Morphometric Analysis of the Openings in the Posterior Cranial Fossa and Their Relationship with Sex
Abstract
1. Introduction
2. Materials and Methods
2.1. Power Analysis
2.2. Study Population
2.3. Dissection Procedure
2.4. Measurement Parameters
2.5. Statistical Analyses
3. Results
3.1. Measurement Reliability of Morphometric Parameters
3.2. Morphometric Measurements
3.3. Circularity (Ellipticity) Analysis
3.4. ROC Analysis for Sex Discrimination
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saukko, P.; Knight, B. Knight’s Forensic Pathology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–955. [Google Scholar]
- Steyn, M. In Encyclopedia of Forensic Sciences, Siegel, J.A., Saukko, P.J., Houck, M.M., Eds.; Sexing, 2nd ed.; Academic Press: Waltham, MA, USA, 2013; pp. 33–40. [Google Scholar]
- Kartal, E.; Etli, Y.; Asirdizer, M.; Hekimoglu, Y.; Keskin, S.; Demir, U.; Yavuz, A.; Celbis, O. Sex estimation using foramen magnum measurements, discriminant analyses and artificial neural networks on an eastern Turkish population sample. Leg. Med. 2022, 59, 102143. [Google Scholar] [CrossRef]
- Toneva, D.; Nikolova, S.; Harizanov, S.; Georgiev, I.; Zlatareva, D.; Hadjidekov, V.; Dandov, A.; Lazarov, N. Sex estimation by size and shape of foramen magnum based on CT imaging. Leg. Med. 2018, 35, 50–60. [Google Scholar] [CrossRef]
- Graw, M.; Wahl, J.; Ahlbrecht, M. Course of the meatus acusticus internus as criterion for sex differentiation. Forensic Sci. Int. 2005, 147, 113–117. [Google Scholar] [CrossRef]
- Spradley, M.K.; Jantz, R.L. Sex estimation in forensic anthropology: Skull versus postcranial elements. J. Forensic Sci. 2011, 56, 289–296. [Google Scholar] [CrossRef]
- White, T.D.; Black, M.T.; Folkens, P.A. Human Osteology, 3rd ed.; Academic Press: San Diego, CA, USA, 2011; pp. 1–688. [Google Scholar]
- Akansel, G.; Inan, N.; Kurtas, O.; Sarisoy, H.T.; Arslan, A.; Demirci, A. Gender and the lateral angle of the internal acoustic canal meatus as measured on computerized tomography of the temporal bone. Forensic Sci. Int. 2008, 178, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Darwish, R.; Salama, N.; Elsirafy, M.; Kholeif, W. Identification of sex from foramen magnum of Egyptian skulls using three dimensional computed tomography. Ain Shams J. Forensic Med. Clin. Toxicol. 2014, 22, 74–86. [Google Scholar] [CrossRef]
- El-Barrany, U.M.; Ghaleb, S.S.; Ibrahim, S.F.; Nouri, M.; Mohammed, A.H. Sex prediction using foramen magnum and occipital condyles computed tomography measurements in Sudanese population. Arab. J. Forensic Sci. Forensic Med. 2016, 1, 414–423. [Google Scholar] [CrossRef]
- Holland, T.D. Sex determination of fragmentary crania by analysis of the cranial base. Am. J. Phys. Anthr. 1986, 70, 203–208. [Google Scholar] [CrossRef]
- Kalmey, J.K.; Rathbun, T.A. Sex determination by discriminant function analysis of the petrous portion of the temporal bone. J. Forensic Sci. 1996, 41, 865–867. [Google Scholar] [CrossRef] [PubMed]
- Das, S.S.; Saluja, S.; Vasudeva, N. Complete morphometric analysis of jugular foramen and its clinical implications. J. Craniovertebral Junction Spine 2016, 7, 257–264. [Google Scholar] [CrossRef] [PubMed]
- González-Colmenares, G.; Medina, C.S.; Rojas-Sánchez, M.P.; León, K.; Malpud, A. Sex estimation from skull base radiographs in a contemporary Colombian population. J. Forensic Leg. Med. 2019, 62, 77–81. [Google Scholar] [CrossRef]
- Bisetty, V.; Lazarus, L.; Harrichandparsad, R.; Madaree, A. Morphometric analysis of the cranial fossae in scaphocephalic patients: An anatomical basis. J. Craniofacial Surg. 2022, 33, 1375–1380. [Google Scholar] [CrossRef]
- Vlajković, S.; Vasović, L.; Daković-Bjelaković, M.; Stanković, S.; Popović, J.; Cukuranović, R. Human bony jugular foramen: Some additional morphological and morphometric features. Med. Sci. Monit. 2010, 16, BR140-6. [Google Scholar]
- Tellioglu, A.M.; Durum, Y.; Gok, M.; Karakas, S.; Polat, A.G.; Karaman, C.Z. Suitability of foramen magnum measurements in sex determination and their clinical significance. Folia Morphol. 2018, 77, 99–104. [Google Scholar] [CrossRef]
- Turamanlar, O.; Horata, E.; Kaya, F.; Boyaci, M.G.; Kiyak, O.; Oren, F.N. Does Foramen Magnum Morphometry Influence the Development of Chiari Malformation? Turk. Neurosurg. 2021, 31, 704–709. [Google Scholar] [CrossRef]
- Thunyacharoen, S.; Mahakkanukrauh, P. Craniometric study and anatomical variations of base of skull in a Thai population associated with clinical implications. Appl. Sci. 2023, 13, 2046. [Google Scholar] [CrossRef]
- Al-Redouan, A.; Racanska, M.; Oliveira, I.M.C.; Oni, O.M.; Vanatkova, V.; Musilová, B.; Bacar, Z.I.; Salavova, S.; Joukal, M.; Kachlik, D. The Jugular Foramen is Rather a Canal with Distinctive Morphological Configuration Concerning Its Clinical Anatomy and Surgical Implications: Morphological Analysis. Oper. Neurosurg. 2025. [Google Scholar] [CrossRef] [PubMed]
- Comert, A.; Dogan, I.; Yilmaz, N.P.C.; Gungor, Y.; Bekdemir, Y.; Kubat, G.; Gurpinar, S.; Basarmak, M.B.; Asan, B.; Gul, D. Investigating the Effects of Trigeminal Impression and Internal Acoustic Opening Morphology Differences for Possible Surgical Applications. World Neurosurg. 2024, 181, e84–e93. [Google Scholar] [CrossRef] [PubMed]
- Sekerci, R.; Ogut, E.; Keles-Celik, N. The influences of porus acusticus internus on ethnicity and importance in preoperative and intraoperative approaches. Surg. Radiol. Anat. 2021, 43, 1829–1838. [Google Scholar] [CrossRef]
- Mamatha, Y.; Trisha, K.; Kumar, V. Anthropometry of internal acoustic meatus in dry adult human skull using casting method. Int. J. Anat. Res. 2019, 7, 6113–6118. [Google Scholar] [CrossRef]
- Papangelou, L. Study of the human internal auditory canal. Laryngoscope 1972, 82, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Marques, S.R.; Ajzen, S.; Alonso, L.; Isotani, S.; Lederman, H. Morphometric analysis of the internal auditory canal by computed tomography imaging. Iran. J. Radiol. 2012, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Madadin, M.; Menezes, R.G.; Al Saif, H.S.; Alola, H.A.; Al Muhanna, A.; Gullenpet, A.H.; Nagesh, K.; Kharoshah, M.A.; Al Dhafery, B. Morphometric evaluation of the foramen magnum for sex determination: A study from Saudi Arabia. J. Forensic Leg. Med. 2017, 46, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Kamath, V.G.; Asif, M.; Shetty, R.; Avadhani, R. Binary logistic regression analysis of foramen magnum dimensions for sex determination. Anat. Res. Int. 2015, 2015, 459428. [Google Scholar] [CrossRef]
- Gruber, P.; Henneberg, M.; Böni, T.; Rühli, F.J. Variability of human foramen magnum size. Anat. Rec. 2009, 292, 1713–1719. [Google Scholar] [CrossRef]
- Bianchi, F.; Benato, A.; Frassanito, P.; Tamburrini, G.; Massimi, L. Functional and morphological changes in hypoplasic posterior fossa. Childs Nerv. Syst. 2021, 37, 3093–3104. [Google Scholar] [CrossRef]
- Meltzer, D.; Robson, C.; Blei, F.; Holliday, R. Enlargement of the internal auditory canal and associated posterior fossa anomalies in PHACES association. AJNR Am. J. Neuroradiol. 2015, 36, 2159–2162. [Google Scholar] [CrossRef]
- Matsushima, T. Microsurgical anatomy of the internal auditory canal and surrounding structures and vestibular schwannoma surgery. In Microsurgical Anatomy and Surgery of the Posterior Cranial Fossa: Surgical Approaches and Procedures Based on Anatomical Study; Springer: Berlin/Heidelberg, Germany, 2014; pp. 173–187. [Google Scholar]
- Kolagi, S.; Herur, A.; Ugale, M.; Manjula, R.; Mutalik, A. Suboccipital retrosigmoid surgical approach for internal auditory canal––A morphometric anatomical study on dry human temporal bones. Indian. J. Otolaryngol. Head. Neck Surg. 2010, 62, 372–375. [Google Scholar] [CrossRef]
- Ammirati, M.; Ma, J.; Cheatham, M.L.; Maxwell, D.; Bloch, J.; Becker, D.P. Drilling the posterior wall of the petrous pyramid: A microneurosurgical anatomical study. J. Neurosurg. 1993, 78, 452–455. [Google Scholar] [CrossRef]
- Blevins, N.H.; Jackler, R.K. Exposure of the lateral extremity of the internal auditory canal through the retrosigmoid approach: A radioanatomic study. Otolaryngol. Head. Neck Surg. 1994, 111, 81–90. [Google Scholar] [CrossRef]
- Alabi, A.; Ekundayo, A.; Oyewopo, A.; Kareem, S.; Amedu, N.; Lewu, F.; Akintunde, K.; Opayemi, R. Morphometric study of the jugular foramen and sexual dimorphism using dried skull obtained in two Nigerian States. Res. J. Health Sci. 2018, 6, 182–188. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; do Nascimento Neto, D.F.; Fernandes, J.V.A.; de Oliveira Barreto, L.; do Amaral, V.B.M.; de Araújo Deca, D.K.; de Albuquerque Figueiredo, V.L.F.; de Lucena, J.D.; da Silva, I.B.; de Araújo Sales, T.H. Morphological analysis of the jugular foramen in dry human skulls in northeastern Brazil. Anat. Cell Biol. 2024, 57, 213–220. [Google Scholar] [CrossRef]
- de Barros, D.P.M.; de Oliveira Ribeiro, E.C.; do Nascimento, J.J.C.; da Silva-Neto, E.J.; de Araújo-Neto, S.A. Are Chiari Malformation and Basilar Invagination Associated with Jugular Foramen Stenosis? World Neurosurg. 2024, 187, e832–e838. [Google Scholar] [CrossRef] [PubMed]
- Calandrelli, R.; Panfili, M.; D’apolito, G.; Zampino, G.; Pedicelli, A.; Pilato, F.; Colosimo, C. Quantitative approach to the posterior cranial fossa and craniocervical junction in asymptomatic children with achondroplasia. Neuroradiology 2017, 59, 1031–1041. [Google Scholar] [CrossRef] [PubMed]


| Female (n = 151) | Male (n = 153) | p | |||
|---|---|---|---|---|---|
| Mean ± SD | Median (Min-Max) | Mean ± SD | Median (Min-Max) | ||
| Age (year) | 54.56 ± 20.69 | 55 (18–92) | 51.74 ± 21.49 | 52 (18–93) | 0.244 |
| Height (cm) | 162.24 ± 11.26 | 163 (143–186) | 172.65 ± 11.03 | 173 (151–196) | <0.001 |
| Head Circumference (cm) | 54.82 ± 1.21 | 54 (51–58) | 56.85 ± 1.66 | 56 (53–61) | <0.001 |
| Parameters | Landmarks | References |
|---|---|---|
| FM-AP | The maximum front and back length of the foramen magnum (basion–opisthion distance) | Vlajković et al. (2010) [16], Tellioglu et al. (2018) [17], Turamanlar et al. (2021) [18], Thunyacharoen et al. (2023) [19] |
| FM-T | The maximum width of the foramen magnum in transverse section | Vlajković et al. (2010) [16], Tellioglu et al. (2018) [17], Turamanlar et al. (2021) [18], Thunyacharoen et al. (2023) [19] |
| RJF-AP | The anteroposterior linear length measured between the most distant points along the endocranial opening of the foramen on the right side | Thunyacharoen et al. (2023) [19], Das et al. (2016) [13], Al-Redouan et al. (2022) [20] |
| RJF-T | The mediolateral linear length measured between the most distant points along the endocranial opening of the foramen on the right side | Thunyacharoen et al. (2023) [19], Das et al. (2016) [13], Al-Redouan et al. (2022) [20] |
| LJF-AP | The anteroposterior linear length measured between the most distant points along the endocranial opening of the foramen on the left side | Thunyacharoen et al. (2023) [19], Das et al. (2016) [13], Al-Redouan et al. (2022) [20] |
| LJF-T | The mediolateral linear length measured between the most distant points along the endocranial opening of the foramen on the left side | Thunyacharoen et al. (2023) [19], Das et al. (2016) [13], Al-Redouan et al. (2022) [20] |
| RIAO-AP | The linear distance extending from the most concave portion of the posterior lip of the right-sided opening to the most medial point of its anterior wall | Comert et al. (2024) [21], Sekerci et al. (2021) [22], Mamatha et al. (2019) [23], Papangelou (1972) [24], Marques et al. (2012) [25] |
| RIAO-T | The linear measurement connecting the upper and lower walls at the midpoint of the long axis of the right internal acoustic opening | Comert et al. (2024) [21], Sekerci et al. (2021) [22], Mamatha et al. (2019) [23], Papangelou (1972) [24], Marques et al. (2012) [25] |
| LIAO-AP | The linear distance extending from the most concave portion of the posterior lip of the left-sided opening to the most medial point of its anterior wall | Comert et al. (2024) [21], Sekerci et al. (2021) [22], Mamatha et al. (2019) [23], Papangelou (1972) [24], Marques et al. (2012) [25] |
| LIAO-T | The linear measurement connecting the upper and lower walls at the midpoint of the long axis of the left internal acoustic opening | Comert et al. (2024) [21], Sekerci et al. (2021) [22], Mamatha et al. (2019) [23], Papangelou (1972) [24], Marques et al. (2012) [25] |
| Parameters | TEM | rTEM (%) | R |
|---|---|---|---|
| FM-AP | 0.004 | 0.01 | 0.987 |
| FM-T | 0.007 | 0.02 | 0.983 |
| RJF-AP | 0.007 | 0.05 | 0.973 |
| LJF-AP | 0.005 | 0.05 | 0.975 |
| RJF-T | 0.001 | 0.01 | 0.969 |
| LJF-T | 0.005 | 0.07 | 0.967 |
| JJ | 0.003 | 0.01 | 0.990 |
| RJIAO | 0.001 | 0.01 | 0.971 |
| LJIAO | 0.001 | 0.01 | 0.970 |
| RIAOF | 0.002 | 0.01 | 0.982 |
| LIAOF | 0.003 | 0.02 | 0.983 |
| II | 0.003 | 0.01 | 0.991 |
| RJFM | 0.004 | 0.03 | 0.981 |
| LJFM | 0.003 | 0.02 | 0.980 |
| RIAO-AP | 0.002 | 0.02 | 0.977 |
| RIAO-T | 0.001 | 0.01 | 0.968 |
| LIAO-AP | 0.004 | 0.04 | 0.977 |
| LIAO-T | 0.003 | 0.05 | 0.965 |
| Female | Male | p | |||
|---|---|---|---|---|---|
| Mean ± SD | Median (Min-Max) | Mean ± SD | Median (Min-Max) | ||
| FM-AP | 34.45 ± 3.71 | 35.38 (28.25–43.54) | 42.68 ± 2.40 | 42.26 (38.11–48.89) | <0.001 |
| FM-T | 32.64 ± 3.18 | 32.24 (27.02–40.19) | 41.34 ± 2.27 | 40.94 (37.15–47.66) | <0.001 |
| RJF-AP | 10.20 ± 2.06 | 9.71 (7.18–15.75) | 16.21 ± 1.18 | 16.60 (11.09–17.68) | <0.001 |
| RJF-T | 5.04 ± 1.35 | 4.97 (3.12–7.59) | 9.36 ± 0.67 | 9.41 (6.28–12.55) | <0.001 |
| LJF-AP | 8.85 ± 1.93 | 8.38 (5.74–14.31) | 14.27 ± 1.57 | 14.68 (9.14–16.09) | <0.001 |
| LJF-T | 4.65 ± 1.28 | 4.82 (2.75–7.18) | 8.44 ± 0.65 | 8.49 (2.80–9.52) | <0.001 |
| RIAO-AP | 8.93 ± 2.02 | 8.39 (6.03–14.29) | 14.84 ± 1.20 | 15.07 (9.61–16.62) | <0.001 |
| RIAO-T | 4.85 ± 1.34 | 4.81 (3.00–7.31) | 9.23 ± 0.66 | 9.31 (6.05–12.57) | <0.001 |
| LIAO-AP | 7.56 ± 1.89 | 7.17 (4.41–13.12) | 12.97 ± 1.53 | 13.43 (7.77–14.73) | <0.001 |
| LIAO-T | 4.55 ± 1.40 | 4.73 (2.57–8.42) | 8.31 ± 0.84 | 8.32 (3.05–12.54) | <0.001 |
| JJ | 39.21 ± 3.55 | 38.25 (34.22–50.08) | 46.88 ± 2.90 | 46.81 (42.07–60.72) | <0.001 |
| RJIAO | 5.84 ± 1.67 | 5.38 (3.42–10.01) | 7.43 ± 1.79 | 7.46 (4.44–10.48) | <0.001 |
| LJIAO | 5.75 ± 1.67 | 5.24 (3.22–9.85) | 7.32 ± 1.84 | 7.34 (4.19–10.44) | <0.001 |
| RIAOF | 16.35 ± 2.03 | 16.25 (11.93–21.02) | 18.40 ± 1.73 | 18.31 (14.37–21.75) | <0.001 |
| LIAOF | 15.79 ± 2.12 | 15.84 (11.14–20.27) | 17.66 ± 1.82 | 17.66 (12.92–21.22) | <0.001 |
| II | 44.50 ± 4.20 | 43.74 (37.14–59.44) | 57.33 ± 5.38 | 55.10 (47.15–68.35) | <0.001 |
| RJFM | 15.59 ± 2.24 | 15.08 (11.84–20.23) | 17.48 ± 2.03 | 18.23 (12.21–20.29) | <0.001 |
| LJFM | 15.21 ± 2.16 | 14.68 (11.80–20.21) | 17.04 ± 2.01 | 17.64 (11.71–19.72) | <0.001 |
| Female | Male | p | |||
|---|---|---|---|---|---|
| Mean ± SD | Median (Min-Man) | Mean ± SD | Median (Min-Man) | ||
| FM-E | 0.92 ± 0.02 | 0.92 (0.89–0.99) | 0.97 ± 0.03 | 0.97 (0.89–1.03) | <0.001 |
| RJF-E | 0.49 ± 0.07 | 0.49 (0.36–0.66) | 0.58 ± 0.05 | 0.58 (0.50–0.76) | <0.001 |
| LJF-E | 0.52 ± 0.07 | 0.52 (0.40–0.69) | 0.60 ± 0.08 | 0.60 (0.18–0.90) | <0.001 |
| RIAO-E | 0.54 ± 0.08 | 0.54 (0.40–0.74) | 0.62 ± 0.06 | 0.62 (0.53–0.83) | <0.001 |
| LIAO-E | 0.61 ± 0.19 | 0.61 (0.38–1.71) | 0.65 ± 0.10 | 0.65 (0.32–1.00) | <0.001 |
| Parameters | AUC | Accuracy | p | Cut Off | Sensitivity | Specificity | Bias |
|---|---|---|---|---|---|---|---|
| FM-AP | 0.957 ± 0.027 | 0.875 ± 0.062 | <0.001 | 40.565 | 0.870 ± 0.096 | 0.874 ± 0.082 | −0.004 ± 0.126 |
| FM-T | 0.992 ± 0.007 | 0.971 ± 0.024 | <0.001 | 37.585 | 0.946 ± 0.044 | 0.994 ± 0.020 | −0.048 ± 0.049 |
| RJF-AP | 0.983 ± 0.016 | 0.921 ± 0.042 | <0.001 | 12.450 | 0.874 ± 0.085 | 0.965 ± 0.055 | −0.091 ± 0.101 |
| RJF-T | 0.998 ± 0.004 | 0.993 ± 0.014 | <0.001 | 7.920 | 1.000 ± 0.000 | 0.987 ± 0.027 | 0.013 ± 0.027 |
| LJF-AP | 0.969 ± 0.021 | 0.905 ± 0.062 | <0.001 | 12.265 | 0.932 ± 0.061 | 0.871 ± 0.112 | 0.061 ± 0.127 |
| LJF-T | 0.992 ± 0.026 | 0.990 ± 0.016 | <0.001 | 7.200 | 0.994 ± 0.019 | 0.985 ± 0.032 | 0.009 ± 0.037 |
| JJ | 0.944 ± 0.046 | 0.902 ± 0.046 | <0.001 | 42.650 | 0.832 ± 0.090 | 0.970 ± 0.042 | −0.138 ± 0.100 |
| RJIAO | 0.752 ± 0.047 | 0.691 ± 0.061 | <0.001 | 5.460 | 0.541 ± 0.137 | 0.834 ± 0.088 | −0.293 ± 0.163 |
| LJIAO | 0.743 ± 0.049 | 0.674 ± 0.047 | <0.001 | 6.785 | 0.739 ± 0.088 | 0.600 ± 0.106 | 0.139 ± 0.138 |
| RIAOF | 0.791 ± 0.060 | 0.717 ± 0.053 | <0.001 | 17.330 | 0.754 ± 0.095 | 0.676 ± 0.102 | 0.078 ± 0.139 |
| LIAOF | 0.754 ± 0.065 | 0.658 ± 0.051 | <0.001 | 17.260 | 0.686 ± 0.187 | 0.624 ± 0.173 | 0.062 ± 0.255 |
| II | 0.984 ± 0.024 | 0.947 ± 0.038 | <0.001 | 50.975 | 0.934 ± 0.074 | 0.959 ± 0.035 | −0.025 ± 0.081 |
| RJFM | 0.740 ± 0.064 | 0.697 ± 0.064 | <0.001 | 15.820 | 0.648 ± 0.083 | 0.747 ± 0.121 | −0.099 ± 0.147 |
| LJFM | 0.746 ± 0.060 | 0.701 ± 0.061 | <0.001 | 15.415 | 0.662 ± 0.089 | 0.741 ± 0.116 | −0.079 ± 0.146 |
| RIAO-AP | 0.983 ± 0.015 | 0.916 ± 0.044 | <0.001 | 11.895 | 0.868 ± 0.095 | 0.961 ± 0.057 | −0.093 ± 0.111 |
| RIAO-T | 0.998 ± 0.004 | 0.993 ± 0.014 | <0.001 | 7.725 | 1.000 ± 0.000 | 0.987 ± 0.027 | 0.013 ± 0.027 |
| LIAO-AP | 0.974 ± 0.018 | 0.915 ± 0.054 | <0.001 | 11.115 | 0.939 ± 0.051 | 0.886 ± 0.095 | 0.053 ± 0.108 |
| LIAO-T | 0.975 ± 0.032 | 0.973 ± 0.031 | <0.001 | 7.055 | 0.973 ± 0.035 | 0.970 ± 0.054 | 0.004 ± 0.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Depreli, A.; Sahin, N.E.; Sonmez, S.; Ozgen Sonmez, M.N.; Sahin, M.; Dogan, B.; Simsek, S.B.; Bakan, H.U. Morphometric Analysis of the Openings in the Posterior Cranial Fossa and Their Relationship with Sex. Diagnostics 2025, 15, 3189. https://doi.org/10.3390/diagnostics15243189
Depreli A, Sahin NE, Sonmez S, Ozgen Sonmez MN, Sahin M, Dogan B, Simsek SB, Bakan HU. Morphometric Analysis of the Openings in the Posterior Cranial Fossa and Their Relationship with Sex. Diagnostics. 2025; 15(24):3189. https://doi.org/10.3390/diagnostics15243189
Chicago/Turabian StyleDepreli, Ahmet, Necati Emre Sahin, Sefa Sonmez, Merve Nur Ozgen Sonmez, Mensure Sahin, Berna Dogan, Sadik Bugrahan Simsek, and Huseyin Ugur Bakan. 2025. "Morphometric Analysis of the Openings in the Posterior Cranial Fossa and Their Relationship with Sex" Diagnostics 15, no. 24: 3189. https://doi.org/10.3390/diagnostics15243189
APA StyleDepreli, A., Sahin, N. E., Sonmez, S., Ozgen Sonmez, M. N., Sahin, M., Dogan, B., Simsek, S. B., & Bakan, H. U. (2025). Morphometric Analysis of the Openings in the Posterior Cranial Fossa and Their Relationship with Sex. Diagnostics, 15(24), 3189. https://doi.org/10.3390/diagnostics15243189

