Artificial Intelligence in the Diagnosis and Management of Atrial Fibrillation
Abstract
1. Introduction
2. Methods and Approaches in AI for AF
2.1. Overview of Machine Learning and Deep Learning Techniques
2.2. Explanation of CNNs, RNNs, Transformers, and Other AI Techniques
2.3. Data Sources and Common Datasets Used in AF Studies
3. AI in AF Diagnosis
3.1. AI-Driven ECG Analysis Techniques
3.2. Wearable and Implantable Technologies
3.3. Comparative Studies Versus Traditional Diagnostic Methods
Study (Year) | AI Method | Traditional Comparator | Performance | Key Findings | Reference |
---|---|---|---|---|---|
Diagnostic accuracy studies of AI in AF detection | |||||
Hannun et al. (2019) | CNN analyzing 12-lead & single-lead ECGs | Board-certified cardiologists | Sensitivity 98.0%, Specificity 99.0% vs. Cardiologists 90.0%/93.0% | CNN achieved cardiologist-level arrhythmia classification, outperforming human experts. | [33] |
Ribeiro et al. (2020) | DNN trained on >2 M ECGs | Cardiology residents | F1 > 80%, Specificity >99% | DNN outperformed residents across multiple arrhythmia classes. | [46] |
Poh et al. (2018) | DCNN on PPG waveforms | Cardiologist-reviewed ECG | Sensitivity 95–100%, Specificity 99% | PPG-based deep learning achieved rapid and accurate AF detection. | [47] |
Tison et al. (2018) | DNN on smartwatch PPG | Reference 12-lead ECG | Sensitivity 98%, Specificity 90% | Demonstrated feasibility of passive AF detection, though performance declined in ambulatory settings. | [48] |
Apple Heart Study (2019) | PPG-based irregular pulse algorithm (wearable) | ECG patch monitoring | PPV 84% | Validated large-scale, site-less AF screening using wearables. | [41] |
Fitbit Heart Study (2022) | PPG irregular rhythm detection | ECG patch monitoring | PPV 98.2% (concurrent detection) | Consumer wearables matched traditional ECG detection accuracy. | [40] |
AliveCor KardiaMobile (2023) | AI algorithm on single-lead handheld ECG | Cardiologist interpretation | Sensitivity 98.5%, Specificity 91.4% | Enabled accurate, portable AF detection in telemedicine contexts. | [49] |
Vasconcelos et al. (2023) | FD-CNN with transfer learning | Standard ECG classification | High accuracy across centers | Robust multicenter ECG classification with strong generalizability. | [24] |
Gill et al. (2024) | Wearable monitoring in RATE-AF trial | Standard HR evaluation (digoxin vs. β-blockers) | Comparable to standard methods | Demonstrated feasibility of consumer wearables for AF management. | [29] |
Johnson et al. (2025) | AI-enabled physician-ready ECG reports | Cardiologists | Comparable/superior accuracy | Validated automated AI reporting for real-world ECGs. | [13] |
Predictive studies of AF development during sinus rhythm | |||||
Attia et al. (2019) | DNN on standard 12-lead ECG | Standard ECG interpretation | AUC 0.87 vs. 0.79 | Predicted AF during sinus rhythm with higher accuracy. | [42] |
Raghunath et al. (2021) | DNN on 12-lead ECG | CHARGE-AF clinical risk score | AUC 0.87 vs. 0.78 | More accurate prediction of new-onset AF than CHARGE-AF. | [50] |
AI-ECG Early AF Detection (2024) | DNN on 12-lead ECG | Standard ECG | Sensitivity 90%, Specificity 80% | Improved detection of paroxysmal AF during routine screening. | [51] |
Cho et al. (2025) | AI-derived ECG “biological age” models | Clinical risk factors | Strong correlation with AF risk | Multinational study validating ECG age as a predictor of AF. | [39] |
4. Risk Stratification and Prediction of AF
4.1. AI-Based Prediction Models for AF Incidence and Progression
Prospective Validation of AI Predictive Models
4.2. Integration of Big Data Analytics
5. AI in Therapeutic Decision-Making
5.1. Personalizing Anticoagulation and Stroke Prevention
5.2. Predicting Responses to Rhythm-Control Strategies
5.3. Heart Rate Variability and AI-Based Monitoring
5.4. AI for Procedural Planning and Outcome Prediction in Catheter Ablation
6. Challenges and Limitations
6.1. Data Quality, Heterogeneity, and Biases
6.2. Ethical and Privacy Concerns
6.3. Regulatory Barrier and Clinical Acceptance
7. Future Directions
7.1. Emerging AI Technologies and Methodologies
7.2. Collaborative Approaches for Enhancing AI Adoption
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Atrial Fibrillation |
AI | Artificial Intelligence |
AUC | Area Under the Receiver Operating Characteristic Curve |
CHA2DS2-VA | Congestive Heart Failure, Hypertension, Age ≥75 (doubled), Diabetes Mellitus, prior Stroke or TIA (doubled), Vascular Disease, Age 65–74 |
CinC | Computing in Cardiology |
CI | Confidence Interval |
CNN | Convolutional Neural Network |
DCNN | Deep Convolutional Neural Network |
DL | Deep Learning |
DNN | Deep Neural Network |
ECG | Electrocardiogram |
EHR | Electronic Health Record |
FDA | Food and Drug Administration |
GDPR | General Data Protection Regulation |
HIPAA | Health Insurance Portability and Accountability Act |
HRV | Heart Rate Variability |
IHRD | Irregular Heart Rhythm Detection |
LSTM | Long Short-Term Memory |
ML | Machine Learning |
NLP | Natural Language Processing |
PPG | Photoplethysmography |
PPV | Positive Predictive Value |
RNN | Recurrent Neural Network |
SHAP | SHapley Additive exPlanations |
TIA | Transient Ischemic Attack |
XAI | Explainable Artificial Intelligence |
References
- Linz, D.; Gawalko, M.; Betz, K.; Hendriks, J.M.; Lip, G.Y.H.; Vinter, N.; Guo, Y.; Johnsen, S. Atrial fibrillation: Epidemiology, screening and digital health. Lancet Reg. Health Eur. 2024, 37, 100786. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef]
- Țica, O.; Romanul, I.; Ciavoi, G.; Pantea, V.A.; Scrobota, I.; Șipoș, L.; Daina, C.M.; Țica, O. A Clinical Review of the Connections Between Diabetes Mellitus, Periodontal Disease, and Cardiovascular Pathologies. Biomedicines 2025, 13, 2309. [Google Scholar] [CrossRef] [PubMed]
- Țica, O.; Șandor, M.I.; Huniadi, A.; Daina, C.; Filip, S.M.; Brihan, I.; Sabău, M.; Zaha, I.; Țica, O. Intersecting Endocrine Pathways in Cardiomyopathy: The Role of Metabolic Burden in Structural Heart Disease. Biomedicines 2025, 13, 2364. [Google Scholar] [CrossRef]
- Țica, O.; Sabău, M.; Venter, A.; Beiușanu, C.; Berechet, M.; Huniadi, A.; Șandor, M.I.; Țica, O. Stroke in Dilated Cardiomyopathy: An Autopsy-Based Study of Mechanisms, Topography, and Clinical Implications. Diagnostics 2025, 15, 2287. [Google Scholar] [CrossRef] [PubMed]
- Țica, O.; Țica, O. Anemia in Heart Failure: Diagnostic Insights and Management Patterns Across Ejection Fraction Phenotypes. Diagnostics 2025, 15, 2079. [Google Scholar] [CrossRef]
- Țica, O.; Țica, O.; Bunting, K.V.; deBono, J.; Gkoutos, G.V.; Popescu, M.I.; Kotecha, D. Post-mortem examination of high mortality in patients with heart failure and atrial fibrillation. BMC Med. 2022, 20, 331. [Google Scholar] [CrossRef]
- Kirchhof, P.; Camm, A.J.; Goette, A.; Brandes, A.; Eckardt, L.; Elvan, A.; Fetsch, T.; van Gelder, I.C.; Haase, D.; Haegeli, L.M.; et al. Early Rhythm-Control Therapy in Patients with Atrial Fibrillation. N. Engl. J. Med. 2020, 383, 1305–1316. [Google Scholar] [CrossRef]
- Deisenhofer, I.; Albenque, J.P.; Busch, S.; Gitenay, E.; Mountantonakis, S.E.; Roux, A.; Horvilleur, J.; Bakouboula, B.; Oza, S.; Abbey, S.; et al. Artificial intelligence for individualized treatment of persistent atrial fibrillation: A randomized controlled trial. Nat. Med. 2025, 31, 1286–1293. [Google Scholar] [CrossRef]
- Al-Zaiti, S.S.; Martin-Gill, C.; Zègre-Hemsey, J.K.; Bouzid, Z.; Faramand, Z.; Alrawashdeh, M.O.; Gregg, R.E.; Helman, S.; Riek, N.T.; Kraevsky-Phillips, K.; et al. Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction. Nat. Med. 2023, 29, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- Biton, S.; Aldhafeeri, M.; Marcusohn, E.; Tsutsui, K.; Szwagier, T.; Elias, A.; Oster, J.; Sellal, J.M.; Suleiman, M.; Behar, J.A. Generalizable and robust deep learning algorithm for atrial fibrillation diagnosis across geography, ages and sexes. NPJ Digit. Med. 2023, 6, 44. [Google Scholar] [CrossRef]
- Johnson, L.S.; Zadrozniak, P.; Jasina, G.; Grotek-Cuprjak, A.; Andrade, J.G.; Svennberg, E.; Diederichsen, S.Z.; McIntyre, W.F.; Stavrakis, S.; Benezet-Mazuecos, J.; et al. Artificial intelligence for direct-to-physician reporting of ambulatory electrocardiography. Nat. Med. 2025, 31, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Jajcay, N.; Bezak, B.; Segev, A.; Matetzky, S.; Jankova, J.; Spartalis, M.; El Tahlawi, M.; Guerra, F.; Friebel, J.; Thevathasan, T.; et al. Data processing pipeline for cardiogenic shock prediction using machine learning. Front. Cardiovasc. Med. 2023, 10, 1132680. [Google Scholar] [CrossRef]
- Gill, S.K.; Karwath, A.; Uh, H.W.; Cardoso, V.R.; Gu, Z.; Barsky, A.; Slater, L.; Acharjee, A.; Duan, J.; Dall’Olio, L.; et al. Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare. Eur. Heart J. 2023, 44, 713–725. [Google Scholar] [CrossRef]
- Feeny, A.K.; Chung, M.K.; Madabhushi, A.; Attia, Z.I.; Cikes, M.; Firouznia, M.; Friedman, P.A.; Kalscheur, M.M.; Kapa, S.; Narayan, S.M.; et al. Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology. Circ. Arrhythm. Electrophysiol. 2020, 13, e007952. [Google Scholar] [CrossRef]
- Tseng, A.S.; Noseworthy, P.A. Prediction of Atrial Fibrillation Using Machine Learning: A Review. Front. Physiol. 2021, 12, 752317. [Google Scholar] [CrossRef]
- Wu, C.; Hwang, M.; Huang, T.H.; Chen, Y.J.; Chang, Y.J.; Ho, T.H.; Huang, J.; Hwang, K.S.; Ho, W.H. Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation. BMC Bioinform. 2021, 22, 93. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Bunting, K.V.; Brind, D.; Thorley, A.; Karwath, A.; Lu, W.; Zhou, D.; Wang, X.; Mobley, A.R.; et al. Development of automated neural network prediction for echocardiographic left ventricular ejection fraction. Front. Med. 2024, 11, 1354070. [Google Scholar] [CrossRef]
- Noseworthy, P.A.; Attia, Z.I.; Behnken, E.M.; Giblon, R.E.; Bews, K.A.; Liu, S.; Gosse, T.A.; Linn, Z.D.; Deng, Y.; Yin, J.; et al. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: A prospective non-randomised interventional trial. Lancet 2022, 400, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Harmon, D.M.; Behr, E.R.; Friedman, P.A. Application of artificial intelligence to the electrocardiogram. Eur. Heart J. 2021, 42, 4717–4730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, S.; Xing, W.; Chen, Q.; Liu, X.; Pu, Y.; Xin, F.; Jiang, H.; Yin, Z.; Tao, D.; et al. Robust Artificial Intelligence Tool for Atrial Fibrillation Diagnosis: Novel Development Approach Incorporating Both Atrial Electrograms and Surface ECG and Evaluation by Head-to-Head Comparison With Hospital-Based Physician ECG Readers. J. Am. Heart Assoc. 2024, 13, e032100. [Google Scholar] [CrossRef]
- Olier, I.; Ortega-Martorell, S.; Pieroni, M.; Lip, G.Y.H. How machine learning is impacting research in atrial fibrillation: Implications for risk prediction and future management. Cardiovasc. Res. 2021, 117, 1700–1717. [Google Scholar] [CrossRef]
- Vasconcelos, L.; Martinez, B.P.; Kent, M.; Ansari, S.; Ghanbari, H.; Nenadic, I. Multi-center atrial fibrillation electrocardiogram (ECG) classification using Fourier space convolutional neural networks (FD-CNN) and transfer learning. J. Electrocardiol. 2023, 81, 201–206. [Google Scholar] [CrossRef]
- Günay, S.; Öztürk, A.; Özerol, H.; Yiğit, Y.; Erenler, A.K. Comparison of emergency medicine specialist, cardiologist, and chat-GPT in electrocardiography assessment. Am. J. Emerg. Med. 2024, 80, 51–60. [Google Scholar] [CrossRef]
- Ananthaswamy, A. In AI, is bigger always better? Nature 2023, 615, 202–205. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [PubMed]
- Ţica, O.; Khamboo, W.; Kotecha, D. Breaking the Cycle of Heart Failure With Preserved Ejection Fraction and Atrial Fibrillation. Card. Fail. Rev. 2022, 8, e32. [Google Scholar] [CrossRef]
- Gill, S.K.; Barsky, A.; Guan, X.; Bunting, K.V.; Karwath, A.; Tica, O.; Stanbury, M.; Haynes, S.; Folarin, A.; Dobson, R.; et al. Consumer wearable devices for evaluation of heart rate control using digoxin versus beta-blockers: The RATE-AF randomized trial. Nat. Med. 2024, 30, 2030–2036. [Google Scholar] [CrossRef] [PubMed]
- Karwath, A.; Bunting, K.V.; Gill, S.K.; Tica, O.; Pendleton, S.; Aziz, F.; Barsky, A.D.; Chernbumroong, S.; Duan, J.; Mobley, A.R.; et al. Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: A machine learning cluster analysis. Lancet 2021, 398, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Ben-Moshe, N.; Tsutsui, K.; Brimer, S.B.; Zvuloni, E.; Sornmo, L.; Behar, J.A. RawECGNet: Deep Learning Generalization for Atrial Fibrillation Detection From the Raw ECG. IEEE J. Biomed. Health Inform. 2024, 28, 5180–5188. [Google Scholar] [CrossRef]
- Elias, P.; Jain, S.S.; Poterucha, T.; Randazzo, M.; Lopez Jimenez, F.; Khera, R.; Perez, M.; Ouyang, D.; Pirruccello, J.; Salerno, M.; et al. Artificial Intelligence for Cardiovascular Care-Part 1: Advances: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2024, 83, 2472–2486. [Google Scholar] [CrossRef]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Siontis, K.C.; Noseworthy, P.A.; Attia, Z.I.; Friedman, P.A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 2021, 18, 465–478. [Google Scholar] [CrossRef] [PubMed]
- De Guio, F.; Rienstra, M.; Lillo-Castellano, J.M.; Toribio-Fernández, R.; Lizcano, C.; Corrochano-Diego, D.; Jimenez-Virumbrales, D.; Marina-Breysse, M. Enhanced detection of atrial fibrillation in single-lead electrocardiograms using a Cloud-based artificial intelligence platform. Heart Rhythm 2025, 22, 1667–1674. [Google Scholar] [CrossRef]
- Sandberg, E.L.; Halvorsen, S.; Berge, T.; Grimsmo, J.; Atar, D.; Fensli, R.; Grenne, B.L.; Jortveit, J. Fully digital self-screening for atrial fibrillation with patch electrocardiogram. Europace 2023, 25, euad075. [Google Scholar] [CrossRef]
- Li, C.; Bian, Y.; Zhao, Z.; Liu, Y.; Guo, Y. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. Cyborg Bionic Syst. 2024, 5, 0172. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, L.; Zhang, Y.; Yang, J.; Luo, Y.; Ge, M.; Yao, W.; Hei, Z.; Chen, C. A Supervised Explainable Machine Learning Model for Perioperative Neurocognitive Disorder in Liver-Transplantation Patients and External Validation on the Medical Information Mart for Intensive Care IV Database: Retrospective Study. J. Med. Internet Res. 2025, 27, e55046. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Eom, S.; Kim, D.; Kim, T.H.; Uhm, J.S.; Pak, H.N.; Lee, M.H.; Yang, P.S.; Lee, E.; Attia, Z.I.; et al. Artificial intelligence-derived electrocardiographic aging and risk of atrial fibrillation: A multi-national study. Eur. Heart J. 2025, 46, 839–852. [Google Scholar] [CrossRef]
- Lubitz, S.A.; Faranesh, A.Z.; Selvaggi, C.; Atlas, S.J.; McManus, D.D.; Singer, D.E.; Pagoto, S.; McConnell, M.V.; Pantelopoulos, A.; Foulkes, A.S. Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart Study. Circulation 2022, 146, 1415–1424. [Google Scholar] [CrossRef]
- Turakhia, M.P.; Desai, M.; Hedlin, H.; Rajmane, A.; Talati, N.; Ferris, T.; Desai, S.; Nag, D.; Patel, M.; Kowey, P.; et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. Am. Heart J. 2019, 207, 66–75. [Google Scholar] [CrossRef]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef]
- Saljic, A.; Grandi, E.; Dobrev, D. TGF-β1-induced endothelial-mesenchymal transition: A potential contributor to fibrotic remodeling in atrial fibrillation? J. Clin. Investig. 2022, 132, e161070. [Google Scholar] [CrossRef] [PubMed]
- Antoun, I.; Abdelrazik, A.; Eldesouky, M.; Li, X.; Layton, G.R.; Zakkar, M.; Somani, R.; Ng, G.A. Artificial intelligence in atrial fibrillation: Emerging applications, research directions and ethical considerations. Front. Cardiovasc. Med. 2025, 12, 1596574. [Google Scholar] [CrossRef] [PubMed]
- Țica, O.; Țica, O. Molecular Diagnostics in Heart Failure: From Biomarkers to Personalized Medicine. Diagnostics 2025, 15, 1807. [Google Scholar] [CrossRef]
- Ribeiro, A.H.; Ribeiro, M.H.; Paixão, G.M.M.; Oliveira, D.M.; Gomes, P.R.; Canazart, J.A.; Ferreira, M.P.S.; Andersson, C.R.; Macfarlane, P.W.; Meira, W., Jr.; et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 2020, 11, 1760. [Google Scholar] [CrossRef]
- Poh, M.Z.; Poh, Y.C.; Chan, P.H.; Wong, C.K.; Pun, L.; Leung, W.W.; Wong, Y.F.; Wong, M.M.; Chu, D.W.; Siu, C.W. Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms. Heart 2018, 104, 1921–1928. [Google Scholar] [CrossRef] [PubMed]
- Tison, G.H.; Sanchez, J.M.; Ballinger, B.; Singh, A.; Olgin, J.E.; Pletcher, M.J.; Vittinghoff, E.; Lee, E.S.; Fan, S.M.; Gladstone, R.A.; et al. Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch. JAMA Cardiol. 2018, 3, 409–416. [Google Scholar] [CrossRef]
- Raghunath, A.; Nguyen, D.D.; Schram, M.; Albert, D.; Gollakota, S.; Shapiro, L.; Sridhar, A.R. Artificial intelligence-enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation. Cardiovasc. Digit. Health J. 2023, 4, 21–28. [Google Scholar] [CrossRef]
- Raghunath, S.; Pfeifer, J.M.; Ulloa-Cerna, A.E.; Nemani, A.; Carbonati, T.; Jing, L.; vanMaanen, D.P.; Hartzel, D.N.; Ruhl, J.A.; Lagerman, B.F.; et al. Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify Those at Risk of Atrial Fibrillation-Related Stroke. Circulation 2021, 143, 1287–1298. [Google Scholar] [CrossRef]
- Yao, X.; Attia, Z.I.; Behnken, E.M.; Hart, M.S.; Inselman, S.A.; Weber, K.C.; Li, F.; Stricker, N.H.; Stricker, J.L.; Friedman, P.A.; et al. Realtime Diagnosis from Electrocardiogram Artificial Intelligence-Guided Screening for Atrial Fibrillation with Long Follow-Up (REGAL): Rationale and design of a pragmatic, decentralized, randomized controlled trial. Am. Heart J. 2024, 267, 62–69. [Google Scholar] [CrossRef]
- Jelavic, M.M.; Țica, O.; Pintaric, H.; Țica, O. Circulating Neuropeptide Y May Be a Biomarker for Diagnosing Atrial Fibrillation. Cardiology 2023, 148, 593–595. [Google Scholar] [CrossRef]
- Khurshid, S.; Friedman, S.; Reeder, C.; Di Achille, P.; Diamant, N.; Singh, P.; Harrington, L.X.; Wang, X.; Al-Alusi, M.A.; Sarma, G.; et al. ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation. Circulation 2022, 145, 122–133. [Google Scholar] [CrossRef]
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef]
- Ose, B.; Sattar, Z.; Gupta, A.; Toquica, C.; Harvey, C.; Noheria, A. Artificial Intelligence Interpretation of the Electrocardiogram: A State-of-the-Art Review. Curr. Cardiol. Rep. 2024, 26, 561–580. [Google Scholar] [CrossRef]
- Kim, M.S.; Khurshid, S.; Kany, S.; Weng, L.C.; Urbut, S.; Roselli, C.; Wijdeveld, L.; Jurgens, S.J.; Rämö, J.T.; Ellinor, P.T.; et al. Machine Learning-Based Plasma Protein Risk Score Improves Atrial Fibrillation Prediction Over Clinical and Genomic Models. Circ. Genom. Precis. Med. 2025, 18, e004943. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, K.; Anaraki, N.; Dastjerdi, P.; Kazemian, S.; Hasanzad, M.; Alkhouli, M.; Alam, M.; Nasir, K.; Rana, J.S.; Bhatt, A.B. Bridging Genomics to Cardiology Clinical Practice: Artificial Intelligence in Optimizing Polygenic Risk Scores: A Systematic Review. JACC Adv. 2025, 4, 101803. [Google Scholar] [CrossRef] [PubMed]
- Alkhanbouli, R.; Matar Abdulla Almadhaani, H.; Alhosani, F.; Simsekler, M.C.E. The role of explainable artificial intelligence in disease prediction: A systematic literature review and future research directions. BMC Med. Inform. Decis. Mak. 2025, 25, 110. [Google Scholar] [CrossRef]
- Lin, M.; Guo, J.; Gu, Z.; Tang, W.; Tao, H.; You, S.; Jia, D.; Sun, Y.; Jia, P. Machine learning and multi-omics integration: Advancing cardiovascular translational research and clinical practice. J. Transl. Med. 2025, 23, 388. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mobley, A.R.; Tica, O.; Okoth, K.; Ghosh, R.E.; Myles, P.; Williams, T.; Haynes, S.; Nirantharakumar, K.; Shukla, D.; et al. Systematic approach to outcome assessment from coded electronic healthcare records in the DaRe2THINK NHS-embedded randomized trial. Eur. Heart J. Digit. Health 2022, 3, 426–436. [Google Scholar] [CrossRef]
- Bunting, K.V.; Stanbury, M.; Tica, O.; Kotecha, D. Transforming clinical research by involving and empowering patients- the RATE-AF randomized trial. Eur. Heart J. 2021, 42, 2411–2414. [Google Scholar] [CrossRef]
- Champsi, A.; Mobley, A.R.; Subramanian, A.; Nirantharakumar, K.; Wang, X.; Shukla, D.; Bunting, K.V.; Molgaard, I.; Dwight, J.; Arroyo, R.C.; et al. Gender and contemporary risk of adverse events in atrial fibrillation. Eur. Heart J. 2024, 45, 3707–3717. [Google Scholar] [CrossRef] [PubMed]
- Lallah, P.N.; Laite, C.; Bangash, A.B.; Chooah, O.; Jiang, C. The Use of Artificial Intelligence for Detecting and Predicting Atrial Arrhythmias Post Catheter Ablation. Rev. Cardiovasc. Med. 2023, 24, 215. [Google Scholar] [CrossRef]
- Liu, C.M.; Chang, S.L.; Chen, H.H.; Chen, W.S.; Lin, Y.J.; Lo, L.W.; Hu, Y.F.; Chung, F.P.; Chao, T.F.; Tuan, T.C.; et al. The Clinical Application of the Deep Learning Technique for Predicting Trigger Origins in Patients With Paroxysmal Atrial Fibrillation With Catheter Ablation. Circ. Arrhythm. Electrophysiol. 2020, 13, e008518. [Google Scholar] [CrossRef] [PubMed]
- Tabaja, C.; Younis, A.; Hussein, A.A.; Taigen, T.L.; Nakagawa, H.; Saliba, W.I.; Sroubek, J.; Santangeli, P.; Wazni, O.M. Catheter-Based Electroporation: A Novel Technique for Catheter Ablation of Cardiac Arrhythmias. JACC Clin. Electrophysiol. 2023, 9, 2008–2023. [Google Scholar] [CrossRef]
- Kirchhof, P.; Toennis, T.; Goette, A.; Camm, A.J.; Diener, H.C.; Becher, N.; Bertaglia, E.; Blomstrom Lundqvist, C.; Borlich, M.; Brandes, A.; et al. Anticoagulation with Edoxaban in Patients with Atrial High-Rate Episodes. N. Engl. J. Med. 2023, 389, 1167–1179. [Google Scholar] [CrossRef]
- Camm, A.J.; Naccarelli, G.V.; Mittal, S.; Crijns, H.; Hohnloser, S.H.; Ma, C.S.; Natale, A.; Turakhia, M.P.; Kirchhof, P. The Increasing Role of Rhythm Control in Patients With Atrial Fibrillation: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 1932–1948. [Google Scholar] [CrossRef]
- Christopoulos, G.; Attia, Z.I.; Van Houten, H.K.; Yao, X.; Carter, R.E.; Lopez-Jimenez, F.; Kapa, S.; Noseworthy, P.A.; Friedman, P.A. Artificial intelligence-electrocardiography to detect atrial fibrillation: Trend of probability before and after the first episode. Eur. Heart J. Digit. Health 2022, 3, 228–235. [Google Scholar] [CrossRef]
- Al-Khatib, S.M.; Singh, J.P.; Ghanbari, H.; McManus, D.D.; Deering, T.F.; Avari Silva, J.N.; Mittal, S.; Krahn, A.; Hurwitz, J.L. The potential of artificial intelligence to revolutionize health care delivery, research, and education in cardiac electrophysiology. Heart Rhythm 2024, 21, 978–989. [Google Scholar] [CrossRef]
- Joddrell, M.; El-Bouri, W.; Harrison, S.L.; Huisman, M.V.; Lip, G.Y.H.; Zheng, Y. Machine learning for outcome prediction in patients with non-valvular atrial fibrillation from the GLORIA-AF registry. Sci. Rep. 2024, 14, 27088. [Google Scholar] [CrossRef] [PubMed]
- Schwab, K.; Nguyen, D.; Ungab, G.; Feld, G.; Maisel, A.S.; Than, M.; Joyce, L.; Peacock, W.F. Artificial intelligence MacHIne learning for the detection and treatment of atrial fibrillation guidelines in the emergency department setting (AIM HIGHER): Assessing a machine learning clinical decision support tool to detect and treat non-valvular atrial fibrillation in the emergency department. J. Am. Coll. Emerg. Physicians Open 2021, 2, e12534. [Google Scholar] [CrossRef]
- Lu, J.; Hutchens, R.; Hung, J.; Bennamoun, M.; McQuillan, B.; Briffa, T.; Sohel, F.; Murray, K.; Stewart, J.; Chow, B.; et al. Performance of multilabel machine learning models and risk stratification schemas for predicting stroke and bleeding risk in patients with non-valvular atrial fibrillation. Comput. Biol. Med. 2022, 150, 106126. [Google Scholar] [CrossRef]
- Weerts, J.; Țica, O.; Aranyo, J.; Basile, C.; Borizanova-Petkova, A.; Borovac, J.A.; Camilli, M.; Eichenlaub, M.; Fiori, E.; Van Loon, T.; et al. Atrial cardiomyopathy: From healthy atria to atrial failure. A clinical consensus statement of the Heart Failure Association of the ESC. Eur. J. Heart Fail. 2025. [Google Scholar] [CrossRef]
- Elmore, J.G.; Lee, C.I. Data Quality, Data Sharing, and Moving Artificial Intelligence Forward. JAMA Netw. Open 2021, 4, e2119345. [Google Scholar] [CrossRef]
- Vandenberk, B.; Chew, D.S.; Prasana, D.; Gupta, S.; Exner, D.V. Successes and challenges of artificial intelligence in cardiology. Front. Digit. Health 2023, 5, 1201392. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, M.; Sehgal, S.; Lee, G.; Agu, E.; Kpodonu, J. Disparities in Artificial Intelligence-Based Tools Among Diverse Minority Populations: Biases, Barriers, and Solutions. JACC Adv. 2025, 4, 101742. [Google Scholar] [CrossRef]
- Chen, R.J.; Wang, J.J.; Williamson, D.F.K.; Chen, T.Y.; Lipkova, J.; Lu, M.Y.; Sahai, S.; Mahmood, F. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat. Biomed. Eng. 2023, 7, 719–742. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Sánchez, P.A.; García-Isla, G.; Corino, V.D.A.; Vehkaoja, A.; Brukamp, K.; van Gils, M.; Mainardi, L. ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Comput. Biol. Med. 2024, 172, 108235. [Google Scholar] [CrossRef]
- Murdoch, B. Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Med. Ethics 2021, 22, 122. [Google Scholar] [CrossRef]
- Khalid, N.; Qayyum, A.; Bilal, M.; Al-Fuqaha, A.; Qadir, J. Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Comput. Biol. Med. 2023, 158, 106848. [Google Scholar] [CrossRef] [PubMed]
- Teo, Z.L.; Jin, L.; Li, S.; Miao, D.; Zhang, X.; Ng, W.Y.; Tan, T.F.; Lee, D.M.; Chua, K.J.; Heng, J.; et al. Federated machine learning in healthcare: A systematic review on clinical applications and technical architecture. Cell Rep. Med. 2024, 5, 101419. [Google Scholar] [CrossRef]
- van Genderen, M.E.; Cecconi, M.; Jung, C. Federated data access and federated learning: Improved data sharing, AI model development, and learning in intensive care. Intensive Care Med. 2024, 50, 974–977. [Google Scholar] [CrossRef]
- Pati, S.; Kumar, S.; Varma, A.; Edwards, B.; Lu, C.; Qu, L.; Wang, J.J.; Lakshminarayanan, A.; Wang, S.H.; Sheller, M.J.; et al. Privacy preservation for federated learning in health care. Patterns 2024, 5, 100974. [Google Scholar] [CrossRef] [PubMed]
- Messinis, S.C.; Protonotarios, N.E.; Doulamis, N. Differentially Private Client Selection and Resource Allocation in Federated Learning for Medical Applications Using Graph Neural Networks. Sensors 2024, 24, 5142. [Google Scholar] [CrossRef] [PubMed]
- Howell, M.D. Generative artificial intelligence, patient safety and healthcare quality: A review. BMJ Qual. Saf. 2024, 33, 748–754. [Google Scholar] [CrossRef]
- Ye, J.; Woods, D.; Jordan, N.; Starren, J. The role of artificial intelligence for the application of integrating electronic health records and patient-generated data in clinical decision support. AMIA Jt. Summits Transl. Sci. Proc. 2024, 2024, 459–467. [Google Scholar] [PubMed]
- Dehnavieh, R.; Inayatullah, S.; Yousefi, F.; Nadali, M. Artificial Intelligence (AI) and the future of Iran’s Primary Health Care (PHC) system. BMC Prim. Care 2025, 26, 75. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Țica, O.; Champsi, A.; Duan, J.; Țica, O. Artificial Intelligence in the Diagnosis and Management of Atrial Fibrillation. Diagnostics 2025, 15, 2561. https://doi.org/10.3390/diagnostics15202561
Țica O, Champsi A, Duan J, Țica O. Artificial Intelligence in the Diagnosis and Management of Atrial Fibrillation. Diagnostics. 2025; 15(20):2561. https://doi.org/10.3390/diagnostics15202561
Chicago/Turabian StyleȚica, Otilia, Asgher Champsi, Jinming Duan, and Ovidiu Țica. 2025. "Artificial Intelligence in the Diagnosis and Management of Atrial Fibrillation" Diagnostics 15, no. 20: 2561. https://doi.org/10.3390/diagnostics15202561
APA StyleȚica, O., Champsi, A., Duan, J., & Țica, O. (2025). Artificial Intelligence in the Diagnosis and Management of Atrial Fibrillation. Diagnostics, 15(20), 2561. https://doi.org/10.3390/diagnostics15202561