Contemporary Diagnosis, Management, and Early Outcomes in Children with Kawasaki Disease in Romania: A Single-Center Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Data Collection
- Erythema and cracking of lips, strawberry tongue, or erythema of oral and pharyngeal mucosa;
- Bilateral bulbar conjunctival injection without exudate;
- Rash—maculopapular, diffuse erythroderma, or erythema multiforme-like;
- Erythema and edema of the hands and feet in the acute phase (periungual desquamation in the subacute phase);
- Cervical lymphadenopathy, ≥1.5 cm in diameter, usually unilateral.
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Clinical Manifestations
3.3. Laboratory Findings
3.4. Cardiovascular Changes
3.5. Other Tests
3.6. Diagnosis
3.7. Case Management
3.8. Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KD | Kawasaki disease |
IVIG | Intravenous immunoglobulin |
MIS-C | Multisystem inflammatory syndrome in children |
PIMS-Ts | Pediatric inflammatory multisystem syndrome |
NIID | “Prof. Dr. Matei Balş” National Institute of Infectious Diseases |
LOS | Length of hospital stay |
CRP | C-reactive protein |
ESR | Erythrocyte sedimentation rate |
PLT | Platelet(s) |
ALT | Alanine transaminase |
WBC | White blood cell |
hpf | High power field |
CHD | Congenital heart disease |
NT-proBNP | N-terminal prohormone of brain natriuretic peptide |
ASA | Acetylsalicylic acid |
CALs | Coronary artery lesions |
CAA | Coronary artery aneurysm |
References
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef]
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 Revised International Chapel Hill consensus conference nomenclature of vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Son, M.B.F. Kawasaki Disease: Pathogenesis, Epidemiology, and Etiology. Available online: https://www.uptodate.com/contents/kawasaki-disease-pathogenesis-epidemiology-and-etiology (accessed on 5 November 2024).
- Watts, R.A.; Hatemi, G.; Burns, J.C.; Mohammad, A.J. Global epidemiology of vasculitis. Nat. Rev. Rheumatol. 2021, 18, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Doros, G.; Stroescu, R.; Olariu, C.; Ardelean, A.M.; Gafencu, M. Cardiovascular involvement of Kawasaki disease in the west part of Romania. Jurnalul Pediatrului 2017, 20, 18–23. [Google Scholar]
- Mărginean, C.O.; Meliţ, L.E.; Gozar, L.; Mărginean, C.D.; Mărginean, M.O. Incomplete refractory Kawasaki disease in an infant-A case report and a review of the literature. Front. Pediatr. 2018, 6, 392415. [Google Scholar] [CrossRef]
- Mărginean, C.O.; Meliţ, L.E.; Mărginean, M.O. The peculiarities of Kawasaki disease at the extremes of age: Two case reports. Medicine 2019, 98, e17595. [Google Scholar] [CrossRef]
- Lazea, C.; Man, O.; Maria Sur, L.; Serban, R.; Lazar, C. Unusual presentation of Kawasaki disease with gastro-intestinal and renal manifestations. Ther. Clin. Risk Manag. 2019, 15, 1411–1416. [Google Scholar] [CrossRef]
- Voicu, C.; Grigore, C.; Stefan, D.; Filip, C.; Duica, G.; Nicolae, G.; Balgradean, M.; Nicolescu, A.; Cinteza, E. Overlaping syndromes: Kawasaki-like disease in pediatric multisystem inflammatory syndrome vs atypical Kawasaki disease. British or American? One case, many possibilities. Rev. Romana Cardiol. 2021, 31, 897–902. [Google Scholar] [CrossRef]
- Robinson, C.; Chanchlani, R.; Gayowsky, A.; Brar, S.; Darling, E.; Demers, C.; Mondal, T.; Parekh, R.; Seow, H.; Batthish, M. Cardiovascular outcomes in children with Kawasaki disease: A population-based cohort study. Pediatr. Res. 2023, 93, 1267–1275. [Google Scholar] [CrossRef]
- Daniels, L.B.; Roberts, S.; Moreno, E.; Tremoulet, A.H.; Gordon, J.B.; Burns, J.C. Long-term health outcomes in young adults after Kawasaki disease. IJC Heart Vasc. 2022, 40, 101039. [Google Scholar] [CrossRef]
- Noval Rivas, M.; Arditi, M. Kawasaki Disease and Multisystem Inflammatory Syndrome in Children: Common Inflammatory Pathways of Two Distinct Diseases. Rheum. Dis. Clin. N. Am. 2023, 49, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Liu, F. MIS-C is likely to be distinct from Kawasaki disease based on current studies: A narrative review. Pediatr. Med. 2022, 5, 10. [Google Scholar] [CrossRef]
- Jone, P.-N.; Tremoulet, A.; Choueiter, N.; Dominguez, S.R.; Harahsheh, A.S.; Mitani, Y.; Zimmerman, M.; Lin, M.-T.; Friedman, K.G. Update on Diagnosis and Management of Kawasaki Disease: A Scientific Statement from the American Heart Association. Circulation 2024, 150, 481–500. [Google Scholar] [CrossRef]
- Kobayashi, T.; Inoue, Y.; Takeuchi, K.; Okada, Y.; Tamura, K.; Tomomasa, T.; Kobayashi, T.; Morikawa, A. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation 2006, 113, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Harada, K. Intravenous γ-Globulin Treatment in Kawasaki Disease. Pediatr. Int. 1991, 33, 805–810. [Google Scholar] [CrossRef]
- Gradoux, E.; Di Bernardo, S.; Bressieux-Degueldre, S.; Mivelaz, Y.; Ksontini, T.B.; Prsa, M.; Sekarski, N. Epidemiology of Kawasaki Disease in children in Switzerland: A national prospective cohort study. Swiss Med. Wkly. 2022, 152, w30171. [Google Scholar] [CrossRef]
- Egami, K.; Muta, H.; Ishii, M.; Suda, K.; Sugahara, Y.; Iemura, M.; Matsuishi, T. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. J. Pediatr. 2006, 149, 237–240. [Google Scholar] [CrossRef]
- Son, M.B.F.; Gauvreau, K.; Tremoulet, A.H.; Lo, M.; Baker, A.L.; de Ferranti, S.; Dedeoglu, F.; Sundel, R.P.; Friedman, K.G.; Burns, J.C.; et al. Risk Model Development and Validation for Prediction of Coronary Artery Aneurysms in Kawasaki Disease in a North American Population. J. Am. Heart Assoc. 2019, 8, e011319. [Google Scholar] [CrossRef]
- Verdoni, L.; Mazza, A.; Gervasoni, A.; Martelli, L.; Ruggeri, M.; Ciuffreda, M.; Bonanomi, E.; D’Antiga, L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. Lancet 2020, 395, 1771–1778. [Google Scholar] [CrossRef]
- Viner, R.M.; Whittaker, E. Kawasaki-like disease: Emerging complication during the COVID-19 pandemic. Lancet 2020, 395, 1741–1743. [Google Scholar] [CrossRef]
- Riphagen, S.; Gomez, X.; Gonzalez-Martinez, C.; Wilkinson, N.; Theocharis, P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020, 395, 1607–1608. [Google Scholar] [CrossRef] [PubMed]
- Kechiche, R.; Borocco, C.; Bajolle, F.; Belot, A.; Poignant, S.; Lachaume, N.; Percheron, L.; Meinzer, U.; Mertes, C.; Despert, V.; et al. Multisystemic inflammatory syndrome in children post-COVID-19: Clinical-biological characteristics of patients in the first year of the pandemic. J. Pediatr. Neonatal Individ. Med. 2023, 12, e120210. [Google Scholar]
- Freedman, S.; Godfred-Cato, S.; Gorman, R.; Lodha, R.; Mofenson, L.; Murthy, S.; Rojo, P.; Semple, C.; Sigfrid, L.; Whittaker, E.; et al. Multisystem Inflammatory Syndrome in Children and Adolescents with COVID-19. Available online: https://www.who.int/publications/i/item/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (accessed on 24 November 2024).
- Harwood, R.; Allin, B.; Jones, C.E.; Whittaker, E.; Ramnarayan, P.; Ramanan, A.V.; Kaleem, M.; Tulloh, R.; Peters, M.J.; Almond, S.; et al. A national consensus management pathway for paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS): Results of a national Delphi process. Lancet Child Adolesc. Health 2021, 5, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with SARS-CoV-2 Infection 2023 Case Definition. CDC Multisystem Inflammatory Syndrome (MIS). pp. 9–12. Available online: https://ndc.services.cdc.gov/case-definitions/multisystem-inflammatory-syndrome-in-children-mis-c-2023/ (accessed on 24 November 2024).
- Rowley, A.H.; Shulman, S.T. The epidemiology and pathogenesis of Kawasaki Disease. Front. Pediatr. 2018, 6, 427762. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.S.; Smith, A.G.C.; Sable, C.A.; Echko, M.M.; Wilner, L.B.; Olsen, H.E.; Atalay, H.T.; Awasthi, A.; Bhutta, Z.A.; Boucher, J.L.A.; et al. Global, regional, and national burden of congenital heart disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc. Health 2020, 4, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.M.; Stabler, M.E.; MacKenzie, T.A.; Zimmerman, M.S.; Shi, X.; Everett, A.D.; Bucholz, E.M.; Brown, J.R. Population-Based Estimates of the Prevalence of Children with Congenital Heart Disease and Associated Comorbidities in the United States. Circ. Cardiovasc. Qual. Outcomes 2024, 17, e010657. [Google Scholar] [CrossRef]
- Boia, M.; Costescu, O.-C.; Cioboată, D.; Popoiu, A.; Lungu, N.; Doandeş, F.; Manea, A.M. Malformaţiile cardiace congenitale—O problemă de sănătate publică. Rom. J. Pediatr. 2020, 69, 226–230. [Google Scholar] [CrossRef]
- Puiac (Ciorba), M.; Opriş, M.; Toganel, R.; Ciorba, M.; Suciu, H.; Brinzaniuc, K. Epidemiological aspects of congenital cardiac malformations in children and their implications in the development of a clinical monitoring registry. Rom. J. Pediatr. 2014, 63, 416–420. [Google Scholar] [CrossRef]
- Lee, G.; Lee, S.E.; Hong, Y.M.; Sohn, S. Is high-dose aspirin necessary in the acute phase of Kawasaki disease? Korean Circ. J. 2013, 43, 182–186. [Google Scholar] [CrossRef]
- Dallaire, F.; Fortier-Morissette, Z.; Blais, S.; Dhanrajani, A.; Basodan, D.; Renaud, C.; Mathew, M.; De Souza, A.M.; Dionne, A.; Blanchard, J.; et al. Aspirin dose and prevention of coronary abnormalities in Kawasaki disease. Pediatrics 2017, 139, e20170098. [Google Scholar] [CrossRef]
- Marchesi, A.; Rigante, D.; Cimaz, R.; Ravelli, A.; de Jacobis, I.T.; Rimini, A.; Cardinale, F.; Cattalini, M.; De Zorzi, A.; Dellepiane, R.M.; et al. Revised recommendations of the Italian Society of Pediatrics about the general management of Kawasaki disease. Ital. J. Pediatr. 2021, 47, 16. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, M.; Chung, S.A.; Ardalan, K.; Binstadt, B.A.; Friedman, K.; Hayward, K.; Imundo, L.F.; Lapidus, S.K.; Kim, S.; Son, M.B.; et al. 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the Management of Kawasaki Disease. Arthritis Rheumatol. 2022, 74, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Hsin, Y.-C.; Wang, L.-J.; Feng, W.-L.; Guo, M.M.-H.; Chang, L.-S.; Tu, Y.-K.; Kuo, H.-C. Treatment of Kawasaki Disease: A Network Meta-Analysis of Four Dosage Regimens of Aspirin Combined with Recommended Intravenous Immunoglobulin. Front. Pharmacol. 2021, 12, 725126. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Miyakoshi, C.; Hoshino, S.; Kobayashi, N.; Nakajima, R.; Sagawa, H.; Hayashiya, T.; Suzuki, A.; Aota, C.; Nishijima, S.; et al. Initial intravenous immunoglobulin therapy without aspirin for acute Kawasaki disease: A retrospective cohort study with a Bayesian inference. BMJ Paediatr. Open 2024, 8, e002312. [Google Scholar] [CrossRef]
- Newburger, J.W.; Takahashi, M.; Burns, J.C.; Beiser, A.S.; Chung, K.J.; Duffy, C.E.; Glode, M.P.; Mason, W.H.; Reddy, V.; Sanders, S.P.; et al. The Treatment of Kawasaki Syndrome with Intravenous Gamma Globulin. N. Engl. J. Med. 1986, 315, 341–347. [Google Scholar] [CrossRef]
- Mori, M.; Miyamae, T.; Imagawa, T.; Katakura, S.; Kimura, K.; Yokota, S. Meta-analysis of the results of intravenous gamma globulin treatment of coronary artery lesions in Kawasaki disease. Mod. Rheumatol. 2004, 14, 361–366. [Google Scholar] [CrossRef]
- Ae, R.; Maddox, R.A.; Abrams, J.Y.; Schonberger, L.B.; Nakamura, Y.; Kuwabara, M.; Makino, N.; Kosami, K.; Matsubara, Y.; Matsubara, D.; et al. Kawasaki disease with coronary artery lesions detected at initial echocardiography. J. Am. Heart Assoc. 2021, 10, e019853. [Google Scholar] [CrossRef]
- Research Committee on Kawasaki Disease. Report of Subcommittee on Standardization of Diagnostic Criteria and Reporting of Coronary Artery Lesions in Kawasaki Disease; Diagnostic Criteria of Cardiovascular Lesions in Kawasaki Disease; Ministry of Health and Welfare: Tokyo, Japan, 1984. Available online: https://cir.nii.ac.jp/crid/1573105975667871104 (accessed on 24 November 2024).
- McCrindle, B.W.; Li, J.S.; Minich, L.L.; Colan, S.D.; Atz, A.M.; Takahashi, M.; Vetter, V.L.; Gersony, W.M.; Mitchell, P.D.; Newburger, J.W.; et al. Coronary artery involvement in children with Kawasaki disease: Risk factors from analysis of serial normalized measurements. Circulation 2007, 116, 174–179. [Google Scholar] [CrossRef]
- Ogata, S.; Tremoulet, A.H.; Sato, Y.; Ueda, K.; Shimizu, C.; Sun, X.; Jain, S.; Silverstein, L.; Baker, A.L.; Tanaka, N.; et al. Coronary artery outcomes among children with Kawasaki disease in the United States and Japan. Int. J. Cardiol. 2013, 168, 3825–3828. [Google Scholar] [CrossRef]
- Gallo, G.; Forte, M.; Stanzione, R.; Cotugno, M.; Bianchi, F.; Marchitti, S.; Berni, A.; Volpe, M.; Rubattu, S. Functional Role of Natriuretic Peptides in Risk Assessment and Prognosis of Patients with Mitral Regurgitation. J. Clin. Med. 2020, 9, 1348. [Google Scholar] [CrossRef]
- Vahanian, A. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Koentartiwi, D.; Kadafi, K.T.; Hikmah, F.I.N.; Khalasha, T.; Ramadhanti, A.; Suwarniaty, R. Predictor of mitral valve regurgitation severity and left ventricular dilatation using amino-terminal pro-brain natriuretic peptide marker in pediatric rheumatic heart disease. Int. J. Crit. Illn. Inj. Sci. 2024, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Erolu, E.; Akalin, F. Mitral Regurgitation and Serum N-Terminal Pro-Brain Natriuretic Peptide Levels in Children: A Modification of Adult Criteria. Tex. Heart Inst. J. 2022, 49, e207285. [Google Scholar] [CrossRef]
- Ludwikowska, K.M.; Tokarczyk, M.; Paleczny, B.; Tracewski, P.; Szenborn, L.; Kusa, J. Clinical Significance of B-Type Natriuretic Peptide and N-Terminal Pro-B-Type Natri-uretic Peptide in Pediatric Patients: Insights into Their Utility in the Presence or Absence of Pre-Existing Heart Conditions. Int. J. Mol. Sci. 2024, 25, 8781. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Y.; Zhong, S.; Li, Y.; Dai, X.; Di, Y. Blood N-terminal Pro-brain Natriuretic Peptide and Interleukin-17 for Distinguishing Incomplete Kawasaki Disease from Infectious Diseases. Indian Pediatr. 2015, 52, 477–480. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, M.; Perez-Reviriego, A.A.; Castellano-Martinez, A.; Cascales-Poyatos, H.M. N-terminal probrain natriuretic peptide as biomarker for diagnosis of Kawasaki disease. Biomark Med. 2019, 13, 307–323. [Google Scholar] [CrossRef]
- Sano, T.; Kurotobi, S.; Matsuzaki, K.; Yamamoto, T.; Maki, I.; Miki, K.; Kogaki, S.; Hara, J. Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment. Eur. J. Pediatr. 2007, 166, 131–137. [Google Scholar] [CrossRef]
Variable | Overall | Age < 1 | Age 1–5 | Age ≥ 5 |
---|---|---|---|---|
Patient characteristics | ||||
Male sex | 14/25 (56%) | 4/4 (100%) | 9/17 (52.9%) | 1/4 (25%) |
Living in an urban area | 16/22 (72.7%) | 2/3 (66.7%) | 10/15 (66.7%) | 4/4 (100%) |
Medical history | ||||
Non-chronic disease | 18 (78.3%) | 3/4 (75%) | 13/16 (81.3%) | 2/3 (66.7%) |
Chronic disease | 4 (17.4%) | 1/4 (25%) | 3/16 (18.8%) | - |
CHD | 2 (8.7%) | - | 2/16 (12.5%) | - |
Parameter | Overall | Age < 1 | Age 1–5 | Age ≥ 5 |
---|---|---|---|---|
Inflammation | ||||
CRP ≥ 3 mg/dL | 24/25 (96%) | 3/4 (75%) | 17/17 (100%) | 4/4 (100%) |
ESR ≥ 40 mm/h | 21/22 (95.5%) | 2/3 (66.7) | 15/15 (100%) | 4/4 (100%) |
Other findings | ||||
Anemia for age | 24/25 (96%) | 4/4 (100%) | 16/17 (94.1%) | 4/4 (100%) |
Maximum platelet count (PLT max) | 844.88 ± 200.98 | 873.5 ± 150.65 | 879.41 ± 211.27 | 669.50 ± 116.34 |
Day of fever when PLT max | 13.2 ± 3.47 | 9.5 ± 3.51 | 14.29 ± 2.97 | 12.25 ± 3.30 |
PLT count of ≥450,000 after the 7th day of fever | 25/25 (100%) | 4/4 (100%) | 17/17 (100%) | 4/4 (100%) |
Albumin ≤ 3 g/dL | 5/19 (26.3%) | 1/2 (50%) | 4/14 (28.6%) | - |
Elevated ALT level * | 16/24 (66.7%) | 1/4 (25%) | 5/16 (31.3%) | 2/4 (50%) |
WBC count ≥ 15,000/mm3 | 20/25 (80%) | 4/4 (100%) | 13/17 (76.5%) | 3/4 (75%) |
Urine ≥ 10 WBC/hpf | 12/23 (52.2%) | 2/4 (50%) | 9/15 (60%) | 1/4 (25%) |
Troponin (ng/mL) | NT-proBNP (pg/mL) | Coronary Artery Dilatation | Valvular Regurgitation | Pericardial Effusion | |
---|---|---|---|---|---|
Patient 1 | 2.94 | 40.8 | − | − | − |
Patient 2 | <0.012 | 1492 | − | + | − |
Patient 3 | 0.00 | 0.0 | − | − | − |
Patient 4 | 0.00 | 387 | − | − | − |
Patient 5 | 0.03 | 78 | − | − | − |
Patient 6 | 0.03 | 833 | + | − | − |
Patient 7 | 0.03 | >125 | − | − | − |
Patient 8 | 0.03 | − | − | + | |
Patient 9 | 0.03 | 267 | − | − | − |
Patient 10 | 88 | − | − | − |
Medication | Overall | Age < 1 | Age 1–5 | Age ≥ 5 |
---|---|---|---|---|
Intravenous immunoglobulin n (%) | 25 (100%) | 4 (100%) | 17 (100%) | 4 (100%) |
Day (of fever) of administration | 9.09 ± 3.25 | 7.33 ± 1.15 | 9.07 ± 2.15 | 10.50 ± 6.76 |
Second dose | 2 (8%) | - | 2 (11.8%) | - |
Acetylsalicylic acid n (%) | 17 (68%) | 3 (75%) | 11 (64.7%) | 3 (75%) |
Other antiplatelet or anticoagulant agents n (%) | ||||
Dipyridamole | 4 (16%) | 1 (25%) | 3 (17.6%) | - |
Variable | Overall | Age < 1 | Age 1–5 | Age ≥ 5 |
---|---|---|---|---|
Length of hospital stay * (days) | 11.78 ± 3.6 | 12.5 ± 2.38 | 12.63 ± 3.32 | 6.33 ± 0.58 |
Transfer to multidisciplinary center | 2 (8%) | - | 1 (5.9%) | 1 (25%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rădulescu, C.R.; Drăgănescu, A.C.; Băncilă, D.M.; Bilaşco, A.; Bădescu, M.-R.; Pleşca, D.A. Contemporary Diagnosis, Management, and Early Outcomes in Children with Kawasaki Disease in Romania: A Single-Center Experience. Diagnostics 2025, 15, 656. https://doi.org/10.3390/diagnostics15060656
Rădulescu CR, Drăgănescu AC, Băncilă DM, Bilaşco A, Bădescu M-R, Pleşca DA. Contemporary Diagnosis, Management, and Early Outcomes in Children with Kawasaki Disease in Romania: A Single-Center Experience. Diagnostics. 2025; 15(6):656. https://doi.org/10.3390/diagnostics15060656
Chicago/Turabian StyleRădulescu, Cristina Ramona, Anca Cristina Drăgănescu, Diana Maria Băncilă, Anuţa Bilaşco, Mihai-Rareş Bădescu, and Doina Anca Pleşca. 2025. "Contemporary Diagnosis, Management, and Early Outcomes in Children with Kawasaki Disease in Romania: A Single-Center Experience" Diagnostics 15, no. 6: 656. https://doi.org/10.3390/diagnostics15060656
APA StyleRădulescu, C. R., Drăgănescu, A. C., Băncilă, D. M., Bilaşco, A., Bădescu, M.-R., & Pleşca, D. A. (2025). Contemporary Diagnosis, Management, and Early Outcomes in Children with Kawasaki Disease in Romania: A Single-Center Experience. Diagnostics, 15(6), 656. https://doi.org/10.3390/diagnostics15060656