Exploring the TyG Index and the Homeostasis Model Assessment of Insulin Resistance as Insulin Resistance Markers: Implications for Fibromyalgia Management and Understanding—A Narrative Review
Abstract
1. Introduction
2. Methods
2.1. Search Strategy and Study Selection
2.2. Insulin Resistance Indices
2.3. Data Extraction
3. Understanding Insulin Resistance
4. Insulin and Lipid Toxicity: Disruption of Cellular Functions
5. HOMA-IR: An Available Tool for Determining IR
6. TyG Index: A More Available Method for Assessing IR
7. IR and Fibromyalgia
7.1. Physiopathology of the Association Between IR and FM
7.2. Relationship Between TyG Index and HOMA-IR with FM
7.3. Research Gaps and Future Research Directions
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Winslow, B.T.; Vandal, C.; Dang, L. Fibromyalgia: Diagnosis and Management. Am. Fam. Physician 2023, 107, 137–144. [Google Scholar]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef]
- Clauw, D.J. Fibromyalgia: A clinical review. JAMA 2014, 311, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990, 33, 160–172. [Google Scholar] [CrossRef]
- D’Agnelli, S.; Arendt-Nielsen, L.; Gerra, M.C.; Zatorri, K.; Boggiani, L.; Baciarello, M.; Bignami, E. Fibromyalgia: Genetics and epigenetics insights may provide the basis for the development of diagnostic biomarkers. Mol. Pain 2019, 15, 1744806918819944. [Google Scholar] [CrossRef]
- Clos-Garcia, M.; Andrés-Marin, N.; Fernández-Eulate, G.; Abecia, L.; Lavín, J.L.; van Liempd, S.; Cabrera, D.; Royo, F.; Valero, A.; Errazquin, N.; et al. Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia. eBioMedicine 2019, 46, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Behnoush, A.H.; Khalaji, A.; Fazlollahpour-Naghibi, A.; Bagheri, K.; Goshtasbi, P.; Mohseni, G.; El Kanty, A.E.; Vinciguerra, C.; Cannavo, A. Circulating brain-derived neurotrophic factor levels and heart failure: A systematic review and meta-analysis. ESC Heart Fail. 2024, 11, 3253–3263. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef]
- Kumbhare, D.; Ahmed, S.; Watter, S. A narrative review on the difficulties associated with fibromyalgia diagnosis. Ther. Adv. Musculoskelet. Dis. 2018, 10, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Bohn, D.; Bernardy, K.; Wolfe, F.; Häuser, W. The association among childhood maltreatment, somatic symptom intensity, depression, and somatoform dissociative symptoms in patients with fibromyalgia syndrome: A single-center cohort study. J. Trauma. Dissociation 2013, 14, 342–358. [Google Scholar] [CrossRef]
- Häuser, W.; Kosseva, M.; Üceyler, N.; Klose, P.; Sommer, C. Emotional, physical, and sexual abuse in fibromyalgia syndrome: A systematic review with meta-analysis. Arthritis Care Res. 2011, 63, 808–820. [Google Scholar] [CrossRef]
- Mezhov, V.; Guymer, E.; Littlejohn, G. Central sensitivity and fibromyalgia. Intern. Med. J. 2021, 51, 1990–1998. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef]
- Williams, D.A. Phenotypic Features of Central Sensitization. J. Appl. Biobehav. Res. 2018, 23, e12135. [Google Scholar] [CrossRef] [PubMed]
- Yunus, M.B. Fibromyalgia and overlapping disorders: The unifying concept of central sensitivity syndromes. Semin. Arthritis Rheum. 2007, 36, 339–356. [Google Scholar] [CrossRef] [PubMed]
- Coderre, T.J. Contribution of microvascular dysfunction to chronic pain. Front. Pain Res. 2023, 4, 1111559. [Google Scholar] [CrossRef] [PubMed]
- Behnoush, A.H.; Khalaji, A.; Ghasemi, H.; Tabatabaei, G.A.; Samavarchitehrani, A.; Vaziri, Z.; Najafi, M.; Norouzi, M.; Ghondaghsaz, E.; Amini, E.; et al. Endocan as a biomarker for acute respiratory distress syndrome: A systematic review and meta-analysis. Health Sci. Rep. 2024, 7, e70044. [Google Scholar] [CrossRef]
- Mertoglu, C.; Gunay, M.; Yerligok, O. Could Endocan, a Marker of Inflammation and Endothelial Dysfunction, be a New Diagnostic Marker for Fibromyalgia? Clin. Lab. 2018, 64, 405–410. [Google Scholar] [CrossRef]
- Amato, M.C.; Vesco, R.; Vigneri, E.; Ciresi, A.; Giordano, C. Hyperinsulinism and polycystic ovary syndrome (PCOS): Role of insulin clearance. J. Endocrinol. Investig. 2015, 38, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979, 237, E214–E223. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Pappolla, M.A.; Manchikanti, L.; Candido, K.D.; Grieg, N.; Seffinger, M.; Ahmed, F.; Fang, X.; Andersen, C.; Trescot, A.M. Insulin Resistance is Associated with Central Pain in Patients with Fibromyalgia. Pain Physician 2021, 24, 175–184. [Google Scholar] [PubMed]
- Ye, D.; Fairchild, T.J.; Vo, L.; Drummond, P.D. High Blood Glucose and Excess Body fat Enhance Pain Sensitivity and Weaken Pain Inhibition in Healthy Adults: A Single-blind Cross-over Randomized Controlled Trial. J. Pain 2023, 24, 128–144. [Google Scholar] [CrossRef]
- Zetterman, T.; Markkula, R.; Kalso, E. Glucose tolerance in fibromyalgia. Medicine 2021, 100, e27803. [Google Scholar] [CrossRef] [PubMed]
- Astan, R.; Patoulias, D.; Ninić, A.; Dayanan, R.; Karakasis, P.; Mercantepe, T.; Mercantepe, F.; Klisic, A. Blood Pressure Patterns and Hepatosteatosis: Cardiometabolic Risk Assessment in Dipper and Nondipper Phenotypes. J. Clin. Med. 2024, 13, 6976. [Google Scholar] [CrossRef]
- Klisic, A.; Patoulias, D.; Isenovic, E.R. Editorial: Oxidative stress and inflammation in cardiometabolic disorders. Front. Endocrinol. 2024, 15, 1397836. [Google Scholar] [CrossRef] [PubMed]
- Kahn, C.R.; Folli, F. Molecular determinants of insulin action. Horm. Res. 1993, 39 (Suppl. 3), 93–101. [Google Scholar] [CrossRef] [PubMed]
- Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef]
- Bertacca, A.; Ciccarone, A.; Cecchetti, P.; Vianello, B.; Laurenza, I.; Maffei, M.; Chiellini, C.; Del Prato, S.; Benzi, L. Continually high insulin levels impair Akt phosphorylation and glucose transport in human myoblasts. Metabolism 2005, 54, 1687–1693. [Google Scholar] [CrossRef]
- Bertacca, A.; Ciccarone, A.; Cecchetti, P.; Vianello, B.; Laurenza, I.; Del Prato, S.; Benzi, L. High insulin levels impair intracellular receptor trafficking in human cultured myoblasts. Diabetes Res. Clin. Pract. 2007, 78, 316–323. [Google Scholar] [CrossRef]
- Catalano, K.J.; Maddux, B.A.; Szary, J.; Youngren, J.F.; Goldfine, I.D.; Schaufele, F. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain. PLoS ONE 2014, 9, e108693. [Google Scholar] [CrossRef]
- Nolan, C.J.; Ruderman, N.B.; Kahn, S.E.; Pedersen, O.; Prentki, M. Insulin resistance as a physiological defense against metabolic stress: Implications for the management of subsets of type 2 diabetes. Diabetes 2015, 64, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Boden, G.; Homko, C.; Barrero, C.A.; Stein, T.P.; Chen, X.; Cheung, P.; Fecchio, C.; Koller, S.; Merali, S. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Sci. Transl. Med. 2015, 7, 304re307. [Google Scholar] [CrossRef] [PubMed]
- Taegtmeyer, H.; Beauloye, C.; Harmancey, R.; Hue, L. Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H1693–H1697. [Google Scholar] [CrossRef]
- Hoehn, K.L.; Salmon, A.B.; Hohnen-Behrens, C.; Turner, N.; Hoy, A.J.; Maghzal, G.J.; Stocker, R.; Van Remmen, H.; Kraegen, E.W.; Cooney, G.J.; et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 17787–17792. [Google Scholar] [CrossRef]
- Klisic, A.; Karakasis, P.; Patoulias, D.; Khalaji, A.; Ninić, A. Are Oxidative Stress Biomarkers Reliable Part of Multimarker Panel in Female Patients with Type 2 Diabetes Mellitus? Metab. Syndr. Relat. Disord. 2024, 22, 679–685. [Google Scholar] [CrossRef]
- Ramasubbu, K.; Devi Rajeswari, V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: A perspective review. Mol. Cell Biochem. 2023, 478, 1307–1324. [Google Scholar] [CrossRef]
- Pihtili Taş, N.; Aydogan Baykara, R.; Kamanli, A.; Gürbüz, A.; Cure, E.; Cumhur Cüre, M.; Erdem, M.; Tasar Yildirim, T. Proprotein convertase subtilisin/kexin type 9 and apelin in fibromyalgia syndrome. Arch. Rheumatol. 2024, 39, 375–383. [Google Scholar] [CrossRef] [PubMed]
- AboTaleb, H.A.; Alghamdi, B.S. Metformin and fibromyalgia pathophysiology: Current insights and promising future therapeutic strategies. Mol. Biol. Rep. 2024, 52, 60. [Google Scholar] [CrossRef]
- Jalali, S.; Zareshahi, N.; Behnoush, A.H.; Azarboo, A.; Shirinezhad, A.; Hosseini, S.Y.; Javidan, A.; Ghaseminejad-Raeini, A. Association of insulin resistance surrogate indices and erectile dysfunction: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2024, 22, 148. [Google Scholar] [CrossRef]
- González-González, J.G.; Violante-Cumpa, J.R.; Zambrano-Lucio, M.; Burciaga-Jimenez, E.; Castillo-Morales, P.L.; Garcia-Campa, M.; Solis, R.C.; González-Colmenero, A.D.; Rodríguez-Gutiérrez, R. HOMA-IR as a predictor of Health Outcomes in Patients with Metabolic Risk Factors: A Systematic Review and Meta-analysis. High Blood Press. Cardiovasc. Prev. 2022, 29, 547–564. [Google Scholar] [CrossRef] [PubMed]
- Biagetti, B.; Aulinas, A.; Casteras, A.; Pérez-Hoyos, S.; Simó, R. HOMA-IR in acromegaly: A systematic review and meta-analysis. Pituitary 2021, 24, 146–158. [Google Scholar] [CrossRef]
- Abbasi, F.; Reaven, G.M. Statin-induced diabetes: How important is insulin resistance? J. Intern. Med. 2015, 277, 498–500. [Google Scholar] [CrossRef]
- Iftikhar, I.H.; Hoyos, C.M.; Phillips, C.L.; Magalang, U.J. Meta-analyses of the Association of Sleep Apnea with Insulin Resistance, and the Effects of CPAP on HOMA-IR, Adiponectin, and Visceral Adipose Fat. J. Clin. Sleep Med. 2015, 11, 475–485. [Google Scholar] [CrossRef]
- Saboori, S.; Rad, E.Y.; Birjandi, M.; Mohiti, S.; Falahi, E. Serum insulin level, HOMA-IR and prostate cancer risk: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2019, 13, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; Kull, M.; Lember, M.; Põlluste, K.; Valner, A.; Kallikorm, R. Insulin Resistance in Early Rheumatoid Arthritis Is Associated with Low Appendicular Lean Mass. BioMed Res. Int. 2017, 2017, 9584720. [Google Scholar] [CrossRef] [PubMed]
- Khalaji, A.; Behnoush, A.H.; Khanmohammadi, S.; Ghanbari Mardasi, K.; Sharifkashani, S.; Sahebkar, A.; Vinciguerra, C.; Cannavo, A. Triglyceride-glucose index and heart failure: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2023, 22, 244. [Google Scholar] [CrossRef]
- Wang, L.; Cong, H.L.; Zhang, J.X.; Hu, Y.C.; Wei, A.; Zhang, Y.Y.; Yang, H.; Ren, L.B.; Qi, W.; Li, W.Y.; et al. Triglyceride-glucose index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome. Cardiovasc. Diabetol. 2020, 19, 80. [Google Scholar] [CrossRef]
- Behnoush, A.H.; Khalaji, A.; Ghondaghsaz, E.; Masrour, M.; Shokri Varniab, Z.; Khalaji, S.; Cannavo, A. Triglyceride-glucose index and obstructive sleep apnea: A systematic review and meta-analysis. Lipids Health Dis. 2024, 23, 4. [Google Scholar] [CrossRef]
- Li, H.; Zuo, Y.; Qian, F.; Chen, S.; Tian, X.; Wang, P.; Li, X.; Guo, X.; Wu, S.; Wang, A. Triglyceride-glucose index variability and incident cardiovascular disease: A prospective cohort study. Cardiovasc. Diabetol. 2022, 21, 105. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, T.Y.; Cheng, Y.J.; Ma, Y.; Xu, Y.K.; Yang, J.Q.; Zhou, Y.J. Impacts of triglyceride-glucose index on prognosis of patients with type 2 diabetes mellitus and non-ST-segment elevation acute coronary syndrome: Results from an observational cohort study in China. Cardiovasc. Diabetol. 2020, 19, 108. [Google Scholar] [CrossRef]
- Azarboo, A.; Behnoush, A.H.; Vaziri, Z.; Daneshvar, M.S.; Taghvaei, A.; Jalali, A.; Cannavo, A.; Khalaji, A. Assessing the association between triglyceride-glucose index and atrial fibrillation: A systematic review and meta-analysis. Eur. J. Med. Res. 2024, 29, 118. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, X.; Wang, Y.; Leng, L.; Xu, J.; Feng, L.; Jiang, S.; Wang, J.; Yang, Y.; Pan, G.; et al. The impact of triglyceride-glucose index on ischemic stroke: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2023, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tan, Z.; Huang, Y.; Zhao, H.; Liu, M.; Yu, P.; Ma, J.; Zhao, Y.; Zhu, W.; Wang, J. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2022, 21, 124. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.S.; Kuriyakose, D.; Polisetty, L.D.; Patil, A.A.; Ameen, D.; Bonu, R.; Shetty, S.P.; Biswas, P.; Ulrich, M.T.; Letafatkar, N.; et al. Diagnostic and prognostic value of triglyceride glucose index: A comprehensive evaluation of meta-analysis. Cardiovasc. Diabetol. 2024, 23, 310. [Google Scholar] [CrossRef]
- Vasques, A.C.; Novaes, F.S.; de Oliveira Mda, S.; Souza, J.R.; Yamanaka, A.; Pareja, J.C.; Tambascia, M.A.; Saad, M.J.; Geloneze, B. TyG index performs better than HOMA in a Brazilian population: A hyperglycemic clamp validated study. Diabetes Res. Clin. Pract. 2011, 93, e98–e100. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kwon, H.S.; Park, Y.M.; Ha, H.S.; Jeong, S.H.; Yang, H.K.; Lee, J.H.; Yim, H.W.; Kang, M.I.; Lee, W.C.; et al. Predicting the development of diabetes using the product of triglycerides and glucose: The Chungju Metabolic Disease Cohort (CMC) study. PLoS ONE 2014, 9, e90430. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Wang, X.; Wu, J.; Zhang, M.; Cui, M. Triglyceride-glucose index and the incidence of atherosclerotic cardiovascular diseases: A meta-analysis of cohort studies. Cardiovasc. Diabetol. 2021, 20, 76. [Google Scholar] [CrossRef]
- Beran, A.; Ayesh, H.; Mhanna, M.; Wahood, W.; Ghazaleh, S.; Abuhelwa, Z.; Sayeh, W.; Aladamat, N.; Musallam, R.; Matar, R.; et al. Triglyceride-Glucose Index for Early Prediction of Nonalcoholic Fatty Liver Disease: A Meta-Analysis of 121,975 Individuals. J. Clin. Med. 2022, 11, 2666. [Google Scholar] [CrossRef]
- Samavarchitehrani, A.; Cannavo, A.; Behnoush, A.H.; Kazemi Abadi, A.; Shokri Varniab, Z.; Khalaji, A. Investigating the association between the triglyceride-glucose index and peripheral artery disease: A systematic review and meta-analysis. Nutr. Diabetes 2024, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, W.; Jiang, X. Association Between Triglyceride-Glucose Index and Hypertension: A Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 644035. [Google Scholar] [CrossRef] [PubMed]
- Ghondaghsaz, E.; Khalaji, A.; Mahalleh, M.; Masrour, M.; Mohammadi, P.; Cannavo, A.; Behnoush, A.H. Exploring the Association Between Cognitive Decline and Triglyceride-Glucose Index: A Systematic Review and Meta-Analysis. Brain Behav. 2024, 14, e70131. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, L.; La, R.; Jiang, M.; Jiang, D.; Huang, L.; Xu, W.; Wu, Q. The association between triglyceride glucose index and arthritis: A population-based study. Lipids Health Dis. 2023, 22, 132. [Google Scholar] [CrossRef]
- Loevinger, B.L.; Muller, D.; Alonso, C.; Coe, C.L. Metabolic syndrome in women with chronic pain. Metab. Clin. Exp. 2007, 56, 87–93. [Google Scholar] [CrossRef]
- Su, C.-H.; Chen, J.-H.; Lan, J.-L.; Wang, Y.-C.; Tseng, C.-H.; Hsu, C.-Y.; Huang, L. Increased Risk of Coronary Heart Disease in Patients with Primary Fibromyalgia and Those with Concomitant Comorbidity—A Taiwanese Population-Based Cohort Study. PLoS ONE 2015, 10, e0137137. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Manzano, P.; Segura-Jiménez, V.; Estévez-López, F.; Álvarez-Gallardo, I.C.; Soriano-Maldonado, A.; Borges-Cosic, M.; Gavilán-Carrera, B.; Delgado-Fernández, M.; Aparicio, V.A. Do women with fibromyalgia present higher cardiovascular disease risk profile than healthy women? The al-Ándalus project. Clin. Exp. Rheumatol. 2017, 35 (Suppl. 105), 61–67. [Google Scholar]
- Fava, A.; Plastino, M.; Cristiano, D.; Spanò, A.; Cristofaro, S.; Opipari, C.; Chillà, A.; Casalinuovo, F.; Colica, C.; De Bartolo, M.; et al. Insulin resistance possible risk factor for cognitive impairment in fibromialgic patients. Metab. Brain Dis. 2013, 28, 619–627. [Google Scholar] [CrossRef]
- Zhai, X.; Sun, C.; Rong, P.; Li, S.; McCabe, M.F.; Wang, X.; Mao, J.; Wang, S. A Correlative Relationship Between Chronic Pain and Insulin Resistance in Zucker Fatty Rats: Role of Downregulation of Insulin Receptors. J. Pain 2016, 17, 404–413. [Google Scholar] [CrossRef]
- García, G.; Gutiérrez-Lara, E.J.; Centurión, D.; Granados-Soto, V.; Murbartián, J. Fructose-Induced Insulin Resistance as a Model of Neuropathic Pain in Rats. Neuroscience 2019, 404, 233–245. [Google Scholar] [CrossRef]
- Frosch, O.H.; Yau, P.L.; Osorio, R.S.; Rusinek, H.; Storey, P.; Convit, A. Insulin resistance among obese middle-aged is associated with decreased cerebrovascular reactivity. Neurology 2017, 89, 249–255. [Google Scholar] [CrossRef]
- Yanmaz, M.N.; Mert, M.; Korkmaz, M. The prevalence of fibromyalgia syndrome in a group of patients with diabetes mellitus. Rheumatol. Int. 2012, 32, 871–874. [Google Scholar] [CrossRef]
- Tishler, M.; Smorodin, T.; Vazina-Amit, M.; Ramot, Y.; Koffler, M.; Fishel, B. Fibromyalgia in diabetes mellitus. Rheumatol. Int. 2003, 23, 171–173. [Google Scholar] [CrossRef]
- Alcocer-Gómez, E.; Culic, O.; Navarro-Pando, J.M.; Sánchez-Alcázar, J.A.; Bullón, P. Effect of Coenzyme Q(10) on Psychopathological Symptoms in Fibromyalgia Patients. CNS Neurosci. Ther. 2017, 23, 188–189. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.E.; He, J.; Menshikova, E.V.; Ritov, V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002, 51, 2944–2950. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.E.; Goodpaster, B.; Wing, R.R.; Simoneau, J.A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 1999, 277, E1130–E1141. [Google Scholar] [CrossRef] [PubMed]
- Simoneau, J.A.; Veerkamp, J.H.; Turcotte, L.P.; Kelley, D.E. Markers of capacity to utilize fatty acids in human skeletal muscle: Relation to insulin resistance and obesity and effects of weight loss. FASEB J. 1999, 13, 2051–2060. [Google Scholar] [CrossRef]
- Kim, J.Y.; Hickner, R.C.; Cortright, R.L.; Dohm, G.L.; Houmard, J.A. Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E1039–E1044. [Google Scholar] [CrossRef]
- Mourier, A.; Motori, E.; Brandt, T.; Lagouge, M.; Atanassov, I.; Galinier, A.; Rappl, G.; Brodesser, S.; Hultenby, K.; Dieterich, C.; et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J. Cell Biol. 2015, 208, 429–442. [Google Scholar] [CrossRef]
- Basso, V.; Marchesan, E.; Peggion, C.; Chakraborty, J.; von Stockum, S.; Giacomello, M.; Ottolini, D.; Debattisti, V.; Caicci, F.; Tasca, E.; et al. Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol. Res. 2018, 138, 43–56. [Google Scholar] [CrossRef]
- Alcocer-Gómez, E.; Sánchez-Alcázar, J.A.; Cordero, M.D. Coenzyme q10 regulates serotonin levels and depressive symptoms in fibromyalgia patients: Results of a small clinical trial. J. Clin. Psychopharmacol. 2014, 34, 277–278. [Google Scholar] [CrossRef]
- Procaccio, V.; Bris, C.; Chao de la Barca, J.M.; Oca, F.; Chevrollier, A.; Amati-Bonneau, P.; Bonneau, D.; Reynier, P. Perspectives of drug-based neuroprotection targeting mitochondria. Rev. Neurol. 2014, 170, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Tunç Karaman, S.; Hüner, B.; Basat, O. The impact of metabolic health on fibromyalgia: Insights from insulin resistance and related indexes. Postgrad. Med. 2025, 137, 28–36. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, G.T.; Kang, J. Carotid Arterial Stiffness and Cardiometabolic Profiles in Women with Fibromyalgia. Biomedicines 2021, 9, 1786. [Google Scholar] [CrossRef] [PubMed]
- Cure, O.; Kizilkaya, B.; Ciftel, S.; Klisic, A.; Ciftel, E.; Mercantepe, F. Effect of fibromyalgia on demographic, biochemical, metabolic and inflammatory profiles: A single-centre retrospective study. Clin. Exp. Rheumatol. 2024, 42, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Krupa, A.J.; Korkosz, M.; Gorostowicz, A.; Nowakowski, J.; Kierzkowska, I.; Dudek, D.; Siwek, M. Predictors of treatment response to serotonin and noradrenaline reuptake inhibitors in fibromyalgia. Pol. Arch. Intern. Med. 2023, 133, 16432. [Google Scholar] [CrossRef]
Author’s Name | Year | Design of Study | FM Population | N Total | Groups | Main Findings |
---|---|---|---|---|---|---|
Cure et al. [85] | 2024 | Retrospective, Cross-sectional | FM patients, Turkey | 360 | FM (n = 176), Controls (n = 184) | Elevated CRP, ESR, systemic inflammation; higher monocyte-HDL ratio and magnesium in controls; FM group had higher inflammatory markers, However, there was no significant difference between FM and controls regarding TyG, waist-height ratio, plasma atherogenic index, folate and vitamin B12 levels. |
Tunç Karaman et al. [83] | 2024 | Cross-sectional | Female FM patients, Turkey | 140 | FM (n = 70), Controls (n = 70) | FM patients had higher HOMA-IR, fasting insulin, and TG; lower QUICKI; positive correlation of FM severity with metabolic indices. |
Kim et al. [84] | 2021 | Retrospective, Cross-sectional | FM patients, Korea | 216 | FM (n = 58), Controls (n = 158) | FM associated with central obesity, higher TG, and impaired fasting glucose; advanced carotid arterial stiffness linked to IR. |
Pappolla et al. [23] | 2021 | Cross-sectional observational study | FM patients, USA | 33 FM patients | FM patients (33) vs. two control groups | 13 FM patients with complete data had abnormal results in at least one IR marker (HbA1c, HOMA-IR, or QUICKI), indicating evidence of IR. |
Krupa et al. [86] | 2023 | Cross-sectional observational study | FM Patients, Poland | 89 | FM Responders to SNRI treatment: 30 FM Non-responders to SNRI treatment: 29 Healthy Controls: 30 | Insulin resistance (HOMA-IR) was a significant predictor of poor response to SNRI treatment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samavarchitehrani, A.; Mercantepe, F.; Behnoush, A.H.; Klisic, A. Exploring the TyG Index and the Homeostasis Model Assessment of Insulin Resistance as Insulin Resistance Markers: Implications for Fibromyalgia Management and Understanding—A Narrative Review. Diagnostics 2025, 15, 494. https://doi.org/10.3390/diagnostics15040494
Samavarchitehrani A, Mercantepe F, Behnoush AH, Klisic A. Exploring the TyG Index and the Homeostasis Model Assessment of Insulin Resistance as Insulin Resistance Markers: Implications for Fibromyalgia Management and Understanding—A Narrative Review. Diagnostics. 2025; 15(4):494. https://doi.org/10.3390/diagnostics15040494
Chicago/Turabian StyleSamavarchitehrani, Amirsaeed, Filiz Mercantepe, Amir Hossein Behnoush, and Aleksandra Klisic. 2025. "Exploring the TyG Index and the Homeostasis Model Assessment of Insulin Resistance as Insulin Resistance Markers: Implications for Fibromyalgia Management and Understanding—A Narrative Review" Diagnostics 15, no. 4: 494. https://doi.org/10.3390/diagnostics15040494
APA StyleSamavarchitehrani, A., Mercantepe, F., Behnoush, A. H., & Klisic, A. (2025). Exploring the TyG Index and the Homeostasis Model Assessment of Insulin Resistance as Insulin Resistance Markers: Implications for Fibromyalgia Management and Understanding—A Narrative Review. Diagnostics, 15(4), 494. https://doi.org/10.3390/diagnostics15040494