From Heart to Abdominal Aorta: Integrating Multi-Modal Cardiac Imaging Derived Haemodynamic Biomarkers for Abdominal Aortic Aneurysm Risk Stratification, Surveillance, Pre-Operative Assessment and Therapeutic Decision-Making
Abstract
1. Introduction
Step | Event/Change | Evidence and Reasoning |
---|---|---|
1 | Haemodynamic alterations (e.g., decreased WSS, increased OSI, abnormal flow patterns) | In mild-to-moderate aortic dilatation, haemodynamic markers measured by 4D Flow MRI are significantly altered even when circulating biomarkers remain unchanged, suggesting that disturbed flow and shear stress are the earliest detectable changes in AAA pathogenesis [11,12] |
2 | Correlation and subsequent change in circulating biomarkers | As the disease progresses, several circulating biomarkers (e.g., MMPs, collagen markers, D-dimer) begin to correlate with haemodynamic changes, but these biomarker levels do not differ from controls in early disease, indicating that their alteration is a downstream event [13,14] |
3 | Advanced AAA: Both haemodynamic and biomarker changes are present | In more advanced AAA, both haemodynamic and circulating biomarker changes are evident and correlate with disease severity and risk of complications [13,15] |
2. Wall Shear Stress (WSS) and Derived Metrics
2.1. Definition and Calculation of Wall Shear Stress (WSS)
2.2. Physiological Ranges and Pathological Implications of WSS
2.3. Time-Averaged Wall Shear Stress (TAWSS)
2.4. Oscillatory Shear Index (OSI)
2.5. Relative Residence Time (RRT)
2.6. Endothelial Cell Activation Potential (ECAP)
2.7. Mechanistic Links Between Low WSS and AAA Pathogenesis
2.8. Spatial Distribution of WSS and Clinical Correlates in AAA
2.9. Reproducibility and Imaging Techniques for WSS Measurement
2.10. WSS and Outcomes After AAA Repair
2.11. Dynamic Contrast-Enhanced MRI and Haemodynamic Correlates in AAA
3. Pulse Wave Velocity (PWV) as a Marker of Arterial Stiffness in AAA
3.1. Imaging Modalities and Measurement Techniques for PWV
3.2. Clinical Evidence of Elevated PWV in AAA Patients
3.3. Prognostic Value of PWV in AAA Risk Stratification and Outcomes
3.4. Pathophysiological Basis Linking PWV and AAA
3.5. Impact of AAA Repair on PWV and Postoperative Outcomes
4. Blood Flow Patterns
4.1. Classification of Flow Patterns
4.2. Vortical Flow: Origins and Subtypes
4.3. Association of Flow Patterns with Rupture Risk
4.4. Helical Flow: Characteristics and Impact on Wall Stress
4.5. Intraluminal Thrombus (ILT): Modulation of Flow and Rupture Risk
5. Cardiovascular Imaging Modalities for Haemodynamic Biomarkers
5.1. Cardiac MRI
5.1.1. Haemodynamic Biomarkers and AAA Progression
5.1.2. Endothelial Dysfunction and Cellular Mechanisms
5.1.3. CMR in Post-Intervention Surveillance and Outcomes
5.1.4. Integration of CMR Haemodynamics with Circulating Biomarkers
5.1.5. Impact of Haemodynamic Normalization on Molecular Pathways
5.1.6. Advanced CMR Applications in Cardiac Remodelling and Risk Prediction
5.2. Echocardiography
5.2.1. Haemodynamic Forces and Vascular Remodelling in AAA
5.2.2. Evolution of Intra-Aneurysmal Flow Patterns
5.2.3. Wall Shear Stress Heterogeneity and Aneurysm Geometry
5.2.4. Advanced Echocardiographic Modalities: Echo PIV and Doppler Techniques
5.3. Computational Fluid Dynamics (CFD)
5.3.1. Patient-Specific Modelling and Simulation Techniques
5.3.2. Haemodynamic Biomarkers and Disease Mechanisms
5.3.3. CFD in Tracking AAA Progression
5.3.4. Predictive Modelling of AAA Growth and Rupture Risk
5.3.5. CFD Applications in AAA Treatment and Device Optimization
5.3.6. The Role of the Windkessel Effect in CFD Simulations
5.3.7. Windkessel Effect and AAA Progression
5.3.8. Windkessel Effect in Post-Treatment Assessment
5.4. Imaging Biomarkers of Wall Inflammation
6. Cardiac Haemodynamic Biomarkers in Pre-Operative Risk Assessment
6.1. Prognostic Value of Wall Shear Stress (WSS) in AAA
6.2. Integration of WSS with Volumetric Imaging for Risk Prediction
6.3. Role of WSS Derivatives: TAWSS, OSI, and RRT
7. Integrating Cardiac Haemodynamic Biomarkers into AAA Imaging Protocols
7.1. Current AAA Imaging Protocols and Clinical Guidelines
7.2. Limitations of Diameter-Based Risk Stratification
7.3. WSS Timing and Patient Selection in AAA Management
7.4. Challenges in Clinical Integration of Haemodynamic Biomarkers
7.5. Augmenting Existing Protocols: Potential Clinical Applications
7.6. Considerations for Implementation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aalbregt, E.; Rijken, L.; Nederveen, A.; Van Ooij, P.; Yeung, K.; Jongkind, V. Quantitative Magnetic Resonance Imaging to Assess Progression and Rupture Risk of Aortic Aneurysms: A Scoping Review. J. Endovasc. Ther. Off. J. Int. Soc. Endovasc. Spec. 2023, 32, 15266028231204830. [Google Scholar] [CrossRef]
- Suh, G.-Y. Hemodynamic Changes Quantified in Abdominal Aortic Aneurysmswith Increasing Exercise Intensity Using Magnetic Resonance Imagingand Computational Fluid Dynamics; Stanford University: Stanford, CA, USA, 2011. [Google Scholar]
- Chiew, K.; Roy, I.; Budge, J.; D’Abate, F.; Holt, P.; Loftus, I. The Fate of Patients Opportunistically Screened for Abdominal Aortic Aneurysms During Echocardiogram or Arterial Duplex Scans. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2023, 66, 188–193. [Google Scholar] [CrossRef]
- Jaussi, A.; Fontana, P.; Xm, M. Imaging of the abdominal aorta during examination of patients referred for transthoracic echocardiography. Schweiz. Med. Wochenschr. 1999, 129, 71–76. [Google Scholar]
- Abraha, I.; Luchetta, M.L.; De Florio, R.; Cozzolino, F.; Casazza, G.; Duca, P.; Parente, B.; Orso, M.; Germani, A.; Eusebi, P.; et al. Ultrasonography for endoleak detection after endoluminal abdominal aortic aneurysm repair. Cochrane Database Syst. Rev. 2017, 6, 1465–1858. [Google Scholar] [CrossRef] [PubMed]
- Brazzelli, M.; Hernández, R.; Sharma, P.; Robertson, C.; Shimonovich, M.; Maclennan, G.; Fraser, C.; Jamieson, R.; Vallabhaneni, S. Contrast-enhanced ultrasound and/or colour duplex ultrasound for surveillance after endovascular abdominal aortic aneurysm repair: A systematic review and economic evaluation. Health Technol. Assess. 2018, 22, 1–220. [Google Scholar] [CrossRef] [PubMed]
- Cantisani, V.; Ricci, P.; Grazhdani, H.; Napoli, A.; Fanelli, F.; Catalano, C.; Galati, G.; D’Andrea, V.; Biancari, F.; Passariello, R. Prospective comparative analysis of colour-Doppler ultrasound, contrast-enhanced ultrasound, computed tomography and magnetic resonance in detecting endoleak after endovascular abdominal aortic aneurysm repair. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2011, 41, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Can, C.; Peng, L.; Yan, S.; Cheng, Y.; Hui, T.; Lv, M.; Guo, D.; Fu, W. Molecular Imaging of Abdominal Aortic Aneurysms with Positron Emission Tomography: A Systematic Review. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2021, 62, 969–980. [Google Scholar] [CrossRef]
- Bouwens, E.; Vanmaele, A.; Hoeks, S.; Verhagen, H.; Fioole, B.; Moelker, A.; Raa, S.; Hussain, B.; Oliveira-Pinto, J.; Gonçalves, F.; et al. Circulating biomarkers of cardiovascular disease are related to aneurysm volume in abdominal aortic aneurysm. Vasc. Med. 2023, 28, 433–442. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.; Xiong, J.; Jia, X.; Ma, X.; Guo, W. Association Between Aneurysm Wall Inflammation Detected by Imaging Perivascular Fat and Secondary Intervention Risk for Abdominal Aortic Aneurysm Patients After Endovascular Repair. J. Endovasc. Ther. Off. J. Int. Soc. Endovasc. Spec. 2023, 32, 15266028231204808. [Google Scholar] [CrossRef]
- Hammaréus, F.; Trenti, C.; Bjorck, H.; Engvall, J.; Eriksson, P.; Lekedal, H.; Lundberg, A.; Nilsson, L.; Swahn, E.; Jonasson, L.; et al. Hemodynamics and plasma biomarkers in individuals with mild-to-moderate ascending aortic dilatation and tricuspid aortic valves. Eur. Heart J. 2023, 44, ehad655-2030. [Google Scholar] [CrossRef]
- Rezaeitaleshmahalleh, M.; Lyu, Z.; Mu, N.-N.; Zhang, X.; Rasmussen, T.; McBane, R.; Jiang, J. Characterization of small abdominal aortic aneurysms’ growth status using spatial pattern analysis of aneurismal hemodynamics. Sci. Rep. 2023, 13, 13832. [Google Scholar] [CrossRef]
- Nana, P.; Dakis, K.; Brodis, A.; Spanos, K.; Kouvelos, G. Circulating Biomarkers for the Prediction of Abdominal Aortic Aneurysm Growth. J. Clin. Med. 2021, 10, 1718. [Google Scholar] [CrossRef]
- Sundermann, A.; Saum, K.; Conrad, K.; Russell, H.; Edwards, T.; Mani, K.; Björck, M.; Wanhainen, A.; Owens, A. Prognostic value of D-dimer and markers of coagulation for stratification of abdominal aortic aneurysm growth. Blood Adv. 2018, 2, 3088–3096. [Google Scholar] [CrossRef]
- Khan, H.; Abu-Raisi, M.; Feasson, M.; Shaikh, F.; Saposnik, G.; Mamdani, M.; Qadura, M. Current Prognostic Biomarkers for Abdominal Aortic Aneurysm: A Comprehensive Scoping Review of the Literature. Biomolecules 2024, 14, 661. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, X.; Zhang, K.-J.; Chen, K.; Wu, P.; Li, X. A hemodynamic analysis of energy loss in abdominal aortic aneurysm using three-dimension idealized model. Front. Physiol. 2024, 15, 1330848. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, P.; Lerman, L.; Lerman, A. Endothelial Dysfunction: A Marker of Atherosclerotic Risk. Arterioscler. Thromb. Vasc. Biol. J. Am. Heart Assoc. 2003, 23, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Fledderus, J.; Vanchin, B.; Rots, M.; Krenning, G. The Endothelium as a Target for Anti-Atherogenic Therapy: A Focus on the Epigenetic Enzymes EZH2 and SIRT1. J. Pers. Med. 2021, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Trenti, C.; Ziegler, M.; Bjarnegård, N.; Ebbers, T.; Lindenberger, M.; Dyverfeldt, P. Wall shear stress and relative residence time as potential risk factors for abdominal aortic aneurysms in males: A 4D flow cardiovascular magnetic resonance case–control study. J. Cardiovasc. Magn. Reson. 2022, 24, 18. [Google Scholar] [CrossRef]
- Buradi, A.; Mahalingam, A. Numerical Analysis of Wall Shear Stress Parameters of Newtonian Pulsatile Blood Flow Through Coronary Artery and Correlation to Atherosclerosis; Springer: Singapore, 2020; pp. 107–118. [Google Scholar] [CrossRef]
- Moerman, A.; Korteland, S.; Dilba, K.; Van Gaalen, K.; Poot, D.; Van Der Lugt, A.; Verhagen, H.; Wentzel, J.; Van Der Steen, A.; Gijsen, F.; et al. The Correlation Between Wall Shear Stress and Plaque Composition in Advanced Human Carotid Atherosclerosis. Front. Bioeng. Biotechnol. 2022, 9, 828577. [Google Scholar] [CrossRef]
- Bozorgpour, R.; Rammer, J. Hemodynamic Markers: CFD-Based Prediction of Cerebral Aneurysm Rupture Risk. arXiv 2025, arXiv:2504.10524. [Google Scholar] [CrossRef]
- Soulis, J.; Lampri, O.; Fytanidis, D.; Giannoglou, G. Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta. In Proceedings of the 2011 10th International Workshop on Biomedical Engineering, Kos, Greece, 5–7 October 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Costa, M.C.B.; Gonçalves, S.; Silva, M.; Fleury, J.; Huebner, R.; Avelar, A. The influence of leaflet flutter of the aortic valve bioprostheses on leaflet calcification and endothelial activation. Comput. Biol. Med. 2025, 187, 109765. [Google Scholar] [CrossRef]
- Al-Thani, H.; Yalcin, H.; Mutlu, O.; El-Menyar, A. Hemodynamics analysis and computational fluid dynamics simulations to identify potential location of rupture in abdominal aortic aneurysm. Eur. Heart J. 2023, 44, ehad655-2019. [Google Scholar] [CrossRef]
- Mutlu, O.; Salman, H.; Al-Thani, H.; El-Menyar, A.; Qidwai, U.; Yalcin, H. How does hemodynamics affect rupture tissue mechanics in abdominal aortic aneurysm: Focus on wall shear stress derived parameters, time-averaged wall shear stress, oscillatory shear index, endothelial cell activation potential, and relative residence time. Comput. Biol. Med. 2023, 154, 106609. [Google Scholar] [CrossRef] [PubMed]
- Parks, S.; Asheras, A. Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms. J. Fluid Mech. 2006, 560, 19–51. [Google Scholar] [CrossRef]
- Teng, B.; Zhou, Z.-X.; Zhao, Y.; Wang, Z. Combined Curvature and Wall Shear Stress Analysis of Abdominal Aortic Aneurysm: An Analysis of Rupture Risk Factors. Cardiovasc. Interv. Radiol. 2022, 45, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Aalbregt, E.; Nederveen, A.; Yeung, K.; Planken, R.; Balm, R.; Van Ooij, P. Reproducibility of wall shear stress in abdominal aortic aneurysms estimated by 4D flow magnetic resonance imaging. In Proceedings of the ISMRM Annual Meeting, Toronto, ON, Canada, 3–8 June 2024. [Google Scholar] [CrossRef]
- Faisal, M.A.A.; Mutlu, O.; Mahmud, S.; Tahir, A.; Chowdhury, M.; Bensaali, F.; Alnabti, A.; Yavuz, M.M.; El-Menyar, A.; Al-Thani, H.; et al. Rapid wall shear stress prediction for aortic aneurysms using deep learning: A fast alternative to CFD. Med. Biol. Eng. Comput. 2025, 63, 2173–2190. [Google Scholar] [CrossRef]
- Riminarsih, D.; Karyati, C.; Mutiara, A.; Wahyudi, B.; Ernastuti. Wall shear stress calculation based on MRI image in patients with abdominal aortic aneurysm (AAA). In Proceedings of the 2016 International Conference on Informatics and Computing (ICIC), Mataram, Indonesia, 28–29 October 2016; pp. 442–446. [Google Scholar] [CrossRef]
- Meyrignac, O.; Bal, L.; Zadro, C.; Vavasseur, A.; Sewonu, A.; Gaudry, M.; Saint-Lèbes, B.; De Masi, M.; Revel-Mouroz, P.; Sommet, A.; et al. Combining Volumetric and Wall Shear Stress Analysis from CT to Assess Risk of Abdominal Aortic Aneurysm Progression. Radiology 2020, 295, 192112. [Google Scholar] [CrossRef]
- Huttler, J.; Jamil, Y.; Rodriguez, P.P.; Slade, M.; Aboian, E.; Columbo, J.; Sinusas, A.; Velazquez, E.; Guzman, R.; Ochoa, C. Abstract 14618: Comparative Outcomes of Elective Endovascular Abdominal Aortic Aneurysm Repair in Patients with Preoperative Cardiac Stress Testing. Circulation 2023, 148, A14618. [Google Scholar] [CrossRef]
- van Ooij, P. Editorial for “Dynamic Contrast-Enhanced MRI in Abdominal Aortic Aneurysms as a Potential Marker for Disease Progression”. J. Magn. Reson. Imaging 2023, 58, 1268–1269. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Shi, Y.; Chen, T.-J.; Zhang, Y.; Wu, J.; Weng, Y.; Zhao, W.-M.; Chen, G.; Li, D.; et al. Pulse Wave Velocity as a Measure of Arterial Stiffness in Patients with Abdominal Aortic Aneurysm: A Systematic Review and Meta-Analysis. Austin J. Cardiovasc. Dis. Atheroscler. 2021; in press. [Google Scholar] [CrossRef]
- De Oliveira Lins, A.C.; Nascimento, C.D.; Mendes, R.; De Almeida Palma Da Fonseca, J.H.; De Almeida Barbosa, R.H.; Tenório, P.P. Pulse wave velocity on the risk stratification of aortic aneurysm. Braz. J. Health Rev. 2024, 7, 4578–4589. [Google Scholar] [CrossRef]
- Li, R.; Luo, J.; Balaram, S.; Chaudhry, F.; Shahmirzadi, D.; Konofagou, E. Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: A feasibility study. Phys. Med. Biol. 2013, 58, 4549–4562. [Google Scholar] [CrossRef] [PubMed]
- Lindenberger, M.; Ziegler, M.; Bjarnegård, N.; Ebbers, T.; Dyverfeldt, P. Regional and Global Aortic Pulse Wave Velocity in Patients with Abdominal Aortic Aneurysm. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2023, 67, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Rafouli-Stergiou, P.; Ikonomidis, I.; Katsiki, N.; Kadoglou, N.; Vlachos, S.; Thymis, J.; Parissis, J.; Moulakakis, K.; Kakisis, J. Association of impaired arterial wall properties with the presence of coronary artery disease in patients with abdominal aortic aneurysms. J. Clin. Hypertens. 2020, 22, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Durmuş, I.; Kazaz, Z.; Altun, G.; Cansu, A. Augmentation index and aortic pulse wave velocity in patients with abdominal aortic aneurysms. Int. J. Clin. Exp. Med. 2014, 7, 421–425. [Google Scholar]
- Ugajin, A.; Iwakoshi, S.; Ichihashi, S.; Inoue, T.; Nakai, T.; Kishida, H.; Chanoki, Y.; Tanaka, T.; Mori, H.; Kichikawa, K. Prediction of abdominal aortic aneurysm growth after endovascular aortic repair by measuring brachial-ankle pulse wave velocity. Ann. Vasc. Surg. 2021, 81, 163–170. [Google Scholar] [CrossRef]
- Kanamoto, R.; Otsuka, H.; Anegawa, T.; Takaseya, T.; Shintani, Y.; Tobinaga, S.; Onitsuka, S.; Ueno, M.; Hiromatsu, S.; Tanaka, H. P5601High pulse wave velocity is associated with poor shrinkage of abdominal aortic aneurysm in endovascular aneurysm repair patients. Eur. Heart J. 2019, 40, ehz746-0545. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, J.; Zhao, J.; Wang, T.; Zheng, T.; Yuan, D. Association between blood flow pattern and rupture risk of abdominal aortic aneurysm based on computational fluid dynamics. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2022, 64, 155–164. [Google Scholar] [CrossRef]
- Park, Y.J.; Mok, S.; Park, S.; Yun, S.; Kim, J. Real-Time Evaluation of Blood Flow Patterns Using AneurysmFlow for an in vivo Abdominal Aortic Aneurysm Model. Ann. Vasc. Surg. 2021, 80, 256–263. [Google Scholar] [CrossRef]
- Arslan, A.C.; Salman, H. Effect of Intraluminal Thrombus Burden on the Risk of Abdominal Aortic Aneurysm Rupture. J. Cardiovasc. Dev. Dis. 2023, 10, 233. [Google Scholar] [CrossRef]
- Stevens, R.; Stevens, R.; Grytsan, A.; Biasetti, J.; Roy, J.; Liljeqvist, M.; Gasser, T. Biomechanical changes during abdominal aortic aneurysm growth. PLoS ONE 2017, 12, e018742. [Google Scholar] [CrossRef]
- Rijken, L.; Zwetsloot, S.; Smorenburg, S.; Wolterink, J.; Išgum, I.; Marquering, H.; Van Duivenvoorde, J.; Ploem, C.; Jessen, R.; Catarinella, F.; et al. Developing Trustworthy Artificial Intelligence Models to Predict Vascular Disease Progression: The Vascul-Aid-Retro Study Protocol. J. Endovasc. Ther. Off. J. Int. Soc. Endovasc. Spec. 2025, 15266028251313964. [Google Scholar] [CrossRef]
- Broncano, J.; Bhalla, S.; Gutiérrez, F.; Vargas, D.; Williamson, E.; Makan, M.; Luna, A. Cardiac MRI in Pulmonary Hypertension: From Magnet to Bedside. Radiographics: A review publication of the Radiological Society of North America, Inc. Radiographics 2020, 40, 982–1002. [Google Scholar] [CrossRef] [PubMed]
- Molacek, J.; Treska, V.; Zeithaml, J.; Hollan, I.; Topolcan, O.; Pecen, L.; Slouka, D.; Karlíková, M.; Kučera, R. Blood biomarker panel recommended for personalized prediction, prognosis, and prevention of complications associated with abdominal aortic aneurysm. EPMA J. 2019, 10, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgi, G.; D’Averio, R.; Mauriello, A.; Bondio, M.; Pontillo, M.; Castelvecchio, S.; Trimarchi, S.; Tolva, V.; Nano, G.; Rampoldi, V.; et al. Plasma levels of metalloproteinases-3 and -9 as markers of successful abdominal aortic aneurysm exclusion after endovascular graft treatment. Circulation 2001, 104, I288–I295. [Google Scholar] [CrossRef] [PubMed]
- Amancherla, K.; Lindman, B.; Perry, A.; Lance, M.; Sheng, Q.; Pfeiffer, R.; Farber-Eger, E.; Fearon, W.; Kapadia, S.; Kumbhani, D.; et al. Abstract 037: Proteo-Transcriptional Characterization of Aortic Stenosis Prioritizes Novel Targets Relevant to Heart Failure. Circulation 2025, 151, 037. [Google Scholar] [CrossRef]
- Gommans, D.; Cramer, G.; Fouraux, M.; Heijmans, S.; Michels, M.; Timmermans, J.; Verheugt, F.; De Boer, R.; Kofflard, M.; Brouwer, M. Usefulness of High-Sensitivity Cardiac Troponin T to Predict Long-Term Outcome in Patients with Hypertrophic Cardiomyopathy. Am. J. Cardiol. 2021, 152, 120–124. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, H.; Williams, L.; Shandas, R. 1J-2 Development of a Customized Echo Particle Image Velocimetry System for Real Time Multi-component Hemodynamics Measurements: System Characterization and Initial Experiments. In Proceedings of the 2006 IEEE Ultrasonics Symposium, Vancouver, BC, Canada, 3–5 October 2006; pp. 971–974. [Google Scholar] [CrossRef]
- Bernad, S.; Bernad, E.; Barbat, T.; Brisan, C.; Albulescu, V. An Analysis of Blood Flow Dynamics in AAA. In Etiology, Pathogenesis and Pathophysiology of Aortic Aneurysms and Aneurysm Rupture; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Joly, F.; Soulez, G.; Garcia, D.; Lessard, S.; Kauffmann, C. Flow stagnation volume and abdominal aortic aneurysm growth: Insights from patient-specific computational flow dynamics of Lagrangian-coherent structures. Comput. Biol. Med. 2018, 92, 98–109. [Google Scholar] [CrossRef]
- Chong, C.; How, T. Flow patterns in an endovascular stent-graft for abdominal aortic aneurysm repair. J. Biomech. 2004, 37, 89–97. [Google Scholar] [CrossRef]
- Perinajová, R.; Álvarez-Cuevas, C.B.; Juffermans, J.; Westenberg, J.; Lamb, H.; Kenjereš, S. Influence of aortic aneurysm on the local distribution of NO and O2 using image-based computational fluid dynamics. Comput. Biol. Med. 2023, 160, 106925. [Google Scholar] [CrossRef]
- Johnson, T. Investigation into the Hemodynamics of Aortic Abnormalities Through Computational Fluid Dynamics. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2021. [Google Scholar] [CrossRef]
- Canchi, T.; Kumar, S.; Ng, E.; Narayanan, S. Computational Methods to Predict the Risk of Rupture of Abdominal Aortic Aneurysms. Biomed. Res. Int. 2015, 2015, 861627. [Google Scholar] [CrossRef]
- Stockle, J.; Romero, D.; Amon, C. Optimization of porous stents for endovascular repair of abdominal aortic aneurysms. Int. J. Numer. Methods Biomed. Eng. 2020, 36, e3336. [Google Scholar] [CrossRef] [PubMed]
- Black, S.; Maclean, C.; Barrientos, P.H.; Ritos, K.; McQueen, A.; Kazakidi, A. Calibration of patient-specific boundary conditions for coupled CFD models of the aorta derived from 4D Flow-MRI. Front. Bioeng. Biotechnol. 2023, 11, 1178483. [Google Scholar] [CrossRef]
- Li, Z.; Mao, W. A fast approach to estimating Windkessel model parameters for patient-specific multi-scale CFD simulations of aortic flow. Comput. Amp Fluids 2022, 259, 105894. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Gao, S.; Xie, E.; Wang, W.; Dai, L.; Zhao, R.; Zhou, C.; Qiu, J.; Yu, C. Systematic Review of the Application of Computational Fluid Dynamics for Adult Aortic Diseases. Rev. Cardiovasc. Med. 2023, 24, 355. [Google Scholar] [CrossRef] [PubMed]
- Goeller, M.; Achenbach, S.; Duncker, H.; Dey, D.; Marwan, M. Imaging of the Pericoronary Adipose Tissue (PCAT) Using Cardiac Computed Tomography: Modern Clinical Implications. J. Thorac. Imaging 2021, 36, 149–161. [Google Scholar] [CrossRef]
- Cundari, G.; Marchitelli, L.; Pambianchi, G.; Catapano, F.; Conia, L.; Stancanelli, G.; Catalano, C.; Galea, N. Imaging biomarkers in cardiac CT: Moving beyond simple coronary anatomical assessment. Radiol. Med. 2024, 129, 380–400. [Google Scholar] [CrossRef]
- Mahabadi, A.; Rassaf, T. Imaging of coronary inflammation for cardiovascular risk prediction. Lancet 2018, 392, 894–896. [Google Scholar] [CrossRef]
- Bappoo, N.; Syed, M.; Khinsoe, G.; Kelsey, L.; Forsythe, R.; Powell, J.; Hoskins, P.; McBride, O.; Norman, P.; Jansen, S.; et al. Low Shear Stress at Baseline Predicts Expansion and Aneurysm-Related Events in Patients with Abdominal Aortic Aneurysm. Circ. Cardiovasc. Imaging 2021, 14, 1112–1121. [Google Scholar] [CrossRef]
- Zhu, J.; Han, X.; Liu, Y.; Liu, C.; Zhang, X.; Si, X.; Shu, C.; Luo, M. Effects of preoperative aortic tortuosity and postoperative hypertension on patient-specific hemodynamics of abdominal aortic aneurysm. Phys. Fluids 2024, 36, 021905. [Google Scholar] [CrossRef]
- Hasan, M.; Al-Thani, H.; El-Menyar, A.; Zeidan, A.; Althani, A.; Yalcin, H. Disturbed hemodynamics and oxidative stress interaction in endothelial dysfunction and AAA progression: Focus on Nrf2 pathway. Int. J. Cardiol. 2023, 389, 131238. [Google Scholar] [CrossRef]
- Saha, S.; Francis, I.; Saha, G.; Huang, X.; Molla, M. Hemodynamic Insights into Abdominal Aortic Aneurysms: Bridging the Knowledge Gap for Improved Patient Care. Fluids 2024, 9, 50. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, J.; Weng, C.; Peng, W.; Wang, T.; Yuan, D.; Huang, B.; Zhao, J.; Xia, C.; Li, Z.; et al. Assessment of aortic hemodynamics in patients with thoracoabdominal aortic aneurysm using four-dimensional magnetic resonance imaging: A cross-sectional study. Quant. Imaging Med. Surg. 2024, 14, 2800–2815. [Google Scholar] [CrossRef]
- Soudah, E.; Ng, E.; Loong, T.; Bordone, M.; Pua, U.; Narayanan, S. CFD Modelling of Abdominal Aortic Aneurysm on Hemodynamic Loads Using a Realistic Geometry with CT. Comput. Math. Methods Med. 2013, 2013, 472564. [Google Scholar] [CrossRef]
- Belkacemi, D.; Abbes, M.T.; Al-Rawi, M.; Al-Jumaily, A.; Bachene, S.; Laribi, B. Intraluminal Thrombus Characteristics in AAA Patients: Non-Invasive Diagnosis Using CFD. Bioengineering 2023, 10, 540. [Google Scholar] [CrossRef]
- Zambrano, B.; Gharahi, H.; Lim, C.; Jaberi, F.; Choi, J.; Lee, W.; Baek, S. Association of Intraluminal Thrombus, Hemodynamic Forces, and Abdominal Aortic Aneurysm Expansion Using Longitudinal CT Images. Ann. Biomed. Eng. 2016, 44, 1502–1514. [Google Scholar] [CrossRef]
- Peng, C.; He, W.; Huang, X.; Ma, J.; Yuan, T.; Shi, Y.; Wang, S. The study on the impact of AAA wall motion on the hemodynamics based on 4D CT image data. Front. Bioeng. Biotechnol. 2023, 11, 1103905. [Google Scholar] [CrossRef]
Category Metric | Definition Formula | Physiological Clinical Range | Mechanistic Role in AAA | Clinical Findings | Measurement Methods | Measurement Advances | Clinical Application |
---|---|---|---|---|---|---|---|
Wall Shear Stress (WSS) | Tangential force per unit area exerted by blood flow on vessel wall; WSS = μ(du/dy) | 1–7 Pa (normal); <0.4 Pa (low, high risk); >4 Pa (high, potentially damaging) | Influences endothelial function, vascular remodelling, AAA pathogenesis; low WSS promotes dysfunction, inflammation, matrix degradation | Low WSS linked to AAA progression, rupture risk, and wall weakening; lower WSS at rupture sites | 4D flow MRI, CFD, Doppler ultrasound (less accurate) | 4D flow MRI and deep learning models for accurate WSS prediction, reducing computational time compared to CFD | WSS and geometry (diameter, curvature) together improve rupture risk prediction; low WSS predicts AAA expansion and events; |
Time-Averaged WSS (TAWSS) | Mean WSS over cardiac cycle | <0.4 Pa (high risk); >1.5 Pa (healthy) | Identifies regions with persistently low/high shear, risk for thrombus formation | Low TAWSS associated with AAA progression, higher rupture risk | 4D flow MRI, CFD | Deep learning models accelerate TAWSS calculation; validated against CFD | TAWSS included in multivariable models for rupture prediction; low TAWSS is an independent risk factor for AAA events |
Oscillatory Shear Index (OSI) | Quantifies directional changes in WSS; 0 (unidirectional) to 0.5 (oscillatory) | >0.2 (disturbed flow, high risk); <0.1 (healthy) | High OSI linked to disturbed flow, endothelial dysfunction, atherogenesis | High OSI increases rupture risk, especially in 50–65 mm AAAs | 4D flow MRI, CFD | OSI can be computed from imaging data using advanced algorithms | OSI is a risk factor for rupture in medium-sized AAAs; included in predictive models |
Relative Residence Time (RRT) | (1–2 × OSI)/TAWSS | >2–3 Pa−1 (elevated, high risk) | High RRT indicates prolonged particle residence, risk of atherosclerosis and thrombus | High RRT correlates with disease-prone regions, abnormal AAA haemodynamics | 4D flow MRI, CFD | RRT derived from TAWSS and OSI; can be mapped across aorta for risk stratification | RRT is a marker for abnormal AAA haemodynamics and may improve risk stratification |
Endothelial Cell Activation Potential (ECAP) | OSI/TAWSS | >0.2–0.3 Pa−1 (high risk) | Integrates low TAWSS and high OSI, predicts endothelial activation/inflammation | High ECAP linked to increased inflammation, vulnerability | 4D flow MRI, CFD | Calculated from standard WSS; practical for research and clinical studies | ECAP identifies regions of increased endothelial activation and inflammation |
Geometric Factors | Maximum diameter, curvature, aspect ratio | Larger diameter, higher curvature, deeper sac, smaller neck width = lower WSS, higher risk | Geometry influences local WSS, rupture risk | Curvature negatively correlates with WSS; geometric analysis improves risk prediction | CT angiography, CFD | Automated 3D reconstructions and CFD enable detailed geometric and haemodynamic analysis | Combined geometric and WSS analysis outperforms diameter alone for rupture prediction |
Mechanistic Feature | Role in AAA | Echocardiographic/Imaging Link |
---|---|---|
Vortex formation and recirculation | Promotes thrombus, wall weakening | Echo PIV, Doppler, CFD validation |
Low/oscillatory wall shear stress | Drives inflammation, matrix degradation | Doppler-derived WSS, Echo PIV |
Flow stagnation zones | Predicts rapid AAA growth | CFD, Echo PIV, radiomics |
Post-EVAR altered flow | Linked to thrombosis, intimal hyperplasia | Flow visualization, Doppler |
Windkessel effect, pulse wave reflections | Modulates intra-aneurysmal stress | Echo-derived cardiac output, advanced modelling |
Biomarker/Parameter | Mechanistic Link to AAA | Application in Pathogenesis, Progression, and Treatment |
---|---|---|
Wall Shear Stress (WSS) | Low WSS promotes endothelial dysfunction, inflammation, and matrix degradation | Identifies regions at risk for disease initiation and growth |
Oscillatory Shear Index (OSI) | High OSI indicates disturbed, reversing flow, linked to wall degeneration | Correlates with rapid expansion and rupture risk |
Endothelial Cell Activation Potential (ECAP) | Reflects endothelial response to non-physiological shear | Predicts areas of high risk for progression |
Nitric Oxide (NO) Distribution | Altered NO due to WSS changes affects vascular tone and remodelling | Biomarker for disease activity and rupture risk |
Oxygen (O2) Distribution/Hypoxia | Hypoxia from mass transfer limitations drives wall degeneration | Marker for regions prone to further pathology |
Flow Topology/Residence Time | Blood stasis promotes thrombus formation and wall hypoxia | Guides stent design and post-treatment surveillance |
Model/Approach | Key Facts and Features | Practicality for Clinical Use | Main Limitations |
---|---|---|---|
Full Order CFD Models | High-fidelity hemodynamic/biomechanical simulation; accurate WSS, OSI, PWS, flow patterns; patient-specific geometry | Gold standard for research; not practical for routine clinical use due to high computation | Time-consuming, requires expertise, not real-time, sensitive to modelling assumptions |
Reduced Order Models (ROMs) | Use machine learning (e.g., GNNs) to approximate CFD results; much faster; maintain reasonable accuracy | Promising for clinical workflows; can enable near real-time predictions | Require high-quality training data; may lose detail/accuracy in complex cases |
ML/AI-Enhanced Models | Integrate CFD metrics, imaging, and patient data; use SVM, KNN, GLM, deep learning for risk prediction | Emerging; can automate segmentation, risk scoring, and monitoring; some pilot clinical use | Data quality, model explainability, standardization, and regulatory/ethical concerns |
FSI (Fluid–Structure Interaction) Models | Combine CFD with vessel wall mechanics; account for wall deformation, ILT, material properties | More realistic rupture risk assessment; used in advanced research and select clinical pilots | Complex setup, high computational cost, limited by uncertainty in wall/ILT properties |
Morphological and Multivariate Models | Combine anatomical (diameter, tortuosity, ILT) and biomechanical indices (PWS, MD) for personalized risk | Nomograms and risk scores can be integrated into clinical decision tools | Need for multicentre validation, may not capture all biological factors |
Ultrasound-Based CFD/FSI | Uses real-time, non-invasive imaging; enables repeated monitoring; can assess wall mechanics and ILT | Feasible for routine follow-up; less costly and more accessible than CT/MRI | Lower spatial resolution, requires further validation, limited by US image quality |
Blood Flow Pattern Analysis | Classifies flow (e.g., helical, vortical) via CFD; type III flow linked to high rupture risk | Can improve risk stratification, especially for AAAs < 55 mm; enhances traditional criteria | Requires CFD expertise, not yet standard in clinical protocols |
Bayesian/Patient-Specific Growth Models | Predicts individual AAA growth using patient data and imaging; improves over population models | Useful for personalized follow-up scheduling and intervention planning | Dependent on longitudinal data, may not directly predict rupture |
Automated CFD Pipelines | Integrate deep learning for segmentation, open-source tools for workflow; aim to streamline clinical use | Increases accessibility for clinicians, reduces manual workload | Still in development, needs robust validation and user training |
Aspect | Role of Windkessel Effect in CFD | Impact on Biomarker Quantification |
---|---|---|
Pathogenesis | Models compliance/resistance, enabling realistic pressure/flow waveforms | Accurate WSS/OSI mapping for identifying regions of endothelial dysfunction and inflammation |
Progression | Simulates pressure/flow wave propagation as compliance changes with AAA growth | Refined prediction of PWS, RRT, and thrombus-prone regions |
Post-Treatment | Accounts for altered compliance after stent grafting | Predicts haemodynamic changes, endoleak risk, and guides device optimization |
Patient-Specific Modelling | Calibrates Windkessel parameters using imaging/clinical data | Enhances accuracy of CFD-derived biomarkers for individualized risk assessment |
Biomarker/Metric | Imaging Modality | How It is Obtained/Measured | Clinical Relevance |
---|---|---|---|
VPCI (Perivascular Fat) | CT Angiography (CTA) | Quantitative analysis of perivascular fat attenuation over time | Predicts reintervention risk post-EVAR, tracks wall inflammation |
PCAT/FAI | Coronary CTA | Attenuation of pericoronary adipose tissue (HU) | Detects coronary inflammation, predicts cardiac events |
SSTR-PET/CT | PET/CT | Uptake of somatostatin receptor tracers in inflamed tissue | Maps macrophage-driven inflammation in myocardium |
18F-FDG PET | PET/CT | Glucose uptake in inflamed vessel/myocardial tissue | Quantifies metabolic activity of inflammation |
DCE-MRI | Cardiac MRI | Kinetic modelling of contrast agent uptake in vessel wall | Assesses extent of wall inflammation |
Biomarker/Parameter | Preoperative Role | Predictive Value for Outcomes |
---|---|---|
Low WSS (<0.4 Pa) | Identifies high-risk patients for rapid expansion/rupture | Independently predicts aneurysm-related events and faster growth |
TAWSS, OSI, RRT | Detailed mapping of disturbed flow and wall stress | High OSI/RRT linked to inflammation, wall degeneration, rupture |
Combined WSS + Lumen Volume | Enhanced risk stratification, especially in small AAAs | Outperforms diameter alone for predicting enlargement |
Patient-specific CFD/FSI | Integrates anatomy and haemodynamics | Personalized risk assessment, guides timing/type of intervention |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramses, R.; Agu, O. From Heart to Abdominal Aorta: Integrating Multi-Modal Cardiac Imaging Derived Haemodynamic Biomarkers for Abdominal Aortic Aneurysm Risk Stratification, Surveillance, Pre-Operative Assessment and Therapeutic Decision-Making. Diagnostics 2025, 15, 2497. https://doi.org/10.3390/diagnostics15192497
Ramses R, Agu O. From Heart to Abdominal Aorta: Integrating Multi-Modal Cardiac Imaging Derived Haemodynamic Biomarkers for Abdominal Aortic Aneurysm Risk Stratification, Surveillance, Pre-Operative Assessment and Therapeutic Decision-Making. Diagnostics. 2025; 15(19):2497. https://doi.org/10.3390/diagnostics15192497
Chicago/Turabian StyleRamses, Rafic, and Obiekezie Agu. 2025. "From Heart to Abdominal Aorta: Integrating Multi-Modal Cardiac Imaging Derived Haemodynamic Biomarkers for Abdominal Aortic Aneurysm Risk Stratification, Surveillance, Pre-Operative Assessment and Therapeutic Decision-Making" Diagnostics 15, no. 19: 2497. https://doi.org/10.3390/diagnostics15192497
APA StyleRamses, R., & Agu, O. (2025). From Heart to Abdominal Aorta: Integrating Multi-Modal Cardiac Imaging Derived Haemodynamic Biomarkers for Abdominal Aortic Aneurysm Risk Stratification, Surveillance, Pre-Operative Assessment and Therapeutic Decision-Making. Diagnostics, 15(19), 2497. https://doi.org/10.3390/diagnostics15192497