Meta-Analysis. Circulation 2006, 114, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Cavusoglu, E.; Ruwende, C.; Chopra, V.; Yanamadala, S.; Eng, C.; Clark, L.T.; Pinsky, D.J.; Marmur, J.D. Adiponectin is an independent predictor of all-cause mortality, cardiac mortality, and myocardial infarction in patients presenting with chest pain. Eur. Heart J. 2006, 27, 2300–2309. [Google Scholar] [CrossRef]
- Dekker, J.M.; Funahashi, T.; Nijpels, G.; Pilz, S.; Stehouwer, C.D.A.; Snijder, M.B.; Bouter, L.M.; Matsuzawa, Y.; Shimomura, I.; Heine, R.J. Prognostic value of adiponectin for cardiovascular disease and mortality. J. Clin. Endocrinol. Metab. 2008, 93, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Woodward, L.; Akoumianakis, I.; Antoniades, C. Unravelling the adiponectin paradox: Novel roles of adiponectin in the regulation of cardiovascular disease. Br. J. Pharmacol. 2017, 174, 4007–4020. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Expert Committee on Physical Status: The Use and Interpretation of Anthropometry. Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- Tomlinson, D.J.; Erskine, R.M.; Morse, C.I.; Onambélé, G.L. Body fat percentage, body mass index, fat mass index and the ageing bone: Their singular and combined roles linked to physical activity and diet. Nutrients 2019, 11, 195. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the E. G. for E. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Classification and Diagnosis of Diabetes. Diabetes Care 2015, 38, S8–S16. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; DeFronzo, R. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Kölbel, H.; Hauffa, B.P.; Wudy, S.A.; Bouikidis, A.; Della Marina, A.; Schara, U. Hyperleptinemia in children with autosomal recessive spinal muscular atrophy type I-III. PLoS ONE 2017, 12, e0173144. [Google Scholar] [CrossRef]
- Djordjevic, S.A.; Milic-Rasic, V.; Brankovic, V.; Kosac, A.; Dejanovic-Djordjevic, I.; Markovic-Denic, L.; Djuricic, G.; Milcanovic, N.; Kovacevic, S.; Petrovic, H.; et al. Glucose and lipid metabolism disorders in children and adolescents with spinal muscular atrophy types 2 and 3. Neuromuscul. Disord. 2021, 31, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Park, A.J.; Battaglino, R.A.; Nguyen, N.M.H.; Morse, L.R. Associations between lean mass and leptin in men with chronic spinal cord injury: Results from the FRASCI-muscle study. PLoS ONE 2018, 13, e0198969. [Google Scholar] [CrossRef]
- Rakocevic Stojanovic, V.; Peric, S.; Lavrnic, D.; Popovic, S.; Ille, T.; Stevic, Z.; Basta, I.; Apostolski, B.S. Leptin and the metabolic syndrome in patients with myotonic dystrophy type 1. Acta Neurol. Scand. 2010, 121, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Kadowaki, T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int. J. Obes. 2008, 32, S13–S18. [Google Scholar] [CrossRef]
- de Luis, D.; Primo, D.; Izaola, O.; Lopez Gomez, J.J. Relationship between adiponectin and muscle mass in patients with metabolic syndrome and obesity. J. Diabetes Complic. 2024, 38, 108706. [Google Scholar] [CrossRef]
- Komici, K.; Dello Iacono, A.; De Luca, A.; Perrotta, F.; Bencivenga, L.; Rengo, G.; Rocca, A.; Guerra, G. Adiponectin and Sarcopenia: A Systematic Review with Meta-Analysis. Front. Endocrinol. 2021, 12, 576619. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Kai, H.; Shibata, R.; Niiyama, H.; Nishiyama, Y.; Murohara, T.; Yoshida, N.; Katoh, A.; Ikeda, H. New diagnostic index for sarcopenia in patients with cardiovascular diseases. PLoS ONE 2017, 12, e0178123. [Google Scholar] [CrossRef]
- Nakatsuji, H.; Araki, A.; Hashizume, A.; Hijikata, Y.; Yamada, S.; Inagaki, T.; Suzuki, K.; Banno, H.; Suga, N.; Okada, Y.; et al. Correlation of insulin resistance and motor function in spinal and bulbar muscular atrophy. J. Neurol. 2017, 264, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Wang, T. Searching for the link between inflammaging and sarcopenia. Ageing Res. Rev. 2022, 77, 101611. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Nio, Y.; Maki, T.; Kobayashi, M.; Takazawa, T.; Iwabu, M.; Okada-Iwabu, M.; Kawamoto, S.; Kubota, N.; Kubota, T.; et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 2007, 13, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, A.; Yamauchi, T.; Ito, Y.; Hada, Y.; Maki, T.; Takekawa, S.; Kamon, J.; Kobayashi, M.; Suzuki, Y.; Hara, Z.; et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J. Biol. Chem. 2004, 279, 30817–30822. [Google Scholar] [CrossRef]
- Laughlin, G.A.; Barrett-Connor, E.; May, S.; Langenberg, C. Association of adiponectin with coronary heart disease and mortality: The Rancho Bernardo study. Am. J. Epidemiol. 2007, 165, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Davey Smith, G.; Ebrahim, S.; Thompson, C.; Sattar, N. Plasma adiponectin levels are associated with insulin resistance, but do not predict future risk of coronary heart disease in women. J. Clin. Endocrinol. Metab. 2005, 90, 5677–5683. [Google Scholar] [CrossRef] [PubMed]
- Sook Lee, E.; Park, S.S.; Kim, E.; Sook Yoon, Y.; Ahn, H.Y.; Park, C.Y.; Yun, Y.H.; Oh, S.W. Association between adiponectin levels and coronary heart disease and mortality: A systematic review and meta-analysis. Int. J. Epidemiol. 2013, 42, 1029–1039. [Google Scholar] [CrossRef]
- Lindberg, S.; Jensen, J.S.; Bjerre, M.; Frystyk, J.; Flyvbjerg, A.; Jeppesen, J.; Mogelvang, R. Low adiponectin levels at baseline and decreasing adiponectin levels over 10 years of follow-up predict risk of the metabolic syndrome. Diabetes Metab. 2017, 43, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Welsh, P.; Whincup, P.H.; Sawar, N.; Thomas, M.C.; Gudnarsson, V.; Sattar, N. High adiponectin and increased risk of cardiovascular disease and mortality in asymptomatic older men: Does NT-proBNP help to explain this association? Eur. J. Cardiovasc. Prev. Rehabil. 2011, 18, 65–71. [Google Scholar] [CrossRef]
Patients’ Characteristics (n = 23) | Overall | Male (n = 11; 47.8%) | Female (n = 12; 52.2%) | p-Value |
---|---|---|---|---|
Age (years) | 40.6 ± 13.2 | 41.5 ± 14.0 | 39.7 ± 13.1 | 0.754 |
Weight (kg) | 72.6 ± 15.9 | 74.8 ± 13.3 | 61.4 ± 7.8 | <0.001 |
Height (cm) | 168.7 ± 8.6 | 173.0 (170.0–175.0) | 161.5 (160.0–168.7) | <0.001 |
Body Fat (%) | 45.8 ± 8.5 | 40.5 ± 10.4 | 47.1 ± 4.5 | 0.098 |
ALSTI (kg/m2) | 3.76 (3.03–5.45) | 3.95 (3.64–5.70) | 3.06 (2.76–3.98) | 0.003 |
Parameters of glucose metabolism | ||||
Glucose (mmol/L) | 5.02 ± 0.57 | 5.11 ± 0.75 | 4.94 ± 0.34 | 0.049 |
HbA1c (%) | 5.07 ± 0.36 | 5.10 ± 0.22 | 5.04 ± 0.46 | 0.074 |
Anthropometric Data | SMA Type 3 (n = 23) | Control Group (n = 18) | p-Value |
---|---|---|---|
Age (years) | 41.6 ± 13.2 | 43.7 ± 11.3 | 0.431 |
Weight (kg) | 72.6 ± 15.9 | 76.7 ± 13.2 | 0.381 |
Height (cm) | 168.7 ± 8.6 | 171.67 ± 6.0 | 0.221 |
BMI (kg/m2) | 25.4 ± 3.8 | 25.8 ± 3.9 | 0.793 |
Body Fat (%) | 45.8 (38.5–50.1) | NA | |
ALSTI (kg/m2) | 3.76 (3.03–5.45) | NA |
Laboratory Results | SMA Type 3 (n = 23) | Control Group (n = 18) | p-Value |
---|---|---|---|
OGTT (minutes) | Glycemia (mmol/L) | Glycemia (mmol/L) | |
0’ | 5.20 ± 0.69 | 5.16 ± 0.39 | 0.845 |
30’ | 7.81 ± 1.72 | 7.51 ± 1.51 | 0.569 |
60’ | 8.14 ± 2.16 | 6.78 ± 1.97 | 0.050 |
90’ | 7.73 ± 2.06 | 5.74 ± 1.68 | 0.030 |
120’ | 6.86 ± 1.86 | 5.28 ± 1.43 | 0.006 |
OGTT (minutes) | Insulin (IU/mL) | Insulin (IU/mL) | |
0’ | 95.0 (59.2–114.4) | 78.3 (47.3–113.8) | 0.340 |
30’ | 668.8 (370.4–858.1) | 518.4 (445.6–768.5) | 0.340 |
60’ | 706.3 (376.6–1257.0) | 417.9 (316.8–661.5) | 0.076 |
90’ | 863.9 (430.1–1528.9) | 332.4 (252.3–521.2) | 0.001 |
120’ | 705.6 (328.9–1080.2) | 236.5 (184.9–455.5) | 0.009 |
Matsuda index | 2.80 ± 1.53 | 4.62 ± 2.28 | 0.008 |
HOMA Index | 3.26 ± 1.65 | 2.59 ± 1.22 | 0.171 |
HbA1c (%) | 5.07 ± 0.36 | 5.18 ± 0.29 | 0.328 |
Surrogate Markers of Insulin Sensitivity | Leptin (SMA 3) | Leptin (Control Group) | Adiponectin (SMA 3) | Adiponectin (Control Group) |
---|---|---|---|---|
HOMA-IR | ρ = 0.096, p = 0.724 | ρ = 0.477, p = 0.117 | r = 0.088, p = 0.746 | r = −0.708, p = 0.010 |
ISI Matsuda | ρ = −0.126, p = 0.697 | ρ = −0.641, p = 0.025 | r = 0.190, p = 0.481 | r = 0.684, p = 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miletić, M.; Stević, Z.; Perić, S.; Tančić Gajić, M.; Rakočević, J.; Stojanović, M.; Marković, B.; Žarković, M. Adiponectin and Leptin—Considerations in Adult Patients with Spinal Muscular Atrophy Type 3. Diagnostics 2025, 15, 529. https://doi.org/10.3390/diagnostics15050529
Miletić M, Stević Z, Perić S, Tančić Gajić M, Rakočević J, Stojanović M, Marković B, Žarković M. Adiponectin and Leptin—Considerations in Adult Patients with Spinal Muscular Atrophy Type 3. Diagnostics. 2025; 15(5):529. https://doi.org/10.3390/diagnostics15050529
Chicago/Turabian StyleMiletić, Marija, Zorica Stević, Stojan Perić, Milina Tančić Gajić, Jelena Rakočević, Miloš Stojanović, Bojan Marković, and Miloš Žarković. 2025. "Adiponectin and Leptin—Considerations in Adult Patients with Spinal Muscular Atrophy Type 3" Diagnostics 15, no. 5: 529. https://doi.org/10.3390/diagnostics15050529
APA StyleMiletić, M., Stević, Z., Perić, S., Tančić Gajić, M., Rakočević, J., Stojanović, M., Marković, B., & Žarković, M. (2025). Adiponectin and Leptin—Considerations in Adult Patients with Spinal Muscular Atrophy Type 3. Diagnostics, 15(5), 529. https://doi.org/10.3390/diagnostics15050529