Deep Learning Image Processing Models in Dermatopathology
Abstract
1. Introduction
Methods: Narrative Review Approach
2. Historical Overview of Deep Learning in Dermatopathology
2.1. Convolutional Neural Networks (CNNs) in Dermatopathology
2.2. Vision Transformers and Self-Attention Mechanisms
2.3. Hybrid CNN-Transformer Models for Whole-Slide Analysis
3. Clinically Deployed Models in Dermatopathology
3.1. DermAI (Proscia Inc.)
3.2. PathAssist Derm (PathAI)
3.3. Aisencia AI
3.4. Virchow/Paige PanDerm AI
3.5. Other Notable Models
4. Challenges and Limitations of Deep Learning Models in Dermatopathology
4.1. Dataset Novelty and Bias
4.2. Explainability and Interpretability
4.3. Government Regulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsang, M.W.; Kovarik, C.L. Global access to dermatopathology services: Physician survey of availability and needs in sub-Saharan Africa. J. Am. Acad. Dermatol. 2010, 63, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Seth, D.; Cheldize, K.; Brown, D.; Freeman, E.F. Global Burden of Skin Disease: Inequities and Innovations. Curr. Dermatol. Rep. 2017, 6, 204–210. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Mosquera-Zamudio, A.; Launet, L.; Tabatabaei, Z.; Parra-Medina, R.; Colomer, A.; Oliver Moll, J.; Monteagudo, C.; Janssen, E.; Naranjo, V. Deep Learning for Skin Melanocytic Tumors in Whole-Slide Images: A Systematic Review. Cancers 2022, 15, 42. [Google Scholar] [CrossRef]
- Hekler, A.; Utikal, J.S.; Enk, A.H.; Solass, W.; Schmitt, M.; Klode, J.; Schadendorf, D.; Sondermann, W.; Franklin, C.; Bestvater, F.; et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur. J. Cancer 2019, 118, 91–96. [Google Scholar] [CrossRef]
- Brinker, T.J.; Schmitt, M.; Krieghoff-Henning, E.I.; Barnhill, R.; Beltraminelli, H.; Braun, S.A.; Carr, R.; Fernandez-Figueras, M.-T.; Ferrara, G.; Fraitag, S.; et al. Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists. J. Am. Acad. Dermatol. 2022, 86, 640–642. [Google Scholar] [CrossRef]
- Xie, P.; Zuo, K.; Zhang, Y.; Li, F.; Yin, M.; Lu, K. Interpretable Classification from Skin Cancer Histology Slides Using Deep Learning: A Retrospective Multicenter Study. arXiv 2019, arXiv:1904.06156. [Google Scholar] [CrossRef]
- Chen, R.J.; Chen, C.; Li, Y.; Chen, T.Y.; Trister, A.D.; Krishnan, R.G.; Mahmood, F. Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning 2022. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar] [CrossRef]
- Vorontsov, E.; Bozkurt, A.; Casson, A.; Shaikovski, G.; Zelechowski, M.; Liu, S.; Severson, K.; Zimmermann, E.; Hall, J.; Tenenholtz, N.; et al. Virchow: A Million-Slide Digital Pathology Foundation Model. arXiv 2024, arXiv:2309.07778. [Google Scholar] [CrossRef]
- Zheng, Y.; Gindra, R.H.; Green, E.J.; Burks, E.J.; Betke, M.; Beane, J.E.; Kolachalama, V.B. A Graph-Transformer for Whole Slide Image Classification. IEEE Trans. Med. Imaging 2022, 41, 3003–3015. [Google Scholar] [CrossRef]
- Saltz, J.; Gupta, R.; Hou, L.; Kurc, T.; Singh, P.; Nguyen, V.; Samaras, D.; Shroyer, K.R.; Zhao, T.; Batiste, R.; et al. Tumor-Infiltrating Lymphocytes Maps from TCGA H&E Whole Slide Pathology Images; National Cancer Institute (NCI): Rockville, MD, USA, 2018. [Google Scholar] [CrossRef]
- Xie, C.; Muhammad, H.; Vanderbilt, C.M.; Caso, R.; Yarlagadda, D.V.K.; Campanella, G.; Fuchs, T.J. Beyond Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning. Proc. Mach. Learn. Res. 2020, 121, 843–855. [Google Scholar]
- Wang, L.; Ding, L.; Liu, Z.; Sun, L.; Chen, L.; Jia, R.; Dai, X.; Cao, J.; Ye, J. Automated identification of malignancy in whole-slide pathological images: Identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning. Br. J. Ophthalmol. 2020, 104, 318–323. [Google Scholar] [CrossRef]
- Ba, W.; Wang, R.; Yin, G.; Song, Z.; Zou, J.; Zhong, C.; Yang, J.; Yu, G.; Yang, H.; Zhang, L.; et al. Diagnostic assessment of deep learning for melanocytic lesions using whole-slide pathological images. Transl. Oncol. 2021, 14, 101161. [Google Scholar] [CrossRef]
- Piepkorn, M.W.; Barnhill, R.L.; Elder, D.E.; Knezevich, S.R.; Carney, P.A.; Reisch, L.M.; Elmore, J.G. The MPATH-Dx reporting schema for melanocytic proliferations and melanoma. J. Am. Acad. Dermatol. 2014, 70, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Jain, E.; Patel, A.; Parwani, A.V.; Shafi, S.; Brar, Z.; Sharma, S.; Mohanty, S.K. Whole Slide Imaging Technology and Its Applications: Current and Emerging Perspectives. Int. J. Surg. Pathol. 2024, 32, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.K.; Park, C.; Henao, R.; Kheterpal, M. Deep Learning in Dermatology: A Systematic Review of Current Approaches, Outcomes, and Limitations. JID Innov. 2023, 3, 100150. [Google Scholar] [CrossRef] [PubMed]
- Atabansi, C.C.; Nie, J.; Liu, H.; Song, Q.; Yan, L.; Zhou, X. A survey of Transformer applications for histopathological image analysis: New developments and future directions. Biomed. Eng. OnLine 2023, 22, 96. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 2021. arXiv 2020, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Park, S.; Ayana, G.; Wako, B.D.; Jeong, K.C.; Yoon, S.-D.; Choe, S. Vision Transformers for Low-Quality Histopathological Images: A Case Study on Squamous Cell Carcinoma Margin Classification. Diagnostics 2025, 15, 260. [Google Scholar] [CrossRef]
- Deininger, L.; Stimpel, B.; Yuce, A.; Abbasi-Sureshjani, S.; Schönenberger, S.; Ocampo, P.; Korski, K.; Gaire, F. A comparative study between vision transformers and CNNs in digital pathology. arXiv 2022, arXiv:2206.00389. [Google Scholar] [CrossRef]
- Nie, Y.; Sommella, P.; Carratù, M.; O’Nils, M.; Lundgren, J. A Deep CNN Transformer Hybrid Model for Skin Lesion Classification of Dermoscopic Images Using Focal Loss. Diagnostics 2023, 13, 72. [Google Scholar] [CrossRef]
- Ozdemir, B.; Pacal, I. An innovative deep learning framework for skin cancer detection employing ConvNeXtV2 and focal self-attention mechanisms. Results Eng. 2025, 25, 103692. [Google Scholar] [CrossRef]
- Ozdemir, B.; Pacal, I. A robust deep learning framework for multiclass skin cancer classification. Sci. Rep. 2025, 15, 4938. [Google Scholar] [CrossRef]
- Tran, M.; Schmidle, P.; Guo, R.R.; Wagner, S.J.; Koch, V.; Lupperger, V.; Novotny, B.; Murphree, D.H.; Hardway, H.D.; D’Amato, M.; et al. Generating dermatopathology reports from gigapixel whole slide images with HistoGPT. Nat. Commun. 2025, 16, 4886. [Google Scholar] [CrossRef] [PubMed]
- Behara, K.; Bhero, E.; Agee, J.T. An Improved Skin Lesion Classification Using a Hybrid Approach with Active Contour Snake Model and Lightweight Attention-Guided Capsule Networks. Diagnostics 2024, 14, 636. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.B.; Novoa, R.A. Artificial intelligence for dermatopathology: Current trends and the road ahead. Semin. Diagn. Pathol. 2022, 39, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, M.A.; Lott, J.P.; Wang, Q.; Titus, L.J.; Onega, T.; Nelson, H.D.; Pearson, L.; Piepkorn, M.; Barnhill, R.L.; Elmore, J.G.; et al. Skin biopsy utilization and melanoma incidence among Medicare beneficiaries. Br. J. Dermatol. 2017, 176, 949–954. [Google Scholar] [CrossRef]
- Proscia Launches AI-Powered Digital Pathology Solution for Dermatopathology. Proscia. Available online: https://proscia.com/press-releases/proscia-launches-ai-powered-digital-pathology-solution-for-dermatopathology/ (accessed on 10 June 2025).
- Halasey, S.; Proscia Launches AI-Powered Digital Pathology Solution for Dermatopathology. Clinical Lab Products. 2019. Available online: https://clpmag.com/diagnostic-technologies/digital-pathology/proscia-launches-ai-powered-digital-pathology-solution-for-dermatopathology/ (accessed on 10 June 2025).
- Flach, R.N.; Fransen, N.L.; Sonnen, A.F.P.; Nguyen, T.Q.; Breimer, G.E.; Veta, M.; Stathonikos, N.; van Dooijeweert, C.; van Diest, P.J. Implementation of Artificial Intelligence in Diagnostic Practice as a Next Step after Going Digital: The UMC Utrecht Perspective. Diagnostics 2022, 12, 1042. [Google Scholar] [CrossRef]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef]
- Fliorent, R.; Fardman, B.; Podwojniak, A.; Javaid, K.; Tan, I.J.; Ghani, H.; Truong, T.M.; Rao, B.; Heath, C. Artificial intelligence in dermatology: Advancements and challenges in skin of color. Int. J. Dermatol. 2024, 63, 455–461. [Google Scholar] [CrossRef]
- Proscia DermAI Helps Dermpath Labs Increase Efficiency, Improve Quality, and Achieve Better Business Outcomes. Proscia. Available online: https://proscia.com/press-releases/proscia-dermai-helps-dermpath-labs-increase-efficiency-improve-quality-and-achieve-better-business-outcomes/ (accessed on 10 June 2025).
- Proscia Receives FDA 510(k) Clearance for Concentriq AP-Dx. Proscia. Available online: https://proscia.com/press-releases/proscia-receives-fda-510k-clearance-for-concentriq-ap-dx-2/ (accessed on 10 June 2025).
- PathAI PathAssist Derm Launches on AISight®: Advancing Dermatopathology Research Workflows using AI. Available online: https://www.globenewswire.com/news-release/2025/02/04/3020399/0/en/PathAssist-Derm-Launches-on-AISight-Advancing-Dermatopathology-Research-Workflows-using-AI.html (accessed on 10 June 2025).
- Cazzato, G.; Rongioletti, F. Artificial intelligence in dermatopathology: Updates, strengths, and challenges. Clin. Dermatol. 2024, 42, 437–442. [Google Scholar] [CrossRef]
- Introducing PathAssist Derm. Available online: https://info.pathai.com/pathassist-derm (accessed on 10 June 2025).
- Bosslett, M.; Beck, A. How PathAI’s PathAssist Derm Tool Aims to Enhance Skin Cancer Diagnosis and Workflow Efficiency. Available online: https://www.dermatologytimes.com/view/how-path-ai-s-pathassist-derm-tool-aims-to-enhance-skin-cancer-diagnosis-and-workflow-efficiency (accessed on 11 June 2025).
- Vidal, D.E.; Loufek, B.; Kim, Y.-H.; Vidal, N.Y. Navigating US Regulation of Artificial Intelligence in Medicine—A Primer for Physicians. Mayo Clin. Proc. Digit. Health 2023, 1, 31–39. [Google Scholar] [CrossRef]
- Voss, R.K.; Woods, T.N.; Cromwell, K.D.; Nelson, K.C.; Cormier, J.N. Improving outcomes in patients with melanoma: Strategies to ensure an early diagnosis. Patient Relat. Outcome Meas. 2015, 6, 229–242. [Google Scholar] [CrossRef]
- Products—Aisencia 2023. Available online: https://aisencia.de/en/products/ (accessed on 22 July 2025).
- Le’Clerc Arrastia, J.; Heilenkötter, N.; Otero Baguer, D.; Hauberg-Lotte, L.; Boskamp, T.; Hetzer, S.; Duschner, N.; Schaller, J.; Maass, P. Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma. J. Imaging 2021, 7, 71. [Google Scholar] [CrossRef]
- Duschner, N.; Baguer, D.O.; Schmidt, M.; Griewank, K.G.; Hadaschik, E.; Hetzer, S.; Wiepjes, B.; Le’Clerc Arrastia, J.; Jansen, P.; Maass, P.; et al. Applying an artificial intelligence deep learning approach to routine dermatopathological diagnosis of basal cell carcinoma. JDDG J. Dtsch. Dermatol. Ges. 2023, 21, 1329–1337. [Google Scholar] [CrossRef]
- Aisencia® Partners with PathPresenter!—Aisencia 2025. Available online: https://aisencia.de/en/aisencia-partners-with-pathpresenter (accessed on 22 July 2025).
- Siarov, J.; Siarov, A.; Kumar, D.; Paoli, J.; Mölne, J.; Neittaanmäki, N. Deep learning model shows pathologist-level detection of sentinel node metastasis of melanoma and intra-nodal nevi on whole slide images. Front. Med. 2024, 11, 1418013. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, N.; PathPresenter and Aisencia Partner for AI-Powered Workflows. PathPresenter. 2025. Available online: https://www.pathpresenter.com/pathpresenter-and-aisencia-partner-for-ai-powered-workflows/ (accessed on 22 July 2025).
- Zimmermann, E.; Vorontsov, E.; Viret, J.; Casson, A.; Zelechowski, M.; Shaikovski, G.; Tenenholtz, N.; Hall, J.; Klimstra, D.; Yousfi, R.; et al. Virchow2: Scaling Self-Supervised Mixed Magnification Models in Pathology. arXiv 2024, arXiv:2408.00738. [Google Scholar] [CrossRef]
- Paige Expands Single AI Application to Detect Common, Rare Variants, and Precursor Lesions to Cancer Across More than 40 Organs and Tissues. Available online: https://www.paige.ai/press-releases/paige-expands-single-ai-application-to-detect-common-rare-variants-and-precursor-lesions (accessed on 16 June 2025).
- Wang, J.; Mao, Y.; Guan, N.; Xue, C.J. Advances in Multiple Instance Learning for Whole Slide Image Analysis: Techniques, Challenges, and Future Directions. arXiv 2024, arXiv:2408.09476. [Google Scholar] [CrossRef]
- Yan, S.; Yu, Z.; Primiero, C.; Vico-Alonso, C.; Wang, Z.; Yang, L.; Tschandl, P.; Hu, M.; Ju, L.; Tan, G.; et al. A Multimodal Vision Foundation Model for Clinical Dermatology. Nat. Med. 2025, 31, 2691–2702. [Google Scholar] [CrossRef]
- Wang, B.; Yang, J.; Ai, J.; Luo, N.; An, L.; Feng, H.; Yang, B.; You, Z. Accurate Tumor Segmentation via Octave Convolution Neural Network. Front. Med. 2021, 8, 653913. [Google Scholar] [CrossRef]
- Wang, B.; Yang, J.; Peng, H.; Ai, J.; An, L.; Yang, B.; You, Z.; Ma, L. Brain Tumor Segmentation via Multi-Modalities Interactive Feature Learning. Front. Med. 2021, 8, 653925. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Zhang, J.; Zhang, Q.; Chang, J.; Lu, D.; Fu, Y. Artificial Intelligence-Aided Recognition of Pathological Characteristics and Subtype Classification of Superficial Perivascular Dermatitis. Front. Med. 2021, 8, 696305. [Google Scholar] [CrossRef]
- Coudray, N.; Occidental, M.A.; Mantilla, J.G.; Claudio Quiros, A.; Yuan, K.; Balko, J.; Tsirigos, A.; Jour, G. Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic Settings. Clin. Cancer Res. 2025, 31, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, J.C.; Foroughi Pour, A.; Zhou, J.; Sheridan, T.B.; White, B.S.; Chuang, J.H. Deep learning image analysis quantifies tumor heterogeneity and identifies microsatellite instability in colon cancer. J. Surg. Oncol. 2023, 127, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Gerwert, K.; Schörner, S.; Großerueschkamp, F.; Kraeft, A.-L.; Schuhmacher, D.; Sternemann, C.; Feder, I.S.; Wisser, S.; Lugnier, C.; Arnold, D.; et al. Fast and label-free automated detection of microsatellite status in early colon cancer using artificial intelligence integrated infrared imaging. Eur. J. Cancer 2023, 182, 122–131. [Google Scholar] [CrossRef]
- Xing, X.; Murdoch, S.; Tang, C.; Papanastasiou, G.; Cross-Zamirski, J.; Guo, Y.; Xiao, X.; Schönlieb, C.-B.; Wang, Y.; Yang, G. Can generative AI replace immunofluorescent staining processes? A comparison study of synthetically generated cellpainting images from brightfield. Comput. Biol. Med. 2024, 182, 109102. [Google Scholar] [CrossRef]
- Bissoto, A.; Fornaciali, M.; Valle, E.; Avila, S. (De)Constructing Bias on Skin Lesion Datasets. Available online: https://arxiv.org/abs/1904.08818v1 (accessed on 11 June 2025).
- Daneshjou, R.; Vodrahalli, K.; Liang, W.; Novoa, R.A.; Jenkins, M.; Rotemberg, V.; Ko, J.; Swetter, S.M.; Bailey, E.E.; Gevaert, O.; et al. Disparities in Dermatology AI: Assessments Using Diverse Clinical Images. Available online: https://arxiv.org/abs/2111.08006v1 (accessed on 11 June 2025).
- Hauser, K.; Kurz, A.; Haggenmüller, S.; Maron, R.C.; von Kalle, C.; Utikal, J.S.; Meier, F.; Hobelsberger, S.; Gellrich, F.F.; Sergon, M.; et al. Explainable artificial intelligence in skin cancer recognition: A systematic review. Eur. J. Cancer 2022, 167, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Jain, A.; Araveeti, S.R.; Adhikari, S.; Garg, H.; Bhandari, M. FDA-Approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An Updated Landscape. Electronics 2024, 13, 498. [Google Scholar] [CrossRef]
- Elhaddad, M.; Hamam, S. AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential. Cureus 2024, 16, e57728. [Google Scholar] [CrossRef]
- Health, C. for D. and R. Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA. 2025. Available online: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device (accessed on 11 June 2025).
Model Name | Architecture Type | Dataset(s) Type Used | AUROC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Esteva et al. CNN [3] | CNN | Dermoscopy (Various Datasets) | 0.94 | 72.1% | — | — |
ResNet-152 (Behara et al.) [26] | Hybrid CNN-Attention | Dermoscopy (HAM10000 and ISIC) | — | 93.1% | 94.9% | 92.8% |
CNN + Random Forest (Ba et al.) [14] | Hybrid CNN-Random Forest | Dermoscopy | 0.998 | 98.2% | 100% | 96.5% |
ConvNeXtV2-Transformer (Ozdemir & Pacal) [23] | Hybrid ConvNeXtV2-Transformer | Dermoscopy (ISIC 2019) | — | 93.6% | 90.7% | 93% |
Model Name | Architecture Type | Dataset(s) Type Used | AUROC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Hekler et al. CNN [5] | CNN | Histopathology (Melanoma vs. Nevus Slides) | — | 68% | 76% | 60% |
ViT for SCC Margin Assessment (Park et al.) [20] | ViT | Histopathology (Squamous cell carcinoma margins) | 0.927 | 92.8% | 89% | 91% |
Model Name | Architecture Type | Dataset(s) Type Used | AUROC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Xie et al. CNN [12] | CNN | Whole Slide Images | 0.986 | 93% | 93.8% | 95.7% |
Graph-Transformer (GTP, Zheng et al.) [10] | Hybrid CNN-Transformer | Whole Slide Images (TCGA (Lung), 4818 WSIs) | 0.965 | 93.5% | 91.9% | 96% |
Component | Description |
---|---|
Model Name | PanDerm AI [48] |
Type | Multimodal Foundation Model for Dermatology |
Training Data | >3 million images from 11 institutions across 4 imaging modalities |
Modalities | Clinical images; Dermoscopy; Histopathology; Smartphone photos |
Tasks Evaluated | 28 total [51]: Skin cancer detection; Inflammatory conditions; Lesion segmentation; Change monitoring; Prognosis prediction |
Evaluation Benchmarks | Outperformed prior models across all 28 tasks |
Real-World Validation | Improved early-stage melanoma detection by 10.2% over clinicians |
Human-AI Collaboration | Improved multiclass skin cancer diagnostic accuracy by 11% with clinician input |
Key Limitations | Requires diverse training data; Needs human-in-the-loop; Prospective validation needed |
Future Directions | Expand to inflammatory, infectious, autoimmune dermatoses; Integrate multimodal data (e.g., genomics, clinical notes) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, A.; Motavaf, M.; Raza, D.; Jairath, N.; Pulavarty, A.; Xu, Z.; Occidental, M.A.; Gru, A.A.; Flamm, A. Deep Learning Image Processing Models in Dermatopathology. Diagnostics 2025, 15, 2517. https://doi.org/10.3390/diagnostics15192517
Mehta A, Motavaf M, Raza D, Jairath N, Pulavarty A, Xu Z, Occidental MA, Gru AA, Flamm A. Deep Learning Image Processing Models in Dermatopathology. Diagnostics. 2025; 15(19):2517. https://doi.org/10.3390/diagnostics15192517
Chicago/Turabian StyleMehta, Apoorva, Mateen Motavaf, Danyal Raza, Neil Jairath, Akshay Pulavarty, Ziyang Xu, Michael A. Occidental, Alejandro A. Gru, and Alexandra Flamm. 2025. "Deep Learning Image Processing Models in Dermatopathology" Diagnostics 15, no. 19: 2517. https://doi.org/10.3390/diagnostics15192517
APA StyleMehta, A., Motavaf, M., Raza, D., Jairath, N., Pulavarty, A., Xu, Z., Occidental, M. A., Gru, A. A., & Flamm, A. (2025). Deep Learning Image Processing Models in Dermatopathology. Diagnostics, 15(19), 2517. https://doi.org/10.3390/diagnostics15192517