Exploring the Plasma Fatty Acid Signature of Primary Aldosteronism: Comparison with Essential Hypertension and Longitudinal Therapy Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Plasma Sample Collection
2.3. Fatty Acid Extraction
2.4. Statistical Analysis
3. Results
3.1. Comparison Between PA and EH Patients
3.2. Effects of Pharmacological and Surgical Therapies on the FA Profile of PA Patients
4. Discussion
4.1. Differences in Plasma FA Distribution Between PA and EH
4.2. Improvement of the FA Profile in PA Patients After Treatment
4.3. Study Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Arachidonic Acid |
ARR | Aldosterone-to-Renin Ratio |
AVS | Adrenal Venous Sampling |
CVDs | Cardiovascular Diseases |
EETs | Epoxyeicosatrienoic acids |
EH | Essential Hypertension |
FA | Fatty Acid |
FAME | Fatty Acid Methyl Ester |
IV-SLT | Intravenous Salt Loading Test |
MRA | Mineralocorticoid Receptor Antagonist |
MUFA | Monounsaturated Fatty Acid |
PA | Primary Aldosteronism |
PUFA | Polyunsaturated Fatty Acid |
SFA | Saturated Fatty Acid |
References
- De Carvalho, C.C.C.R.; Caramujo, M.J. The Various Roles of Fatty Acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef]
- Malik, V.S.; Chiuve, S.E.; Campos, H.; Rimm, E.B.; Mozaffarian, D.; Hu, F.B.; Sun, Q. Circulating Very-Long-Chain Saturated Fatty Acids and Incident Coronary Heart Disease in US Men and Women. Circulation 2015, 132, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Liput, K.P.; Lepczyński, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.S.; Czarnik, U.; Pierzchała, M. Effects of Dietary N-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.J.; Folsom, A.R.; Ma, J.; Arnett, D.K.; McGovern, P.G.; Eckfeldt, J.H. Plasma Fatty Acid Composition and 6-Year Incidence of Hypertension in Middle-Aged Adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Epidemiol. 1999, 150, 492–500. [Google Scholar] [CrossRef]
- Yang, B.; Ding, F.; Yan, J.; Ye, X.-W.; Xu, X.-L.; Wang, F.-L.; Li, D.; Yu, W. Exploratory Serum Fatty Acid Patterns Associated with Blood Pressure in Community-Dwelling Middle-Aged and Elderly Chinese. Lipids Health Dis. 2016, 15, 58. [Google Scholar] [CrossRef]
- Filipovic, M.G.; Aeschbacher, S.; Reiner, M.F.; Stivala, S.; Gobbato, S.; Bonetti, N.; Risch, M.; Risch, L.; Camici, G.G.; Luescher, T.F.; et al. Whole Blood Omega-3 Fatty Acid Concentrations Are Inversely Associated with Blood Pressure in Young, Healthy Adults. J. Hypertens. 2018, 36, 1548–1554. [Google Scholar] [CrossRef]
- Lu, L.; Gu, X.; Yang, D.; Wang, B.; Long, G. Circulating Fatty Acids, Genetic Susceptibility and Hypertension: A Prospective Cohort Study. Front. Nutr. 2024, 11, 1454364. [Google Scholar] [CrossRef]
- Bioletto, F.; Bollati, M.; Lopez, C.; Arata, S.; Procopio, M.; Ponzetto, F.; Ghigo, E.; Maccario, M.; Parasiliti-Caprino, M. Primary Aldosteronism and Resistant Hypertension: A Pathophysiological Insight. Int. J. Mol. Sci. 2022, 23, 4803. [Google Scholar] [CrossRef]
- Charoensri, S.; Turcu, A.F. Primary Aldosteronism Prevalence—An Unfolding Story. Exp. Clin. Endocrinol. Diabetes 2023, 131, 394–401. [Google Scholar] [CrossRef]
- Adler, G.K.; Stowasser, M.; Correa, R.R.; Khan, N.; Kline, G.; McGowan, M.J.; Mulatero, P.; Murad, M.H.; Touyz, R.M.; Vaidya, A.; et al. Primary Aldosteronism: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2025, 110, dgaf284. [Google Scholar] [CrossRef]
- Yang, J.; Young, M.J.; Cole, T.J.; Fuller, P.J. Mineralocorticoid Receptor Signalling in Primary Aldosteronism. J. Endocrinol. 2023, 259, e220249. [Google Scholar] [CrossRef]
- Olivieri, O.; Ciacciarelli, A.; Signorelli, D.; Pizzolo, F.; Guarini, P.; Pavan, C.; Corgnati, A.; Falcone, S.; Corrocher, R.; Micchi, A.; et al. Aldosterone to Renin Ratio in a Primary Care Setting: The Bussolengo Study. J. Clin. Endocrinol. Metab. 2004, 89, 4221–4226. [Google Scholar] [CrossRef] [PubMed]
- Pizzolo, F.; Salvagno, G.; Caruso, B.; Cocco, C.; Zorzi, F.; Zaltron, C.; Castagna, A.; Bertolone, L.; Morandini, F.; Lippi, G.; et al. Fully Automated Chemiluminescence vs RIA Aldosterone Assay in Primary Aldosteronism Work-Up. J. Hum. Hypertens. 2017, 31, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Mulatero, P.; Milan, A.; Fallo, F.; Regolisti, G.; Pizzolo, F.; Fardella, C.; Mosso, L.; Marafetti, L.; Veglio, F.; Maccario, M. Comparison of Confirmatory Tests for the Diagnosis of Primary Aldosteronism. J. Clin. Endocrinol. Metab. 2006, 91, 2618–2623. [Google Scholar] [CrossRef] [PubMed]
- Funder, J.W.; Carey, R.M.; Mantero, F.; Murad, M.H.; Reincke, M.; Shibata, H.; Stowasser, M.; Young, W.F., Jr. The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 1889–1916. [Google Scholar] [CrossRef]
- Masood, A.; Stark, K.D.; Salem, N. A Simplified and Efficient Method for the Analysis of Fatty Acid Methyl Esters Suitable for Large Clinical Studies. J. Lipid Res. 2005, 46, 2299–2305. [Google Scholar] [CrossRef]
- Martinelli, N.; Girelli, D.; Malerba, G.; Guarini, P.; Illig, T.; Trabetti, E.; Sandri, M.; Friso, S.; Pizzolo, F.; Schaeffer, L.; et al. FADS Genotypes and Desaturase Activity Estimated by the Ratio of Arachidonic Acid to Linoleic Acid Are Associated with Inflammation and Coronary Artery Disease. Am. J. Clin. Nutr. 2008, 88, 941–949. [Google Scholar] [CrossRef]
- Olivieri, O.; Speziali, G.; Castagna, A.; Pattini, P.; Udali, S.; Pizzolo, F.; Liesinger, L.; Gindlhuber, J.; Tomin, T.; Schittmayer, M.; et al. The Positive Association between Plasma Myristic Acid and ApoCIII Concentrations in Cardiovascular Disease Patients Is Supported by the Effects of Myristic Acid in HepG2 Cells. J. Nutr. 2020, 150, 2707–2715. [Google Scholar] [CrossRef]
- Frigolet, M.E.; Gutiérrez-Aguilar, R. The Role of the Novel Lipokine Palmitoleic Acid in Health and Disease. Adv. Nutr. 2017, 8, 173S–181S. [Google Scholar] [CrossRef]
- Bermúdez, M.A.; Pereira, L.; Fraile, C.; Valerio, L.; Balboa, M.A.; Balsinde, J. Roles of Palmitoleic Acid and Its Positional Isomers, Hypogeic and Sapienic Acids, in Inflammation, Metabolic Diseases and Cancer. Cells 2022, 11, 2146. [Google Scholar] [CrossRef]
- Tang, J.; Yang, B.; Yan, Y.; Tong, W.; Zhou, R.; Zhang, J.; Mi, J.; Li, D. Palmitoleic Acid Protects against Hypertension by Inhibiting NF-κB-Mediated Inflammation. Mol. Nutr. Food Res. 2021, 65, e2001025. [Google Scholar] [CrossRef]
- Galanty, A.; Grudzińska, M.; Paździora, W.; Paśko, P. Erucic Acid—Both Sides of the Story: A Concise Review on Its Beneficial and Toxic Properties. Molecules 2023, 28, 1924. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, I.; Afzal, M.; Al-Abbasi, F.A.; AlGhamdi, S.A.; Alghamdi, A.M.; Alzarea, S.I.; Almalki, W.H.; AlGhamdi, A.S.; Alkinani, K.B.; Sayyed, N. Review of the Potential Pharmacological Role of Erucic Acid: A Monounsaturated Omega-9 Fatty Acid. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 397, 3663–3674. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lei, H.; Jiang, H.; Fan, Y.; Shi, J.; Li, C.; Chen, F.; Mi, B.; Ma, M.; Lin, J.; et al. Saturated Fatty Acid Biomarkers and Risk of Cardiometabolic Diseases: A Meta-Analysis of Prospective Studies. Front. Nutr. 2022, 9, 963471. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; King, I.B. Very Long-Chain Saturated Fatty Acids and Diabetes and Cardiovascular Disease. Curr. Opin. Lipidol. 2022, 33, 76–82. [Google Scholar] [CrossRef]
- Bockus, L.B.; Biggs, M.L.; Lai, H.T.; de Olivera Otto, M.C.; Fretts, A.M.; McKnight, B.; Sotoodehnia, N.; King, I.B.; Song, X.; Siscovick, D.S.; et al. Assessment of Plasma Phospholipid Very-Long-Chain Saturated Fatty Acid Levels and Healthy Aging: The Cardiovascular Health Study. JAMA Netw. Open 2021, 4, e2120616. [Google Scholar] [CrossRef]
- Tao, X.; Liu, L.; Ma, P.; Hu, J.; Ming, Z.; Dang, K.; Zhang, Y.; Li, Y. Association of Circulating Very Long-Chain Saturated Fatty Acids With Cardiovascular Mortality in NHANES 2003–2004, 2011–2012. J. Clin. Endocrinol. Metab. 2023, 109, e633–e645. [Google Scholar] [CrossRef]
- Goodman, D.B.; Wong, M.; Rasmussen, H. Aldosterone-Induced Membrane Phospholipid Fatty Acid Metabolism in the Toad Urinary Bladder. Biochemistry 1975, 14, 2803–2809. [Google Scholar] [CrossRef]
- Mrnka, L.; Nováková, O.; Novák, F.; Tvrzická, E.; Pácha, J. Aldosterone Alters the Phospholipid Composition of Rat Colonocytes. J. Steroid Biochem. Mol. Biol. 2000, 73, 11–17. [Google Scholar] [CrossRef]
- Jindrichová, S.; Nováková, O.; Bryndová, J.; Tvrzická, E.; Lisá, V.; Novák, F.; Pácha, J. Corticosteroid Effect on Caco-2 Cell Lipids Depends on Cell Differentiation. J. Steroid Biochem. Mol. Biol. 2003, 87, 157–165. [Google Scholar] [CrossRef]
- Ling, G.; Bruno, J.; Albert, S.G.; Dhindsa, S. Fatty Acids as a Direct Regulator of Aldosterone Hypersecretion. Mol. Cell. Endocrinol. 2023, 561, 111836. [Google Scholar] [CrossRef] [PubMed]
- Lien, E.L.; Goodman, D.B.; Rasmussen, H. Effects of an Acetyl-Coenzyme A Carboxylase Inhibitor and a Sodium-Sparing Diuretic on Aldosterone-Stimulated Sodium Transport, Lipid Synthesis, and Phospholipid Fatty Acid Composition in the Toad Urinary Bladder. Biochemistry 1975, 14, 2749–2754. [Google Scholar] [CrossRef] [PubMed]
- Kuyama, N.; Araki, S.; Kaikita, K.; Nakanishi, N.; Nakashima, N.; Hanatani, S.; Arima, Y.; Yamamoto, M.; Nakamura, T.; Yamamoto, E.; et al. Mineralocorticoid Receptor Blocker Prevents Mineralocorticoid Receptor–Mediated Inflammation by Modulating Transcriptional Activity of Mineralocorticoid Receptor–P65–Signal Transducer and Activator of Transcription 3 Complex. J. Am. Heart Assoc. 2024, 13, e030941. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Almenglo, C.; Fernandez, Á.L.; Martínez-Cereijo, J.M.; Iglesias-Alvarez, D.; Duran-Muñoz, D.; García-Caballero, T.; Gonzalez-Juanatey, J.R.; Rodriguez-Mañero, M.; Eiras, S. The Effect of Mineralocorticoid Receptor 3 Antagonists on Anti-Inflammatory and Anti-Fatty Acid Transport Profile in Patients with Heart Failure. Cells 2022, 11, 1264. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism Pathways of Arachidonic Acids: Mechanisms and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Williams, T.A.; Gao, M.; Yan, Y.; Bao, M.; Tao, J.; Ma, G.; Wang, M.; Xia, Z.; et al. Metabolic Phenotypes and Fatty Acid Profiles Associated with Histopathology of Primary Aldosteronism. Hypertens. Res. 2025, 48, 1363–1378. [Google Scholar] [CrossRef]
- Luther, J.M.; Wei, D.S.; Ghoshal, K.; Peng, D.; Adler, G.K.; Turcu, A.F.; Nian, H.; Yu, C.; Solorzano, C.C.; Pozzi, A.; et al. Treatment of Primary Aldosteronism Increases Plasma Epoxyeicosatrienoic Acids. Hypertension 2021, 77, 1323–1331. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, S.; Gao, J.; Lin, Y.; Shi, G.; He, W.; Touyz, R.M.; Yan, L.; Huang, H. Downregulated Serum 14, 15-Epoxyeicosatrienoic Acid Is Associated with Abdominal Aortic Calcification in Patients with Primary Aldosteronism. Hypertension 2018, 71, 592–598. [Google Scholar] [CrossRef]
- Meng, Y.; Bilyal, A.; Chen, L.; Mederos y Schnitzler, M.; Kocabiyik, J.; Gudermann, T.; Riols, F.; Haid, M.; Marques, J.G.; Horak, J.; et al. Endothelial Epoxyeicosatrienoic Acid Release Is Intact in Aldosterone Excess. Atherosclerosis 2024, 398, 118591. [Google Scholar] [CrossRef]
- Gouaref, I.; Bouazza, A.; Abderrhmane, S.A.; Koceir, E.-A. Lipid Profile Modulates Cardiometabolic Risk Biomarkers Including Hypertension in People with Type-2 Diabetes: A Focus on Unbalanced Ratio of Plasma Polyunsaturated/Saturated Fatty Acids. Molecules 2020, 25, 4315. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Yu, Q.; Song, S.; Brenna, J.T.; Shen, Y.; Ye, K. Higher Ratio of Plasma Omega-6/Omega-3 Fatty Acids Is Associated with Greater Risk of All-Cause, Cancer, and Cardiovascular Mortality: A Population-Based Cohort Study in UK Biobank. Elife 2024, 12, RP90132. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean Diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Clarke, E.D.; Stanford, J.; Ferguson, J.J.A.; Wood, L.G.; Collins, C.E. Red Blood Cell Membrane Fatty Acid Composition, Dietary Fatty Acid Intake and Diet Quality as Predictors of Inflammation in a Group of Australian Adults. Nutrients 2023, 15, 2405. [Google Scholar] [CrossRef]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G.; et al. Association of Dietary, Circulating, and Supplement Fatty Acids with Coronary Risk. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef]
- Shi, F.; Chowdhury, R.; Sofianopoulou, E.; Koulman, A.; Sun, L.; Steur, M.; Aleksandrova, K.; Dahm, C.C.; Schulze, M.B.; van der Schouw, Y.T.; et al. Association of Circulating Fatty Acids with Cardiovascular Disease Risk: Analysis of Individual-Level Data in Three Large Prospective Cohorts and Updated Meta-Analysis. Eur. J. Prev. Cardiol. 2025, 32, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Shakiba, E.; Najafi, F.; Pasdar, Y.; Moradinazar, M.; Navabi, J.; Shakiba, M.H.; Bagheri, A. A Prospective Cohort Study on the Association Between Dietary Fatty Acids Intake and Risk of Hypertension Incident. Sci. Rep. 2023, 13, 21112. [Google Scholar] [CrossRef]
- Annevelink, C.E.; Sapp, P.A.; Petersen, K.S.; Shearer, G.C.; Kris-Etherton, P.M. Diet-Derived and Diet-Related Endogenously Produced Palmitic Acid: Effects on Metabolic Regulation and Cardiovascular Disease Risk. J. Clin. Lipidol. 2023, 17, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, D.M.; de Oliveira, M.F.; Carioca, A.A.F.; Miranda, A.A.M.; Carvalho, A.M.; Oki, E.; Norde, M.M.; Rogero, M.M.; Damasceno, N.R.T.; Fisberg, R.M. Plasma Fatty Acids: Biomarkers of Dietary Intake? Nutrition 2019, 59, 77–82. [Google Scholar] [CrossRef] [PubMed]
PubChem Compound ID | Common Name | Omega Nomenclature | Concentration (mg/mL) |
---|---|---|---|
3893 | Lauric acid | C12:0 | 0.25 |
11005 | Myristic acid | C14:0 | 0.25 |
985 | Palmitic acid | C16:0 | 0.25 |
5281 | Stearic acid | C18:0 | 0.25 |
10467 | Arachidic acid | C20:0 | 0.25 |
8251 | Behenic acid | C22:0 | 0.10 |
11197 | Lignoceric acid | C24:0 | 0.10 |
10469 | Cerotic acid | C26:0 | 0.10 |
445638 | Palmitoleic acid | C16:1(n-7) | 0.25 |
445639 | Oleic acid | C18:1(n-9) | 0.25 |
5282768 | Eicosenoic acid | C20:1(n-9) | 0.25 |
5281116 | Erucic acid | C22:1(n-9) | 0.25 |
5280934 | α-Linolenic acid | C18:3(n-3) | 0.10 |
5312508 | Stearidonic acid | C18:4(n-3) | 0.10 |
446284 | Eicosapentaenoic acid | C20:5(n-3) | 0.09 |
445580 | Docosahexaenoic acid | C22:6(n-3) | 0.10 |
5280450 | Linoleic acid | C18:2(n-6) | 0.25 |
6439848 | Eicosadienoic acid | C20:2(n-6) | 0.25 |
444899 | Arachidonic acid | C20:4(n-6) | 0.25 |
PA (n = 22) | EH (n = 60) | p | |
---|---|---|---|
Age * | 49 ± 10 | 48 ± 13 | 0.809 |
Sex (Males %) X | 86.36 | 86.67 | 1.000 |
BMI (kg/m2) # | 28.0 [24.5, 30.5] | 27.0 [24.57, 31.0] | 0.952 |
Dyslipidemia (%) X | 35.00 | 52.63 | 0.018 |
Hypertensive cardiopathy (%) X | 83.33 | 56.90 | <0.001 |
Diabetes (%) X | 4.55 | 1.72 | 0.460 |
Smoking (%) X | 45.00 | 44.64 | 1.000 |
Systolic BP (mmHg) # | 147.5 [133.75, 170.0] | 147.5 [140.0, 160.0] | 0.913 |
Diastolic BP (mmHg) # | 90.0 [80.0, 100.0] | 95.0 [85.0, 100.0] | 0.659 |
Glycemia (mmol/L) # | 4.8 [4.59, 5.02] | 4.8 [4.6, 5.2] | 0.700 |
Total Cholesterol (mmol/L) * | 5.07 ± 0.88 | 5.22 ± 0.93 | 0.552 |
LDL (mmol/L) * | 3.05 ± 0.78 | 3.33 ± 0.86 | 0.284 |
HDL (mmol/L) # | 1.42 [1.14, 1.5] | 1.38 [1.1, 1.59] | 0.868 |
Triglycerides (mmol/L) # | 0.96 [0.79, 1.36] | 1.07 [0.75, 1.39] | 0.715 |
Aldosterone (pg/mL) # | 263.0 [182.0, 364.0] | 157.5 [121.75, 197.5] | <0.001 |
Renin (pg/mL) # | 4.38 [2.0, 5.52] | 7.89 [4.11, 12.68] | 0.011 |
ARR # | 60.0 [38.89, 90.5] | 23.69 [10.79, 35.18] | <0.001 |
Serum Na+ (mmol/L) * | 142.53 ± 2.4 | 141.25 ± 2.1 | 0.038 |
Serum K+ (mmol/L) * | 3.46 ± 0.66 | 3.89 ± 0.3 | <0.001 |
Serum Cl− (mmol/L) * | 102.19 ± 2.83 | 103.6 ± 2.37 | 0.050 |
eGFR (mL/min/1.73 m2) * | 78.1 ± 17.81 | 83.81 ± 17.55 | 0.245 |
PA (n = 22) | EH (n = 60) | p | |
---|---|---|---|
SFAs # | 38.51 [36.71, 39.5] | 38.06 [36.47, 39.78] | 0.971 |
Lauric Acid—C12:0 # | 0.13 [0.08, 0.2] | 0.11 [0.08, 0.23] | 0.913 |
Myristic Acid—C14:0 # | 1.66 [1.08, 2.19] | 1.45 [1.18, 1.86] | 0.794 |
Palmitic Acid—C16:0 * | 24.25 ± 2.18 | 24.86 ± 1.45 | 0.146 |
Stearic Acid—C18:0 * | 9.0 ± 1.09 | 8.83 ± 0.97 | 0.497 |
Arachidic Acid—C20:0 * | 0.36 ± 0.06 | 0.39 ± 0.08 | 0.124 |
Behenic Acid—C22:0 * | 1.28 ± 0.38 | 1.48 ± 0.35 | 0.029 |
Lignoceric Acid—C24:0 * | 0.8 ± 0.18 | 0.88 ± 0.22 | 0.129 |
Cerotic Acid—C26:0 # | 0.07 [0.06, 0.1] | 0.08 [0.07, 0.1] | 0.211 |
UFAs # | 61.49 [60.5, 63.29] | 61.94 [60.22, 63.53] | 0.971 |
MUFAs * | 32.0 ± 3.3 | 33.92 ± 3.38 | 0.025 |
Palmitoleic Acid—C16:1(n-7) # | 1.67 [1.37, 2.49] | 2.57 [1.75, 2.98] | 0.005 |
Oleic Acid—C18:1(n-9) * | 29.55 ± 2.82 | 30.76 ± 3.08 | 0.112 |
Eicosenoic Acid—C20:1(n-9) # | 0.23 [0.18, 0.29] | 0.24 [0.21, 0.3] | 0.423 |
Erucic Acid—C22:1(n-9) # | 0.25 [0.04, 0.38] | 0.35 [0.27, 0.51] | 0.023 |
PUFAs # | 28.94 [26.71, 33.8] | 28.23 [25.53, 29.69] | 0.139 |
ω3 # | 2.65 [2.34, 3.86] | 2.62 [2.23, 3.18] | 0.333 |
α-Linolenic Acid—C18:3(n-3) # | 0.26 [0.21, 0.33] | 0.21 [0.18, 0.29] | 0.060 |
Stearidonic Acid—C18:4(n-3) # | 0.21 [0.09, 0.29] | 0.24 [0.21, 0.29] | 0.110 |
Eicosapentaenoic Acid—C20:5(n-3) # | 0.26 [0.2, 0.53] | 0.21 [0.16, 0.31] | 0.093 |
Docosahexaenoic Acid—C22:6(n-3) * | 2.2 ± 0.79 | 2.02 ± 0.6 | 0.287 |
ω6 * | 27.44 ± 4.84 | 25.0 ± 3.64 | 0.971 |
Linoleic Acid—C18:2(n-6) * | 22.16 ± 2.72 | 20.95 ± 2.85 | 0.913 |
Eicosadienoic Acid—C20:2(n-6) * | 0.23 ± 0.05 | 0.21 ± 0.04 | 0.794 |
Arachidonic Acid—C20:4(n-6) # | 4.27 [2.9, 5.87] | 3.81 [2.45, 4.67] | 0.146 |
ω3/ω6 Ratio # | 0.1 [0.09, 0.13] | 0.11 [0.09, 0.13] | 0.497 |
PUFA/SFA Ratio # | 0.75 [0.68, 0.87] | 0.74 [0.66, 0.81] | 0.124 |
Enrollment (T0) | MRA Treatment (T1) | Adrenalectomy (T2) | Overall p | T0–T1 p | T1–T2 p | T0–T2 p | |
---|---|---|---|---|---|---|---|
Aldosterone (pg/mL) | 247.5 [194.0, 301.5] | 234.5 [220.25, 427.75] | 133.00 [94.25, 154.50] | 0.420 | 0.500 | 0.375 | 0.020 |
Renin (pg/mL) | 2.00 [1.62, 4.80] | 2.00 [1.73, 2.00] | 10.44 [3.93, 11.95] | 0.050 | 1.000 | 0.125 | 0.055 |
ARR | 90.5 [41.55, 187.0] | 104.25 [68.12, 117.88] | 12.46 [9.47, 29.76] | 0.280 | 1.000 | 0.219 | 0.039 |
Systolic BP (mmHg) | 160 [150, 170] | 140 [135, 142.50] | 132.50 [125, 138.75] | 0.008 | 0.063 | 0.063 | 0.004 |
Diastolic BP (mmHg) | 100 [90, 100] | 90 [87.50, 95] | 82.50 [80, 88.75] | 0.014 | 0.250 | 0.063 | 0.016 |
eGFR (mL/min/1.73 m2) | 79.10 [64.96, 88.95] | 76.21 [67.58, 88.81] | 69.82 [59.20, 83.89] | 0.264 | 1.000 | 0.084 | 0.098 |
Serum Na (mmol/L) | 142 [141, 143] | 140.50 [139, 143.25] | 140 [140, 143.75] | 0.093 | 0.188 | 1.000 | 0.129 |
Serum K (mmol/L) | 2.92 [2.76, 3.56] | 3.60 [3.26, 3.96] | 4.33 [4.06, 4.53] | 0.003 | 0.313 | 0.055 | 0.002 |
Serum Cl (mmol/L) | 103 [99, 103] | 103 [101, 104] | 102.50 [101, 103.75] | 0.441 | 1.000 | 0.375 | 0.781 |
SFAs | 38.92 [37.28, 39.5] | 28.94 [28.73, 30.14] | 31.1 [29.64, 31.32] | 0.001 | 0.004 | 0.002 | 0.004 |
Lauric Acid (C12:0) | 0.11 [0.08, 0.19] | 0.07 [0.06, 0.11] | 0.16 [0.08, 0.3] | 0.020 | 0.065 | 0.006 | 0.375 |
Myristic Acid (C14:0) | 1.39 [0.89, 1.99] | 0.95 [0.73, 1.33] | 1.68 [1.39, 2.07] | 0.020 | 0.084 | 0.002 | 0.770 |
Palmitic Acid (C16:0) | 23.91 [23.56, 25.51] | 19.81 [19.29, 20.15] | 20.04 [19.1, 20.63] | 0.007 | 0.004 | 0.432 | 0.004 |
Stearic Acid (C18:0) | 8.99 [8.6, 9.55] | 6.67 [6.31, 7.14] | 7.27 [7.0, 7.89] | 0.001 | 0.002 | 0.002 | 0.004 |
Arachidic Acid (C20:0) | 0.39 [0.35, 0.42] | 0.3 [0.29, 0.34] | 0.31 [0.29, 0.32] | 0.061 | 0.027 | 0.846 | 0.004 |
Behenic Acid (C22:0) | 1.43 [1.28, 1.6] | 0.73 [0.68, 0.93] | 0.72 [0.66, 0.95] | 0.061 | 0.002 | 0.922 | 0.004 |
Lignoceric Acid (C24:0) | 0.84 [0.73, 0.94] | 0.55 [0.51, 0.74] | 0.59 [0.51, 0.71] | 0.045 | 0.006 | 0.432 | 0.004 |
Cerotic Acid (C26:0) | 0.07 [0.06, 0.08] | 0.01 [0.01, 0.01] | 0.01 [0.01, 0.01] | 0.001 | 0.002 | 0.322 | 0.002 |
UFAs | 61.08 [60.5, 62.72] | 71.06 [69.86, 71.27] | 68.9 [68.68, 70.36] | 0.001 | 0.004 | 0.002 | 0.004 |
MUFAs | 31.11 [27.44, 33.02] | 28.69 [26.55, 30.86] | 26.82 [25.66, 27.75] | 0.045 | 0.160 | 0.027 | 0.020 |
Palmitoleic Acid—C16:1(n-7) | 1.52 [1.37, 1.66] | 1.49 [1.13, 1.75] | 1.78 [1.24, 2.07] | 0.905 | 0.375 | 0.322 | 1.000 |
Oleic Acid—C18:1(n-9) | 28.69 [25.62, 30.28] | 26.93 [25.39, 28.58] | 24.67 [23.76, 25.55] | 0.027 | 0.193 | 0.020 | 0.020 |
Eicosenoic Acid—C20:1(n-9) | 0.2 [0.18, 0.24] | 0.17 [0.17, 0.24] | 0.19 [0.16, 0.22] | 0.741 | 0.846 | 0.492 | 0.432 |
Erucic Acid—C22:1(n-9) | 0.18 [0.03, 0.42] | 0.01 [0.01, 0.02] | 0.01 [0.01, 0.01] | 0.006 | 0.006 | 0.193 | 0.004 |
PUFAs | 31.69 [28.48, 34.6] | 41.32 [39.92, 44.01] | 41.53 [39.78, 44.85] | 0.001 | 0.006 | 0.432 | 0.004 |
ω3 | 3.25 [2.64, 4.28] | 5.7 [5.29, 6.14] | 5.66 [4.35, 7.16] | 0.001 | 0.004 | 0.770 | 0.010 |
α-Linolenic Acid—C18:3(n-3) | 0.25 [0.21, 0.32] | 0.57 [0.45, 0.69] | 0.56 [0.43, 0.62] | 0.020 | 0.002 | 0.695 | 0.006 |
Stearidonic Acid—C18:4(n-3) | 0.23 [0.1, 0.29] | 0.06 [0.05, 0.07] | 0.06 [0.05, 0.07] | 0.061 | 0.014 | 0.322 | 0.014 |
Eicosapentaenoic Acid—C20:5(n-3) | 0.32 [0.22, 0.73] | 0.79 [0.67, 1.05] | 0.98 [0.63, 1.41] | 0.067 | 0.065 | 0.770 | 0.027 |
Docosahexaenoic Acid—C22:6(n-3) | 2.39 [2.0, 2.96] | 4.25 [3.89, 4.71] | 3.83 [3.16, 4.85] | <0.001 | 0.002 | 0.375 | 0.010 |
ω6 | 29.23 [24.87, 31.44] | 35.22 [34.6, 37.16] | 35.69 [34.3, 37.31] | 0.007 | 0.006 | 0.625 | 0.010 |
Linoleic Acid—C18:2(n-6) | 23.1 [20.59, 25.47] | 24.62 [23.64, 25.88] | 25.55 [23.01, 26.38] | 0.150 | 0.049 | 0.922 | 0.084 |
Eicosadienoic Acid—C20:2(n-6) | 0.23 [0.21, 0.25] | 0.23 [0.2, 0.29] | 0.28 [0.25, 0.29] | 0.082 | 0.557 | 0.492 | 0.020 |
Arachidonic Acid—C20:4(n-6) | 4.87 [3.23, 6.9] | 10.75 [9.03, 12.72] | 9.97 [8.68, 13.3] | 0.008 | 0.006 | 0.695 | 0.004 |
ω3/ω6 Ratio | 0.11 [0.09, 0.15] | 0.15 [0.14, 0.17] | 0.16 [0.12, 0.2] | 0.020 | 0.049 | 0.770 | 0.084 |
PUFA/SFA Ratio | 0.83 [0.75, 0.89] | 1.38 [1.38, 1.51] | 1.33 [1.29, 1.53] | 0.001 | 0.004 | 0.049 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mango, G.; Castagna, A.; Pattini, P.; De Marchi, S.; Spillere, C.; Sadia, K.; Begali, F.; Moruzzi, S.; Martinelli, N.; Marzano, L.; et al. Exploring the Plasma Fatty Acid Signature of Primary Aldosteronism: Comparison with Essential Hypertension and Longitudinal Therapy Effects. Diagnostics 2025, 15, 2465. https://doi.org/10.3390/diagnostics15192465
Mango G, Castagna A, Pattini P, De Marchi S, Spillere C, Sadia K, Begali F, Moruzzi S, Martinelli N, Marzano L, et al. Exploring the Plasma Fatty Acid Signature of Primary Aldosteronism: Comparison with Essential Hypertension and Longitudinal Therapy Effects. Diagnostics. 2025; 15(19):2465. https://doi.org/10.3390/diagnostics15192465
Chicago/Turabian StyleMango, Gabriele, Annalisa Castagna, Patrizia Pattini, Sergio De Marchi, Carlotta Spillere, Khulah Sadia, Francesca Begali, Sara Moruzzi, Nicola Martinelli, Luigi Marzano, and et al. 2025. "Exploring the Plasma Fatty Acid Signature of Primary Aldosteronism: Comparison with Essential Hypertension and Longitudinal Therapy Effects" Diagnostics 15, no. 19: 2465. https://doi.org/10.3390/diagnostics15192465
APA StyleMango, G., Castagna, A., Pattini, P., De Marchi, S., Spillere, C., Sadia, K., Begali, F., Moruzzi, S., Martinelli, N., Marzano, L., Friso, S., & Pizzolo, F. (2025). Exploring the Plasma Fatty Acid Signature of Primary Aldosteronism: Comparison with Essential Hypertension and Longitudinal Therapy Effects. Diagnostics, 15(19), 2465. https://doi.org/10.3390/diagnostics15192465