The Predictive Role of Baseline 18F-FDG PET/CT Radiomics in Follicular Lymphoma on Watchful Waiting: A Preliminary Study
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. FDG PET/CT Imaging
2.3. Image Segmentation
2.4. Radiomic Feature Extraction
2.5. Differences Between Scanners and Feature Harmonization
2.6. Regression and Classification Model Definition
2.7. Feature Selection
2.8. Model Selection
2.9. Kaplan–Meier Analysis
3. Results
3.1. Contoured Lesions and PET Measurement Reproducibility
3.2. Difference Between Scanners and ComBat-Based Feature Harmonization
3.3. Feature Selection
3.4. Model Performance
3.5. Kaplan–Meier Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ekberg, S.; E Smedby, K.; Glimelius, I.; Nilsson-Ehle, H.; Goldkuhl, C.; Lewerin, C.; Jerkeman, M.; Eloranta, S. Trends in the prevalence, incidence and survival of non-Hodgkin lymphoma subtypes during the 21st century—A Swedish lymphoma register study. Br. J. Haematol. 2020, 189, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Freedman, A. Follicular lymphoma: 2015 update on diagnosis and management. Am. J. Hematol. 2015, 90, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Link, B.K.; Maurer, M.J.; Nowakowski, G.S.; Ansell, S.M.; Macon, W.R.; Syrbu, S.I.; Slager, S.L.; Thompson, C.A.; Inwards, D.J.; Johnston, P.B.; et al. Rates and outcomes of follicular lymphoma transformation in the immunochemotherapy era: A report from the University of Iowa/MayoClinic Specialized Program of Research Excellence Molecular Epidemiology Resource. J. Clin. Oncol. 2013, 31, 3272–3278. [Google Scholar] [CrossRef]
- Brice, P.; Bastion, Y.; Lepage, E.; Brousse, N.; Haïoun, C.; Moreau, P.; Straetmans, N.; Tilly, H.; Tabah, I.; Solal-Céligny, P. Comparison in low-tumor-burden follicular lymphomas between an initial no-treatment policy, prednimustine, or interferon alfa: A randomized study from the Groupe d’Etude des Lymphomes Folliculaires. Groupe d’Etude des Lymphomes de l’Adulte. J. Clin. Oncol. 1997, 15, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Solal-Céligny, P.; Roy, P.; Colombat, P.; White, J.; Armitage, J.O.; Arranz-Saez, R.; Au, W.Y.; Bellei, M.; Brice, P.; Caballero, D.; et al. Follicular lymphoma international prognostic index. Blood 2004, 104, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Federico, M.; Bellei, M.; Marcheselli, L.; Luminari, S.; Lopez-Guillermo, A.; Vitolo, U.; Pro, B.; Pileri, S.; Pulsoni, A.; Soubeyran, P.; et al. Follicular lymphoma international prognostic index 2: A new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J. Clin. Oncol. 2009, 27, 4555–4562. [Google Scholar] [CrossRef] [PubMed]
- Solal-Céligny, P.; Bellei, M.; Marcheselli, L.; Pesce, E.A.; Pileri, S.; McLaughlin, P.; Luminari, S.; Pro, B.; Montoto, S.; Ferreri, A.J.; et al. Watchful waiting in low-tumor burden follicular lymphoma in the rituximab era: Results of an F2-study database. J. Clin. Oncol. 2012, 30, 3848–3853. [Google Scholar] [CrossRef] [PubMed]
- Barrington, S.F.; Mikhaeel, N.G.; Kostakoglu, L.; Meignan, M.; Hutchings, M.; Müeller, S.P.; Schwartz, L.H.; Zucca, E.; Fisher, R.I.; Trotman, J.; et al. Role of imaging in the staging and response assessment of lymphoma: Consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J. Clin. Oncol. 2014, 32, 3048–3058. [Google Scholar] [CrossRef] [PubMed]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A.; Alliance, Australasian Leukaemia and Lymphoma Group; Eastern Cooperative Oncology Group; European Mantle Cell Lymphoma Consortium; et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef]
- Strati, P.; Ahmed, M.A.; Fowler, N.H.; Nastoupil, L.J.; Samaniego, F.; Fayad, L.E.; Hagemeister, F.B.; Romaguera, J.E.; Rodriguez, A.; Wang, M.; et al. Pre-treatment maximum standardized uptake value predicts outcome after frontline therapy in patients with advanced stage follicular lymphoma. Haematologica 2020, 105, 1907–1913. [Google Scholar] [CrossRef] [PubMed]
- Meignan, M.; Cottereau, A.S.; Versari, A.; Chartier, L.; Dupuis, J.; Boussetta, S.; Grassi, I.; Casasnovas, R.O.; Haioun, C.; Tilly, H.; et al. Baseline Metabolic Tumor Volume Predicts Outcome in High-Tumor-Burden Follicular Lymphoma: A Pooled Analysis of Three Multicenter Studies. J. Clin. Oncol. 2016, 34, 3618–3626. [Google Scholar] [CrossRef] [PubMed]
- Draye-Carbonnier, S.; Camus, V.; Becker, S.; Tonnelet, D.; Lévêque, E.; Zduniak, A.; Jardin, F.; Tilly, H.; Vera, P.; Decazes, P. Prognostic value of the combination of volume, massiveness and fragmentation parameters measured on baseline FDG pet in high-burden follicular lymphoma. Sci. Rep. 2024, 14, 8033. [Google Scholar] [CrossRef]
- Liang, J.H.; Zhang, Y.P.; Xia, J.; Ding, C.Y.; Wu, W.; Wang, L.; Cao, L.; Zhu, H.Y.; Fan, L.; Li, T.N.; et al. Prognostic Value of Baseline and Interim Total Metabolic Tumor Volume and Total Lesion Glycolysis Measured on 18F-FDG PET-CT in Patients with Follicular Lymphoma. Cancer Res. Treat. 2019, 51, 1479–1487. [Google Scholar] [CrossRef]
- Parekh, V.; Jacobs, M.A. Radiomics: A new application from established techniques. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 207–226. [Google Scholar] [CrossRef] [PubMed]
- Leccisotti, L.; Maccora, D.; Malafronte, R.; D’Alò, F.; Maiolo, E.; Annunziata, S.; Rufini, V.; Giordano, A.; Hohaus, S. Predicting time to treatment in follicular lymphoma on watchful waiting using baseline metabolic tumour burden. J. Cancer Res. Clin. Oncol. 2023, 149, 2783–2791. [Google Scholar] [CrossRef] [PubMed]
- Major, A.; Hammes, A.; Schmidt, M.Q.; Morgan, R.; Abbott, D.; Kamdar, M. Evaluating Novel PET-CT Functional Parameters TLG and TMTV in Differentiating Low-grade Versus Grade 3A Follicular Lymphoma. Clin. Lymphoma Myeloma Leuk. 2020, 20, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Prieto Prieto, J.C.; Vallejo Casas, J.A.; Hatzimichael, E.; Fotopoulos, A.; Kiortsis, D.N.; Sioka, C. The contribution of metabolic parameters of FDG PET/CT prior and during therapy of adult patients with lymphomas. Ann. Nucl. Med. 2020, 34, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Mettler, J.; Müller, H.; Voltin, C.A.; Baues, C.; Klaeser, B.; Moccia, A.; Borchmann, P.; Engert, A.; Kuhnert, G.; Drzezga, A.E.; et al. Metabolic Tumour Volume for Response Prediction in Advanced-Stage Hodgkin Lymphoma. J. Nucl. Med. 2018, 60, 207–211. [Google Scholar] [CrossRef]
- So, H.; Lee, H.; Hyun, S.H.; Cho, Y.S.; Moon, S.H.; Choi, J.Y.; Lee, K.H. Metabolic bulk volume from FDG PET as an independent predictor of progression-free survival in follicular lymphoma. Front. Oncol. 2023, 13, 1283582. [Google Scholar] [CrossRef] [PubMed]
- Rodier, C.; Kanagaratnam, L.; Morland, D.; Herbin, A.; Durand, A.; Chauchet, A.; Choquet, S.; Colin, P.; Casasnovas, R.O.; Deconinck, E.; et al. Risk Factors of Progression in Low-tumor Burden Follicular Lymphoma Initially Managed by Watch and Wait in the Era of PET and Rituximab. Hemasphere 2023, 7, e861. [Google Scholar] [CrossRef] [PubMed]
- Morland, D.; Triumbari, E.K.A.; Maiolo, E.; Cuccaro, A.; Treglia, G.; Hohaus, S.; Annunziata, S. Healthy Organs Uptake on Baseline 18F-FDG PET/CT as an Alternative to Total Metabolic Tumor Volume to Predict Event-Free Survival in Classical Hodgkin’s Lymphoma. Front. Med. 2022, 9, 913866. [Google Scholar] [CrossRef]
- Godard, F.; Durot, E.; Durot, C.; Hoeffel, C.; Delmer, A.; Morland, D. Cerebellum/liver index in pretherapeutic 18F-FDG PET/CT as a predictive marker of progression-free survival in follicular lymphoma treated by immunochemotherapy and rituximab maintenance. Medicine 2022, 101, e28791. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Werner-Wasik, M.; Nelson, A.D.; Choi, W.; Arai, Y.; Faulhaber, P.F.; Kang, P.; Almeida, F.D.; Xiao, Y.; Ohri, N.; Brockway, K.D.; et al. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Dinapoli, N.; Alitto, A.R.; Vallati, M.; Gatta, R.; Autorino, R.; Boldrini, L.; Damiani, A.; Valentini, V. Moddicom: A complete and easily accessible library for prognostic evaluations relying on image features. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 2015, 771–774. [Google Scholar]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Fortin, J.P.; Cullen, N.; Sheline, Y.I.; Taylor, W.D.; Aselcioglu, I.; Cook, P.A.; Adams, P.; Cooper, C.; Fava, M.; McGrath, P.J.; et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 2018, 167, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Orlhac, F.; Boughdad, S.; Philippe, C.; Stalla-Bourdillon, H.; Nioche, C.; Champion, L.; Soussan, M.; Frouin, F.; Frouin, V.; Buvat, I. A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET. J. Nucl. Med. 2018, 59, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Orlhac, F.; Frouin, F.; Nioche, C.; Ayache, N.; Buvat, I. Validation of A Method to Compensate Multicenter Effects Affecting CT Radiomics. Radiology 2019, 291, 53–59. [Google Scholar] [CrossRef]
- Orlhac, F.; Lecler, A.; Savatovski, J.; Goya-Outi, J.; Nioche, C.; Charbonneau, F.; Ayache, N.; Frouin, F.; Duron, L.; Buvat, I. How can we combat multicenter variability in MR radiomics? Validation of a correction procedure. Eur. Radiol. 2021, 31, 2272–2280. [Google Scholar] [CrossRef]
- Mahon, R.N.; Ghita, M.; Hugo, G.D.; Weiss, E. ComBat harmonization for radiomic features in independent phantom and lung cancer patient computed tomography datasets. Phys. Med. Biol. 2020, 65, 015010. [Google Scholar] [CrossRef]
- Durot, C.; Durot, E.; Mulé, S.; Morland, D.; Godard, F.; Quinquenel, A.; Delmer, A.; Soyer, P.; Hoeffel, C. Pretreatment CT Texture Parameters as Predictive Biomarkers of Progression-Free Survival in Follicular Lymphoma Treated with Immunochemotherapy and Rituximab Maintenance. Diagnostics 2023, 13, 2237. [Google Scholar] [CrossRef]
- Zwanenburg, A. Radiomics in nuclear medicine: Robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2638–2655. [Google Scholar] [CrossRef] [PubMed]
- Triumbari, E.K.A.; Gatta, R.; Maiolo, E.; De Summa, M.; Boldrini, L.; Mayerhoefer, M.E.; Hohaus, S.; Nardo, L.; Morland, D.; Annunziata, S. Baseline 18F-FDG PET/CT Radiomics in Classical Hodgkin’s Lymphoma: The Predictive Role of the Largest and the Hottest Lesions. Diagnostics 2023, 13, 1391. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Triumbari, E.K.A.; Gatta, R.; Boldrini, L.; Racca, M.; Mayerhoefer, M.; Annunziata, S. The role of 18F-FDG PET/CT radiomics in lymphoma. Clin. Transl. Imaging 2021, 9, 589–598. [Google Scholar] [CrossRef]
- Orlhac, F.; Eertink, J.J.; Cottereau, A.S.; Zijlstra, J.M.; Thieblemont, C.; Meignan, M.; Boellaard, R.; Buvat, I. A Guide to ComBat Harmonization of Imaging Biomarkers in Multicenter Studies. J. Nucl. Med. 2022, 63, 172–179. [Google Scholar] [CrossRef]
- Shiri, I.; Rahmim, A.; Ghaffarian, P.; Geramifar, P.; Abdollahi, H.; Bitarafan-Rajabi, A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: Multi-scanner phantom and patient studies. Eur. Radiol. 2017, 27, 4498–4509. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Park, Y.W.; Ahn, S.S.; Han, K.; Kim, H.; Lee, S.K. Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results. PLoS ONE 2021, 16, e0256152. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.A.; Brier, M.E. Retrospective analyses of large medical databases: What do they tell us? J. Am. Soc. Nephrol. 1999, 10, 429–432. [Google Scholar] [CrossRef] [PubMed]
Age (Years), Mean ± SD * (Range) | 61 ± 12 (34–85) |
---|---|
Sex, number (%)
| 19 (50)19 (50) |
Grading of the disease, number (%)
| 4 (11)26 (68)5 (13)3 (8) |
Bone involvement, number (%)
| 8 (21)29 (76)1 (3) |
Stage disease, number (%)
| 3 (8)10 (26)10 (26)15 (40) |
FLIPI ‡, number (%)
| 3 (8)12 (32)13 (34)10 (26) |
Contoured lesions, n. 427 | 7 (2–13) |
SUVmax * | 10.79 (6.91–13.98) |
SUVmean † | 3.53 (3.49–5.79) |
TMTV ‡, cm3 | 22.82 (6.16–52.03) |
LR Model | ||||||||
Training | Testing | |||||||
N. Feature | RMSE | R2 | RMSE | R2 | ||||
1 | 27.398 | 0.126 | 29.365 | 0.031 | ||||
2 | 25.426 | 0.247 | 28.627 | 0.079 | ||||
3 | 22.752 | 0.397 | 26.414 | 0.209 | ||||
4 | 21.580 | 0.458 | 26.817 | 0.202 | ||||
SVM Model | ||||||||
Training | Testing | |||||||
N. feature | Acc. | Prec. | Sens. | AUC | Acc. | Prec. | Sens. | AUC |
1 | 0.870 | 0.894 | 0.845 | 0.908 | 0.789 | 0.789 | 0.789 | 0.801 |
2 | 0.890 | 0.933 | 0.841 | 0.910 | 0.632 | 0.632 | 0.632 | 0.723 |
3 | 0.903 | 0.960 | 0.842 | 0.926 | 0.763 | 0.750 | 0.789 | 0.765 |
4 | 0.912 | 0.939 | 0.882 | 0.964 | 0.684 | 0.684 | 0.684 | 0.626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maccora, D.; Guerreri, M.; Malafronte, R.; D’Alò, F.; Hohaus, S.; De Summa, M.; Rufini, V.; Gatta, R.; Boldrini, L.; Leccisotti, L.; et al. The Predictive Role of Baseline 18F-FDG PET/CT Radiomics in Follicular Lymphoma on Watchful Waiting: A Preliminary Study. Diagnostics 2025, 15, 432. https://doi.org/10.3390/diagnostics15040432
Maccora D, Guerreri M, Malafronte R, D’Alò F, Hohaus S, De Summa M, Rufini V, Gatta R, Boldrini L, Leccisotti L, et al. The Predictive Role of Baseline 18F-FDG PET/CT Radiomics in Follicular Lymphoma on Watchful Waiting: A Preliminary Study. Diagnostics. 2025; 15(4):432. https://doi.org/10.3390/diagnostics15040432
Chicago/Turabian StyleMaccora, Daria, Michele Guerreri, Rosalia Malafronte, Francesco D’Alò, Stefan Hohaus, Marco De Summa, Vittoria Rufini, Roberto Gatta, Luca Boldrini, Lucia Leccisotti, and et al. 2025. "The Predictive Role of Baseline 18F-FDG PET/CT Radiomics in Follicular Lymphoma on Watchful Waiting: A Preliminary Study" Diagnostics 15, no. 4: 432. https://doi.org/10.3390/diagnostics15040432
APA StyleMaccora, D., Guerreri, M., Malafronte, R., D’Alò, F., Hohaus, S., De Summa, M., Rufini, V., Gatta, R., Boldrini, L., Leccisotti, L., & Annunziata, S. (2025). The Predictive Role of Baseline 18F-FDG PET/CT Radiomics in Follicular Lymphoma on Watchful Waiting: A Preliminary Study. Diagnostics, 15(4), 432. https://doi.org/10.3390/diagnostics15040432