Next-Generation Sequencing: A Review of Its Transformative Impact on Cancer Diagnosis, Treatment, and Resistance Management
Abstract
1. Introduction
2. NGS: Principles, Technologies, and Workflow
2.1. Fundamental Principles and Evolution of NGS
2.2. NGS Technologies: Comparison with Sanger and PCR
3. Major NGS Platforms: Illumina, Oxford Nanopore, and Pacific Biosciences (PacBio)
3.1. Types of NGS: Whole-Genome, Whole-Exome, and Whole-Transcriptome Sequencing
3.1.1. Whole-Genome Sequencing (WGS)
3.1.2. Whole-Exome Sequencing (WES)
3.1.3. Whole-Transcriptome Sequencing (RNA-Seq)
3.2. The NGS Workflow: From Sample to Insight
3.2.1. Sample Preparation
3.2.2. Sequencing
3.2.3. Bioinformatics Analysis
- Data cleanup: The initial step involves filtering raw sequencing reads to remove low-quality data, adapter sequences, and other artifacts that could interfere with downstream analysis [119]. While sequencing instruments often perform initial cleanup, third-party tools like FastQC can be used for further quality assessment [120,121].
- Alignment/mapping: The cleaned reads are then aligned or mapped to a known reference human genome (e.g., GRCh38) using sophisticated algorithms implemented in software such as BWA or Bowtie2 [122,123]. This process determines the precise genomic location from which each read originated, effectively reconstructing the sequenced genome or transcriptome. Accurate alignment is paramount for reliable variant calling in subsequent steps [124].
- PCR duplicate removal: During library preparation, PCR amplification can lead to multiple identical copies of the same DNA fragment. These PCR duplicates are identified and removed to prevent them from skewing variant calling statistics, ensuring that each original template molecule is counted only once [120].
- Variant calling: This stage involves comparing the aligned read sequences to the reference sequence to identify locations where they differ. Sophisticated algorithms, often implemented in tools like GATK, FreeBayes, and SAMtools, analyze these differences to detect various types of genetic variations. These include SNPs, small insertions and deletions (INDELs), larger structural variations (SVs), and CNVs [125]. The selection of the appropriate variant caller is crucial, as different tools may perform better with specific data types or sequencing technologies [126,127].
- Variant annotation: Raw variants are functionally annotated using tools such as ANNOVAR or Ensembl VEP, integrating information on gene context, predicted functional impact, population frequencies, conservation scores, and known disease associations from curated databases (e.g., ClinVar, COSMIC) [128,129].
- Variant interpretation: This step represents the greatest challenge. Interpretation involves assessing the pathogenicity and clinical significance of detected variants, particularly in the context of VUS or incidental findings. Expert judgment is required to integrate molecular data with clinical context, guided by frameworks such as the ACMG/AMP variant classification guidelines [119,130]. Ethical considerations are especially critical for managing incidental findings unrelated to the primary clinical question [89].
4. Applications of NGS in Modern Cancer Management
4.1. Revolutionizing Cancer Diagnostics: Biomarker Discovery and Comprehensive Genomic Profiling (CGP)
4.1.1. Liquid Biopsy: A Non-Invasive Tool for Diagnosis and Monitoring
4.1.2. Comprehensive Genomic Profiling (CGP) for Tumor Characterization
4.2. Guiding Personalized Cancer Treatment: Targeted Therapies and Immunotherapy
4.2.1. Oncogenic Driver Mutations and Targeted Agents
- EGFR mutations occur in ~15% of lung adenocarcinomas in Western populations and up to 50% in East Asian patients [153,154,155]. These sensitizing mutations (exon 19 deletions, L858R, etc.) predict a strong response to EGFR tyrosine kinase inhibitors (TKIs), which yield significantly higher progression-free survival compared to chemotherapy [156]. Despite initial benefit, resistance inevitably develops. A prominent resistance mechanism is the EGFR T790M mutation, which accounts for 50–60% of acquired resistance to first- and second-generation TKIs [157,158,159].
- Chromosomal ALK rearrangements (most commonly EML4–ALK) are found in ~3–5% of NSCLC cases (especially in younger non-smokers with adenocarcinoma) [160,161]. Several ALK inhibitors have transformed treatment outcomes, with alectinib emerging as a preferred first-line option after the ALEX trial demonstrated a median PFS of 34.8 months compared with 10.9 months for crizotinib [162]. Next-generation inhibitors like lorlatinib offer potent activity against CNS metastases and resistance mutations [163,164].
- KRAS mutations are among the most common oncogenic drivers in NSCLC, present in approximately 25–30% of lung adenocarcinomas [43,161]. The KRAS G12C mutation accounts for ~13% of all KRAS mutations in NSCLC and has emerged as a major therapeutic target. Sotorasib, evaluated in a clinical trial, demonstrated an objective response rate (ORR) of 37% and median progression-free survival (PFS) of 6.8 months in previously treated patients with KRAS G12C-mutated NSCLC [165]. Similarly, adagrasib, assessed in the KRYSTAL-1 study, achieved an ORR of 43% with durable responses in a similar population [166]. These data led to the accelerated approval of both sotorasib and adagrasib for advanced KRAS G12C-mutated NSCLC following prior systemic therapy. However, KRAS-mutated tumors often exhibit co-mutations in genes such as STK11 or KEAP1, which are associated with poor response to immune checkpoint inhibitors and may require combinatorial therapeutic approaches [43].
- BRAF mutations occur in 1–5% of NSCLC cases, predominantly in adenocarcinoma histology [160,167]. The BRAFV600E variant is the most common, found in over 50% of BRAF-mutated cases [168]. These mutations lead to persistent activation of the mitogen-activated protein kinase (MAPK) pathway, driving uncontrolled cell growth and proliferation [169,170]. Targeted therapies, specifically BRAF/MEK inhibitors (e.g., dabrafenib in combination with trametinib), have demonstrated improved overall response rates and progression-free survival in patients with BRAFV600E-mutated NSCLC [160]. Patients with BRAFV600E mutations treated with platinum-based chemotherapy have been associated with worse outcomes [169].
- ROS1 fusions occur in approximately 1–2% of lung adenocarcinomas and are often observed in younger patients with little to no smoking history [171]. These fusions result in constitutively activated ROS1, driving uncontrolled cell growth. A range of targeted therapies, including ROS1-TKIs like crizotinib, entrectinib, lorlatinib, taletrectinib, repotrectinib, and NVL-520, have shown significant efficacy, including activity against brain metastases and some resistant ROS1 mutations (e.g., G2032R) [172,173,174]. Crizotinib was the first FDA-approved ROS1-targeted TKI, achieving an ORR of 72–76% and a median PFS of 15.9–19.3 months in a clinical trial [175].
- Rearrangements in the RET gene drive oncogenesis in 1–2% of NSCLCs and are typically found in younger, non-smoking patients [176,177]. The development of selective RET inhibitors, such as selpercatinib (Retevmo) [178,179] and pralsetinib (Gavreto) [180] (both FDA-approved), has dramatically improved outcomes for patients whose tumors harbor these alterations, moving beyond the modest activity of earlier multi-kinase inhibitors like cabozantinib and vandetanib [176,177].
- MET exon 14 skipping mutations occur in approximately 3–4% of NSCLC cases, with higher prevalence observed in older patients, women, and non-smokers, particularly in lung adenocarcinoma histology [181,182]. This alteration leads to dysregulation of the MET receptor tyrosine kinase and increased responsiveness to specific MET TKIs, including capmatinib, tepotinib, and savolitinib. Capmatinib, approved by the FDA in 2020, is a selective MET-TKI that has shown significant clinical activity in patients with this mutation, including some activity against CNS metastases [181].
- While less common, occurring in 2–4% of NSCLC cases, HER2 mutations are increasingly recognized as actionable targets. Trastuzumab deruxtecan (T-DXd), an antibody-drug conjugate, has become a standard second-line therapy for HER2-mutated NSCLC, and novel HER2-targeted TKIs like zongertinib, poziotinib, and mobocertinib are emerging as promising options [183]. Comprehensive molecular testing, utilizing both tissue and liquid biopsy, is crucial to ensure these mutations are not missed [184].
- Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are rare in lung cancer, accounting for less than 1% of cases, but are highly actionable [185,186]. TRK fusion proteins promote oncogenesis by mediating constitutive cell proliferation and survival [187]. Potent and promising TRK inhibitors, such as larotrectinib [188] and entrectinib [189], have demonstrated encouraging antitumor activity in patients with NTRK-rearranged malignancies.
4.2.2. PD-L1 and Immunotherapy Biomarkers
- Tumor mutational burden (TMB) measures the total number of nonsynonymous mutations in a tumor genome [43,148,196,200]. High TMB can indicate a greater likelihood of neoantigen formation, potentially leading to a stronger immune response. In some cases, a high TMB might be a consideration for immunotherapy even if PD-L1 expression is negative [196,200].
- Microsatellite instability (MSI) high status, caused by defects in DNA mismatch repair, is a strong predictor of immunotherapy benefit in tumors like colorectal cancer. MSI-high is rare in NSCLC, but comprehensive genomic testing can detect it when present [43,148]. Like TMB, MSI is a marker of genomic instability and high neoantigen load. Pembrolizumab has tissue-agnostic approval for MSI-high tumors [190], though MSI-high NSCLC is extremely uncommon [201].
- The presence and characteristics of immune cell infiltrates within the tumor microenvironment are also being investigated as potential biomarkers [199].
4.3. Monitoring Drug Resistance and Disease Progression
4.3.1. Mechanisms of Drug Resistance
4.3.2. NGS and Liquid Biopsy for Real-Time Resistance Detection
5. Challenges and Limitations in Clinical Implementation of NGS
5.1. Technical and Methodological Hurdles
5.2. Cost-Effectiveness and Reimbursement Complexities
5.3. Data Interpretation, Bioinformatics Expertise, and Incidental Findings
5.4. Standardization and Clinical Workflow Integration
6. Future Directions and Emerging Technologies in Cancer Genomics
6.1. AI and Machine Learning (ML) in NGS Data Analysis and Treatment Prediction
6.2. Advanced Genomic Profiling: Single-Cell NGS and Spatial Transcriptomics
6.2.1. Single-Cell RNA Sequencing (scRNA-Seq)
6.2.2. Spatial Transcriptomics
6.3. Multi-Omics Approaches for Holistic Cancer Understanding
6.4. Integration of Nanotechnology in Cancer Diagnostics and Therapeutics
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bizuayehu, H.M.; Ahmed, K.Y.; Kibret, G.D.; Dadi, A.F.; Belachew, S.A.; Bagade, T.; Tegegne, T.K.; Venchiarutti, R.L.; Kibret, K.T.; Hailegebireal, A.H.; et al. Global Disparities of Cancer and Its Projected Burden in 2050. JAMA Netw. Open 2024, 7, e2443198. [Google Scholar] [CrossRef] [PubMed]
- Yazbeck, V.Y.; Villaruz, L.; Haley, M.; Socinski, M.A. Management of Normal Tissue Toxicity Associated With Chemoradiation (Primary Skin, Esophagus, and Lung). Cancer J. 2013, 19, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, O.; Bray, F.; Coleman, M.P.; Vanderpuye, V.; Eniu, A.; Kotha, S.R.; Sarker, M.; Huong, T.T.; Allemani, C.; Dvaladze, A.; et al. The Global Burden of Women’s Cancers: A Grand Challenge in Global Health. Lancet 2017, 389, 847–860. [Google Scholar] [CrossRef]
- Chou, C.-Y.; Shen, T.-T.; Wang, W.-C.; Wu, M.-P. Favorable Breast Cancer Mortality-to-Incidence Ratios of Countries with Good Human Development Index Rankings and High Health Expenditures. Taiwan. J. Obstet. Gynecol. 2024, 63, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Zheng, R.; Zhang, S.; Wang, S.; Chen, R.; Sun, K.; Zeng, H.; Zhou, J.; Wei, W. Global Patterns of Breast Cancer Incidence and Mortality: A Population-based Cancer Registry Data Analysis from 2000 to 2020. Cancer Commun. 2021, 41, 1183–1194. [Google Scholar] [CrossRef]
- Rivera-Franco, M.M.; Leon-Rodriguez, E. Delays in Breast Cancer Detection and Treatment in Developing Countries. Breast Cancer 2018, 12, 1178223417752677. [Google Scholar] [CrossRef]
- Brand, N.R.; Qu, L.G.; Chao, A.; Ilbawi, A.M. Delays and Barriers to Cancer Care in Low- and Middle-Income Countries: A Systematic Review. Oncologist 2019, 24, e1371–e1380. [Google Scholar] [CrossRef]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients With Non–Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824. [Google Scholar] [CrossRef]
- Solta, A.; Ernhofer, B.; Boettiger, K.; Megyesfalvi, Z.; Heeke, S.; Hoda, M.A.; Lang, C.; Aigner, C.; Hirsch, F.R.; Schelch, K.; et al. Small Cells—Big Issues: Biological Implications and Preclinical Advancements in Small Cell Lung Cancer. Mol. Cancer 2024, 23, 41. [Google Scholar] [CrossRef]
- Herbst, R.S.; Giaccone, G.; De Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef]
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; et al. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J. Thorac. Oncol. 2022, 17, 362–387. [Google Scholar] [CrossRef] [PubMed]
- Petty, W.J.; Paz-Ares, L. Emerging Strategies for the Treatment of Small Cell Lung Cancer: A Review. JAMA Oncol. 2023, 9, 419. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gümüş, Z.H.; Colarossi, C.; Memeo, L.; Wang, X.; Kong, C.Y.; Boffetta, P. SCLC: Epidemiology, Risk Factors, Genetic Susceptibility, Molecular Pathology, Screening, and Early Detection. J. Thorac. Oncol. 2023, 18, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Kalemkerian, G.P.; Loo, B.W.; Akerley, W.; Attia, A.; Bassetti, M.; Boumber, Y.; Decker, R.; Dobelbower, M.C.; Dowlati, A.; Downey, R.J.; et al. NCCN Guidelines Insights: Small Cell Lung Cancer, Version 2.2018. J. Natl. Compr. Canc. Netw. 2018, 16, 1171–1182. [Google Scholar] [CrossRef]
- Rudin, C.M.; Poirier, J.T.; Byers, L.A.; Dive, C.; Dowlati, A.; George, J.; Heymach, J.V.; Johnson, J.E.; Lehman, J.M.; MacPherson, D.; et al. Molecular Subtypes of Small Cell Lung Cancer: A Synthesis of Human and Mouse Model Data. Nat. Rev. Cancer 2019, 19, 289–297. [Google Scholar] [CrossRef]
- Lackey, A.; Donington, J. Surgical Management of Lung Cancer. Semin. Interv. Radiol. 2013, 30, 133–140. [Google Scholar] [CrossRef]
- Shin, S.; Kong, S.; Kang, D.; Lee, G.; Cho, J.H.; Shim, Y.M.; Cho, J.; Kim, H.K.; Park, H.Y. Longitudinal Changes in Pulmonary Function and Patient-Reported Outcomes after Lung Cancer Surgery. Respir. Res. 2022, 23, 224. [Google Scholar] [CrossRef]
- Merlo, A.; Carlson, R.; Espey, J.; Williams, B.M.; Balakrishnan, P.; Chen, S.; Dawson, L.; Johnson, D.; Brickey, J.; Pompili, C.; et al. Postoperative Symptom Burden in Patients Undergoing Lung Cancer Surgery. J. Pain Symptom Manag. 2022, 64, 254–267. [Google Scholar] [CrossRef]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The Biology and Management of Non-Small Cell Lung Cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liu, H.; Wu, H.; Liang, S.; Xu, Y. Risk Factors for Radiation Pneumonitis in Lung Cancer Patients with Subclinical Interstitial Lung Disease after Thoracic Radiation Therapy. Radiat. Oncol. 2021, 16, 70. [Google Scholar] [CrossRef] [PubMed]
- Von Itzstein, M.S.; Rashdan, S.; Dahlberg, S.E.; Gerber, D.E.; Sandler, A.B.; Schiller, J.H.; Johnson, D.H.; Wang, Y.; Sun, Z.; Ramalingam, S.S. Incidence and Correlates of High-Grade Chemotherapy-Induced Peripheral Neuropathy in Patients with Lung Cancer. Oncologist 2025, 30, oyaf036. [Google Scholar] [CrossRef] [PubMed]
- Simone, C.B.; Bradley, J.; Chen, A.B.; Daly, M.E.; Louie, A.V.; Robinson, C.G.; Videtic, G.M.M.; Rodrigues, G. ASTRO Radiation Therapy Summary of the ASCO Guideline on Management of Stage III Non-Small Cell Lung Cancer. Pract. Radiat. Oncol. 2023, 13, 195–202. [Google Scholar] [CrossRef]
- De Ruysscher, D.; Faivre-Finn, C.; Nackaerts, K.; Jordan, K.; Arends, J.; Douillard, J.Y.; Ricardi, U.; Peters, S. Recommendation for Supportive Care in Patients Receiving Concurrent Chemotherapy and Radiotherapy for Lung Cancer. Ann. Oncol. 2020, 31, 41–49. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Fountzilas, E.; Nikanjam, M.; Kurzrock, R. Review of Precision Cancer Medicine: Evolution of the Treatment Paradigm. Cancer Treat Rev. 2020, 86, 102019. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J.; Wu, Y.-L.; Paz-Ares, L. Lung Cancer: Current Therapies and New Targeted Treatments. Lancet 2017, 389, 299–311. [Google Scholar] [CrossRef]
- Dienstmann, R.; Vermeulen, L.; Guinney, J.; Kopetz, S.; Tejpar, S.; Tabernero, J. Consensus Molecular Subtypes and the Evolution of Precision Medicine in Colorectal Cancer. Nat. Rev. Cancer 2017, 17, 79–92. [Google Scholar] [CrossRef]
- Stein, M.K.; Oluoha, O.; Patel, K.; VanderWalde, A. Precision Medicine in Oncology: A Review of Multi-Tumor Actionable Molecular Targets with an Emphasis on Non-Small Cell Lung Cancer. JPM 2021, 11, 518. [Google Scholar] [CrossRef]
- Nagl, L.; Pall, G.; Wolf, D.; Pircher, A.; Horvath, L. Molecular Profiling in Lung Cancer. memo 2022, 15, 201–205. [Google Scholar] [CrossRef]
- Volders, P.-J.; Aftimos, P.; Dedeurwaerdere, F.; Martens, G.; Canon, J.-L.; Beniuga, G.; Froyen, G.; Van Huysse, J.; De Pauw, R.; Prenen, H.; et al. A Nationwide Comprehensive Genomic Profiling and Molecular Tumor Board Platform for Patients with Advanced Cancer. npj Precis. Onc. 2025, 9, 66. [Google Scholar] [CrossRef]
- AlDoughaim, M.; AlSuhebany, N.; AlZahrani, M.; AlQahtani, T.; AlGhamdi, S.; Badreldin, H.; Al Alshaykh, H. Cancer Biomarkers and Precision Oncology: A Review of Recent Trends and Innovations. Clin. Med. Insights Oncol. 2024, 18, 11795549241298541. [Google Scholar] [CrossRef]
- Akintunde, O.; Tucker, T.; Carabetta, V.J. The Evolution of Next-Generation Sequencing Technologies. arXiv 2023, arXiv:2305.08724v1. [Google Scholar]
- Ghoreyshi, N.; Heidari, R.; Farhadi, A.; Chamanara, M.; Farahani, N.; Vahidi, M.; Behroozi, J. Next-Generation Sequencing in Cancer Diagnosis and Treatment: Clinical Applications and Future Directions. Discov. Oncol. 2025, 16, 578. [Google Scholar] [CrossRef]
- Mardis, E.R. Next-Generation Sequencing Platforms. Annu. Rev. Anal. Chem. 2013, 6, 287–303. [Google Scholar] [CrossRef]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of Age: Ten Years of next-Generation Sequencing Technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Mandlik, J.S.; Patil, A.S.; Singh, S. Next-Generation Sequencing (NGS): Platforms and Applications. J. Pharm. Bioallied. Sci. 2024, 16, S41–S45. [Google Scholar] [CrossRef]
- van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten Years of Next-Generation Sequencing Technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef]
- Schadt, E.E.; Turner, S.; Kasarskis, A. A Window into Third-Generation Sequencing. Hum. Mol. Genet. 2010, 19, R227–R240. [Google Scholar] [CrossRef] [PubMed]
- Grasso, M.; Boon, E.M.J.; Filipovic-Sadic, S.; van Bunderen, P.A.; Gennaro, E.; Cao, R.; Latham, G.J.; Hadd, A.G.; Coviello, D.A. A Novel Methylation PCR That Offers Standardized Determination of FMR1 Methylation and CGG Repeat Length without Southern Blot Analysis. J. Mol. Diagn. 2014, 16, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Alderton, G.K. Fishing for Exosomes. Nat. Rev. Cancer 2015, 15, 453. [Google Scholar] [CrossRef]
- Kim, J.W.; Na, H.Y.; Lee, S.; Kim, J.-W.; Suh, K.J.; Kim, S.H.; Kim, Y.J.; Lee, K.-W.; Lee, J.S.; Kim, J.; et al. Clinical Implementation of Next-Generation Sequencing Testing and Genomically-Matched Therapy: A Real-World Data in a Tertiary Hospital. Sci. Rep. 2025, 15, 2171. [Google Scholar] [CrossRef]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the Use of Next-Generation Sequencing (NGS) for Patients with Metastatic Cancers: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
- Kamps, R.; Brandão, R.D.; van den Bosch, B.J.; Paulussen, A.D.C.; Xanthoulea, S.; Blok, M.J.; Romano, A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int. J. Mol. Sci. 2017, 18, 308. [Google Scholar] [CrossRef] [PubMed]
- Horak, P.; Fröhling, S.; Glimm, H. Integrating Next-Generation Sequencing into Clinical Oncology: Strategies, Promises and Pitfalls. ESMO Open 2016, 1, e000094. [Google Scholar] [CrossRef] [PubMed]
- Metzker, M.L. Sequencing Technologies—The next Generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef]
- Roychowdhury, S.; Chinnaiyan, A.M. Translating Cancer Genomes and Transcriptomes for Precision Oncology. CA Cancer J. Clin. 2016, 66, 75–88. [Google Scholar] [CrossRef]
- Parkin, N.T.; Avila-Rios, S.; Bibby, D.F.; Brumme, C.J.; Eshleman, S.H.; Harrigan, P.R.; Howison, M.; Hunt, G.; Ji, H.; Kantor, R.; et al. Multi-Laboratory Comparison of Next-Generation to Sanger-Based Sequencing for HIV-1 Drug Resistance Genotyping. Viruses 2020, 12, 694. [Google Scholar] [CrossRef]
- Heather, J.M.; Chain, B. The Sequence of Sequencers: The History of Sequencing DNA. Genomics 2016, 107, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arsenic, R.; Treue, D.; Lehmann, A.; Hummel, M.; Dietel, M.; Denkert, C.; Budczies, J. Comparison of Targeted Next-Generation Sequencing and Sanger Sequencing for the Detection of PIK3CA Mutations in Breast Cancer. BMC Clin. Pathol. 2015, 15, 20. [Google Scholar] [CrossRef]
- Menon, V.; Brash, D.E. Next-Generation Sequencing Methodologies to Detect Low-Frequency Mutations: “Catch Me If You Can”. Mutat. Res. Rev. Mutat. Res. 2023, 792, 108471. [Google Scholar] [CrossRef]
- Logsdon, G.A.; Vollger, M.R.; Eichler, E.E. Long-Read Human Genome Sequencing and Its Applications. Nat. Rev. Genet. 2020, 21, 597–614. [Google Scholar] [CrossRef]
- Novitsky, V.; Nyandiko, W.; Vreeman, R.; DeLong, A.K.; Manne, A.; Scanlon, M.; Ngeresa, A.; Aluoch, J.; Sang, F.; Ashimosi, C.; et al. Added Value of Next Generation over Sanger Sequencing in Kenyan Youth with Extensive HIV-1 Drug Resistance. Microbiol. Spectr. 2022, 10, e0345422. [Google Scholar] [CrossRef]
- Stoler, N.; Nekrutenko, A. Sequencing Error Profiles of Illumina Sequencing Instruments. NAR Genom. Bioinform. 2021, 3, lqab019. [Google Scholar] [CrossRef] [PubMed]
- Manley, L.J.; Ma, D.; Levine, S.S. Monitoring Error Rates In Illumina Sequencing. J. Biomol. Tech. 2016, 27, 125–128. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K.F. Nanopore Sequencing Technology, Bioinformatics and Applications. Nat. Biotechnol. 2021, 39, 1348–1365. [Google Scholar] [CrossRef]
- Koren, S.; Bao, Z.; Guarracino, A.; Ou, S.; Goodwin, S.; Jenike, K.M.; Lucas, J.; McNulty, B.; Park, J.; Rautiainen, M.; et al. Gapless Assembly of Complete Human and Plant Chromosomes Using Only Nanopore Sequencing. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kang, X.; Xu, J.; Luo, X.; Schönhuth, A. Hybrid-Hybrid Correction of Errors in Long Reads with HERO. Genome Biol. 2023, 24, 275. [Google Scholar] [CrossRef] [PubMed]
- Garalde, D.R.; Snell, E.A.; Jachimowicz, D.; Sipos, B.; Lloyd, J.H.; Bruce, M.; Pantic, N.; Admassu, T.; James, P.; Warland, A.; et al. Highly Parallel Direct RNA Sequencing on an Array of Nanopores. Nat. Methods 2018, 15, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; Fiddes, I.T.; et al. Nanopore Sequencing and Assembly of a Human Genome with Ultra-Long Reads. Nat. Biotechnol. 2018, 36, 338–345. [Google Scholar] [CrossRef]
- Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.-C.; Hall, R.J.; Concepcion, G.T.; Ebler, J.; Fungtammasan, A.; Kolesnikov, A.; Olson, N.D.; et al. Accurate Circular Consensus Long-Read Sequencing Improves Variant Detection and Assembly of a Human Genome. Nat. Biotechnol. 2019, 37, 1155–1162. [Google Scholar] [CrossRef]
- Hon, T.; Mars, K.; Young, G.; Tsai, Y.-C.; Karalius, J.W.; Landolin, J.M.; Maurer, N.; Kudrna, D.; Hardigan, M.A.; Steiner, C.C.; et al. Highly Accurate Long-Read HiFi Sequencing Data for Five Complex Genomes. Sci. Data 2020, 7, 399. [Google Scholar] [CrossRef]
- Mahmoud, M.; Huang, Y.; Garimella, K.; Audano, P.A.; Wan, W.; Prasad, N.; Handsaker, R.E.; Hall, S.; Pionzio, A.; Schatz, M.C.; et al. Utility of Long-Read Sequencing for All of Us. Nat. Commun. 2024, 15, 837. [Google Scholar] [CrossRef]
- Ardui, S.; Ameur, A.; Vermeesch, J.R.; Hestand, M.S. Single Molecule Real-Time (SMRT) Sequencing Comes of Age: Applications and Utilities for Medical Diagnostics. Nucleic Acids Res. 2018, 46, 2159–2168. [Google Scholar] [CrossRef]
- Revio Long-Read Sequencing System Performance Enhancements—CD Genomics. Available online: https://www.cd-genomics.com/longseq/resource-pacbio-revio-system.html (accessed on 5 August 2025).
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhen, S.; Ding, P.; Tan, B.; Wang, H.; Liu, W.; Tian, Y.; Zhao, Q. Screening of Differentially Expressed Genes Based on the ACRG Molecular Subtypes of Gastric Cancer and the Significance and Mechanism of AGTR1 Gene Expression. J. Pers. Med. 2023, 13, 560. [Google Scholar] [CrossRef] [PubMed]
- Mody, R.; Wu, Y.-M.; Lonigro, R.J.; Cao, X.; Roychowdhury, S.; Vats, P.; Frank, K.; Prensner, J.R.; Asangani, I.A.; Palanisamy, N.; et al. Integrative Clinical Sequencing in the Management of Refractory or Relapsed Cancer in Youth. JAMA 2015, 314, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Sy, K.; Brezden-Masley, C.; Streutker, C. Histo- And Immunohistochemistry-Based Estimation of the TCGA and ACRG Molecular Subtypes for Gastric Carcinoma and Their Prognostic Significance: A Single-Institution Study. PLoS ONE 2019, 14, e0224812. [Google Scholar] [CrossRef]
- Park, J.W.; Shin, Y.; Kim, T.H.; Kim, D.; Lee, A. Plasma Metabolites as Possible Biomarkers for Diagnosis of Breast Cancer. PLoS ONE 2019, 14, e0225129. [Google Scholar] [CrossRef]
- Marco-Puche, G.; Lois, S.; Benítez, J.; Triviño, J.C. RNA-Seq Perspectives to Improve Clinical Diagnosis. Front. Genet. 2019, 10, 1152. [Google Scholar] [CrossRef]
- Ma, K.-Y.; He, C.; Wendel, B.S.; Williams, C.M.; Xiao, J.; Yang, H.; Jiang, N. Immune Repertoire Sequencing Using Molecular Identifiers Enables Accurate Clonality Discovery and Clone Size Quantification. Front. Immunol. 2018, 9, 33. [Google Scholar] [CrossRef]
- Chen, X.; Qin, W.; Stucky, A.; Zeng, Y.; Gao, S.; Loudon, W.G.; Ho, H.W.; Kabeer, M.H.; Li, S.C.; Zhang, X.; et al. Relapse Pathway of Glioblastoma Revealed by Single-Cell Molecular Analysis. Carcinogenesis 2018, 39, 931–936. [Google Scholar] [CrossRef]
- Liu, S.; Wu, I.; Yu, Y.; Balamotis, M.A.; Ren, B.; Yehezkel, T.B.; Luo, J. Targeted Transcriptome Analysis Using Synthetic Long Read Sequencing Uncovers Isoform Reprograming in the Progression of Colon Cancer. bioRxiv 2020. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, H.; Zhang, B.; Jiang, X.; Yu, M.; Zhu, H.; You, Q.; Wang, L.; Yu, B. Whole Genome Sequencing in Single CTC Improves Clinical Outcome in Her-2 Negative Breast Cancer Patients. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Meyerson, M.; Gabriel, S.; Getz, G. Advances in Understanding Cancer Genomes through Second-Generation Sequencing. Nat. Rev. Genet. 2010, 11, 685–696. [Google Scholar] [CrossRef]
- Muir, P.; Li, S.; Lou, S.; Wang, D.; Spakowicz, D.J.; Salichos, L.; Zhang, J.; Weinstock, G.M.; Isaacs, F.; Rozowsky, J.; et al. The Real Cost of Sequencing: Scaling Computation to Keep Pace with Data Generation. Genome Biol. 2016, 17, 53. [Google Scholar] [CrossRef]
- Schwarze, K.; Buchanan, J.; Taylor, J.C.; Wordsworth, S. Are Whole-Exome and Whole-Genome Sequencing Approaches Cost-Effective? A Systematic Review of the Literature. Genet. Med. 2018, 20, 1122–1130. [Google Scholar] [CrossRef]
- Nurchis, M.C.; Radio, F.C.; Salmasi, L.; Heidar Alizadeh, A.; Raspolini, G.M.; Altamura, G.; Tartaglia, M.; Dallapiccola, B.; Pizzo, E.; Gianino, M.M.; et al. Cost-Effectiveness of Whole-Genome vs Whole-Exome Sequencing Among Children With Suspected Genetic Disorders. JAMA Netw. Open 2024, 7, e2353514. [Google Scholar] [CrossRef]
- The Cost of Sequencing a Human Genome. Available online: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost (accessed on 5 August 2025).
- Alfares, A.; Aloraini, T.; Subaie, L.A.; Alissa, A.; Qudsi, A.A.; Alahmad, A.; Mutairi, F.A.; Alswaid, A.; Alothaim, A.; Eyaid, W.; et al. Whole-Genome Sequencing Offers Additional but Limited Clinical Utility Compared with Reanalysis of Whole-Exome Sequencing. Genet. Med. 2018, 20, 1328–1333. [Google Scholar] [CrossRef]
- Belkadi, A.; Bolze, A.; Itan, Y.; Cobat, A.; Vincent, Q.B.; Antipenko, A.; Shang, L.; Boisson, B.; Casanova, J.-L.; Abel, L. Whole-Genome Sequencing Is More Powerful than Whole-Exome Sequencing for Detecting Exome Variants. Proc. Natl. Acad. Sci. USA 2015, 112, 5473–5478. [Google Scholar] [CrossRef] [PubMed]
- Seaby, E.G.; Pengelly, R.J.; Ennis, S. Exome Sequencing Explained: A Practical Guide to Its Clinical Application. Brief. Funct. Genom. 2016, 15, 374–384. [Google Scholar] [CrossRef]
- Retterer, K.; Juusola, J.; Cho, M.T.; Vitazka, P.; Millan, F.; Gibellini, F.; Vertino-Bell, A.; Smaoui, N.; Neidich, J.; Monaghan, K.G.; et al. Clinical Application of Whole-Exome Sequencing across Clinical Indications. Genet. Med. 2016, 18, 696–704. [Google Scholar] [CrossRef]
- Marshall, C.R.; Chowdhury, S.; Taft, R.J.; Lebo, M.S.; Buchan, J.G.; Harrison, S.M.; Rowsey, R.; Klee, E.W.; Liu, P.; Worthey, E.A.; et al. Best Practices for the Analytical Validation of Clinical Whole-Genome Sequencing Intended for the Diagnosis of Germline Disease. NPJ Genom. Med. 2020, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Eldomery, M.K.; Coban-Akdemir, Z.; Harel, T.; Rosenfeld, J.A.; Gambin, T.; Stray-Pedersen, A.; Küry, S.; Mercier, S.; Lessel, D.; Denecke, J.; et al. Lessons Learned from Additional Research Analyses of Unsolved Clinical Exome Cases. Genome Med. 2017, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Corominas, J.; Smeekens, S.P.; Nelen, M.R.; Yntema, H.G.; Kamsteeg, E.-J.; Pfundt, R.; Gilissen, C. Clinical Exome Sequencing-Mistakes and Caveats. Hum. Mutat. 2022, 43, 1041–1055. [Google Scholar] [CrossRef]
- Burdick, K.J.; Cogan, J.D.; Rives, L.C.; Robertson, A.K.; Koziura, M.E.; Brokamp, E.; Duncan, L.; Hannig, V.; Pfotenhauer, J.; Vanzo, R.; et al. Limitations of Exome Sequencing in Detecting Rare and Undiagnosed Diseases. Am. J. Med. Genet. A 2020, 182, 1400–1406. [Google Scholar] [CrossRef]
- Kalia, S.S.; Adelman, K.; Bale, S.J.; Chung, W.K.; Eng, C.; Evans, J.P.; Herman, G.E.; Hufnagel, S.B.; Klein, T.E.; Korf, B.R.; et al. Recommendations for Reporting of Secondary Findings in Clinical Exome and Genome Sequencing, 2016 Update (ACMG SF v2.0): A Policy Statement of the American College of Medical Genetics and Genomics. Genet. Med. 2017, 19, 249–255. [Google Scholar] [CrossRef]
- Han, Y.; Gao, S.; Muegge, K.; Zhang, W.; Zhou, B. Advanced Applications of RNA Sequencing and Challenges. Bioinform. Biol. Insights 2015, 9, 29–46. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Song, K.; Elboudwarej, E.; Zhao, X.; Zhuo, L.; Pan, D.; Liu, J.; Brachmann, C.; Patterson, S.D.; Yoon, O.K.; Zavodovskaya, M. RNA-Seq RNAaccess Identified as the Preferred Method for Gene Expression Analysis of Low Quality FFPE Samples. PLoS ONE 2023, 18, e0293400. [Google Scholar] [CrossRef] [PubMed]
- Sprang, M.; Möllmann, J.; Andrade-Navarro, M.A.; Fontaine, J.-F. Overlooked Poor-Quality Patient Samples in Sequencing Data Impair Reproducibility of Published Clinically Relevant Datasets. Genome Biol. 2024, 25, 222. [Google Scholar] [CrossRef]
- Imbeaud, S.; Graudens, E.; Boulanger, V.; Barlet, X.; Zaborski, P.; Eveno, E.; Mueller, O.; Schroeder, A.; Auffray, C. Towards Standardization of RNA Quality Assessment Using User-Independent Classifiers of Microcapillary Electrophoresis Traces. Nucleic Acids Res. 2005, 33, e56. [Google Scholar] [CrossRef] [PubMed]
- Gallego Romero, I.; Pai, A.A.; Tung, J.; Gilad, Y. RNA-Seq: Impact of RNA Degradation on Transcript Quantification. BMC Biol. 2014, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhou, Y.; Jia, E.; Pan, M.; Bai, Y.; Ge, Q. Bias in RNA-Seq Library Preparation: Current Challenges and Solutions. Biomed. Res. Int. 2021, 2021, 6647597. [Google Scholar] [CrossRef]
- Su, Q.; Long, Y.; Gou, D.; Quan, J.; Lian, Q. Enhancing RNA-Seq Bias Mitigation with the Gaussian Self-Benchmarking Framework: Towards Unbiased Sequencing Data. BMC Genom. 2024, 25, 904. [Google Scholar] [CrossRef]
- Degen, P.M.; Medo, M. Replicability of Bulk RNA-Seq Differential Expression and Enrichment Analysis Results for Small Cohort Sizes. PLoS Comput. Biol. 2025, 21, e1011630. [Google Scholar] [CrossRef]
- Simoneau, J.; Dumontier, S.; Gosselin, R.; Scott, M.S. Current RNA-Seq Methodology Reporting Limits Reproducibility. Brief Bioinform. 2019, 22, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Rau, A.; Marot, G.; Jaffrézic, F. Differential Meta-Analysis of RNA-Seq Data from Multiple Studies. BMC Bioinform. 2014, 15, 91. [Google Scholar] [CrossRef]
- Viscardi, M.J.; Arribere, J.A. Poly(a) Selection Introduces Bias and Undue Noise in Direct RNA-Sequencing. BMC Genom. 2022, 23, 530. [Google Scholar] [CrossRef]
- Chung, W.; Eum, H.H.; Lee, H.; Lee, K.M.; Lee, H.; Kim, K.-T.; Ryu, H.S.; Kim, S.; Lee, J.E.; Park, Y.H.; et al. Single-Cell RNA-Seq Enables Comprehensive Tumour and Immune Cell Profiling in Primary Breast Cancer. Nat. Commun. 2017, 8, 15081. [Google Scholar] [CrossRef]
- Staaf, J.; Häkkinen, J.; Hegardt, C.; Saal, L.H.; Kimbung, S.; Hedenfalk, I.; Lien, T.G.; Sørlie, T.; Naume, B.; Russnes, H.G.; et al. RNA Sequencing-Based Single Sample Predictors of Molecular Subtype and Risk of Recurrence for Clinical Assessment of Early-Stage Breast Cancer. NPJ Breast Cancer 2022, 8, 94. [Google Scholar] [CrossRef]
- Kong, J.; Ha, D.; Lee, J.; Kim, I.; Park, M.; Im, S.-H.; Shin, K.; Kim, S. Network-Based Machine Learning Approach to Predict Immunotherapy Response in Cancer Patients. Nat. Commun. 2022, 13, 3703. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Jin, N.; Cheng, L.; Huang, C. iDICss Robustly Predicts Melanoma Immunotherapy Response by Synergizing Genomic and Transcriptomic Knowledge via Independent Component Analysis. Clin. Transl. Med. 2025, 15, e70183. [Google Scholar] [CrossRef]
- Huang, C.; Deng, M.; Leng, D.; Sun, B.; Zheng, P.; Zhang, X.D. MIRS: An AI Scoring System for Predicting the Prognosis and Therapy of Breast Cancer. iScience 2023, 26, 108322. [Google Scholar] [CrossRef] [PubMed]
- Mok, S.C.; Bonome, T.; Vathipadiekal, V.; Bell, A.; Johnson, M.E.; Wong, K.; Park, D.-C.; Hao, K.; Yip, D.K.P.; Donninger, H.; et al. A Gene Signature Predictive for Outcome in Advanced Ovarian Cancer Identifies a Survival Factor: Microfibril-Associated Glycoprotein 2. Cancer Cell 2009, 16, 521–532. [Google Scholar] [CrossRef]
- Yang, X.; Wu, Y.; Chen, X.; Qiu, J.; Huang, C. The Transcriptional Landscape of Immune-Response 3′-UTR Alternative Polyadenylation in Melanoma. Int. J. Mol. Sci. 2024, 25, 3041. [Google Scholar] [CrossRef]
- Shi, D.; Mu, S.; Pu, F.; Liu, J.; Zhong, B.; Hu, B.; Ni, N.; Wang, H.; Luu, H.H.; Haydon, R.C.; et al. Integrative Analysis of Immune-Related Multi-Omics Profiles Identifies Distinct Prognosis and Tumor Microenvironment Patterns in Osteosarcoma. Mol. Oncol. 2022, 16, 2174–2194. [Google Scholar] [CrossRef]
- Deveson, I.W.; Gong, B.; Lai, K.; LoCoco, J.S.; Richmond, T.A.; Schageman, J.; Zhang, Z.; Novoradovskaya, N.; Willey, J.C.; Jones, W.; et al. Evaluating the Analytical Validity of Circulating Tumor DNA Sequencing Assays for Precision Oncology. Nat. Biotechnol. 2021, 39, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
- Do, H.; Dobrovic, A. Sequence Artifacts in DNA from Formalin-Fixed Tissues: Causes and Strategies for Minimization. Clin. Chem. 2015, 61, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Levin, Y.; Talsania, K.; Tran, B.; Shetty, J.; Zhao, Y.; Mehta, M. Optimization for Sequencing and Analysis of Degraded FFPE-RNA Samples. J. Vis. Exp. 2020, 160, e61060. [Google Scholar] [CrossRef]
- Duong, H.T.; Pham, P.M.; Tran, N.H.B.; Huynh, P.T.; Hoang, H.T.; Dang, T.H.Q.; Thai, T.A.; Nguyen, C.T.K.; Huynh, N.C.N. Optimizing RNA Extraction and Library Preparation from Oral Squamous Cell Carcinoma FFPE Samples for Next-Generation RNA Sequencing. Biomed. Res. Ther. 2023, 10, 5987–5994. [Google Scholar] [CrossRef]
- Deng, Z.-L.; Münch, P.C.; Mreches, R.; McHardy, A.C. Rapid and Accurate Identification of Ribosomal RNA Sequences via Deep Learning. Nucleic Acids Res. 2022, 50, e60. [Google Scholar] [CrossRef] [PubMed]
- Wahl, A.; Huptas, C.; Neuhaus, K. Comparison of rRNA Depletion Methods for Efficient Bacterial mRNA Sequencing. Sci. Rep. 2022, 12, 5765. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Gamini, R.; Zhang, B.; von Schack, D. Evaluation of Two Main RNA-Seq Approaches for Gene Quantification in Clinical RNA Sequencing: PolyA+ Selection versus rRNA Depletion. Sci. Rep. 2018, 8, 4781. [Google Scholar] [CrossRef]
- Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R.; et al. Accurate Whole Human Genome Sequencing Using Reversible Terminator Chemistry. Nature 2008, 456, 53–59. [Google Scholar] [CrossRef]
- Rehm, H.L.; Berg, J.S.; Brooks, L.D.; Bustamante, C.D.; Evans, J.P.; Landrum, M.J.; Ledbetter, D.H.; Maglott, D.R.; Martin, C.L.; Nussbaum, R.L.; et al. ClinGen—The Clinical Genome Resource. N. Engl. J. Med. 2015, 372, 2235–2242. [Google Scholar] [CrossRef]
- Roy, S.; Coldren, C.; Karunamurthy, A.; Kip, N.S.; Klee, E.W.; Lincoln, S.E.; Leon, A.; Pullambhatla, M.; Temple-Smolkin, R.L.; Voelkerding, K.V.; et al. Standards and Guidelines for Validating Next-Generation Sequencing Bioinformatics Pipelines: A Joint Recommendation of the Association for Molecular Pathology and the College of American Pathologists. J. Mol. Diagn. 2018, 20, 4–27. [Google Scholar] [CrossRef]
- Zverinova, S.; Guryev, V. Variant Calling: Considerations, Practices, and Developments. Hum. Mutat. 2022, 43, 976–985. [Google Scholar] [CrossRef]
- Koboldt, D.C. Best Practices for Variant Calling in Clinical Sequencing. Genome Med. 2020, 12, 91. [Google Scholar] [CrossRef]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM 2013. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef] [PubMed]
- Barbitoff, Y.A.; Abasov, R.; Tvorogova, V.E.; Glotov, A.S.; Predeus, A.V. Systematic Benchmark of State-of-the-Art Variant Calling Pipelines Identifies Major Factors Affecting Accuracy of Coding Sequence Variant Discovery. BMC Genom. 2022, 23, 155. [Google Scholar] [CrossRef] [PubMed]
- Garrison, E.; Marth, G. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, S.; Singer-Berk, M.; Watts, N.A.; Phu, W.; Goodrich, J.K.; Solomonson, M.; Consortium, G.A.D.; Rehm, H.L.; MacArthur, D.G.; ODonnell-Luria, A. Variant Interpretation Using Population Databases: Lessons from gnomAD. Hum. Mutat. 2022, 43, 1012–1030. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Nicora, G.; Zucca, S.; Limongelli, I.; Bellazzi, R.; Magni, P. A Machine Learning Approach Based on ACMG/AMP Guidelines for Genomic Variant Classification and Prioritization. Sci. Rep. 2022, 12, 2517. [Google Scholar] [CrossRef]
- Ballester, P.J.; Carmona, J. Artificial Intelligence for the next Generation of Precision Oncology. npj Precis. Onc. 2021, 5, 79. [Google Scholar] [CrossRef]
- Yan, F.; Da, Q.; Yi, H.; Deng, S.; Zhu, L.; Zhou, M.; Liu, Y.; Feng, M.; Wang, J.; Wang, X.; et al. Artificial Intelligence-Based Assessment of PD-L1 Expression in Diffuse Large B Cell Lymphoma. npj Precis. Onc. 2024, 8, 76. [Google Scholar] [CrossRef]
- Zalis, M.; Viana Veloso, G.G.; Aguiar, P.N., Jr.; Gimenes, N.; Reis, M.X.; Matsas, S.; Ferreira, C.G. Next-Generation Sequencing Impact on Cancer Care: Applications, Challenges, and Future Directions. Front. Genet. 2024, 15. [Google Scholar] [CrossRef] [PubMed]
- Vivancos Sánchez, C.; Esteban Rodríguez, M.I.; Peláez García, A.; Taravilla-Loma, M.; Rodríguez-Domínguez, V.; Rodríguez-Antolín, C.; Rosas-Alonso, R.; Losantos-García, I.; Isla Guerrero, A.; Gandía-González, M.L. Clinical Impact of a Next-Generation Sequencing Approach for Glioblastoma Patients. Cancers 2025, 17, 744. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.; Jackson, J.B.; Coldren, C.; Chandra, P.; Koohestani, F.; Shiller, M.; Auber, R. Tumor Diagnosis Recharacterization Enabled by Comprehensive Genomic Profiling to Guide Precision Medicine Strategy. npj Precis. Onc. 2025, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. A Review of Circulating Tumor DNA (ctDNA) and the Liquid Biopsy in Cancer Diagnosis, Screening, and Monitoring Treatment Response. Med. Sci. Monit. 2025, 31, e949300. [Google Scholar] [CrossRef]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating Liquid Biopsies into the Management of Cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef]
- Aredo, J.V.; Jamali, A.; Zhu, J.; Heater, N.; Wakelee, H.A.; Vaklavas, C.; Anagnostou, V.; Lu, J. Liquid Biopsy Approaches for Cancer Characterization, Residual Disease Detection, and Therapy Monitoring. Am. Soc. Clin. Oncol. Educ. Book 2025, 45, e481114. [Google Scholar] [CrossRef]
- Semenkovich, N.P.; Szymanski, J.J.; Earland, N.; Chauhan, P.S.; Pellini, B.; Chaudhuri, A.A. Genomic Approaches to Cancer and Minimal Residual Disease Detection Using Circulating Tumor DNA. J. Immunother. Cancer 2023, 11, e006284. [Google Scholar] [CrossRef]
- Aggarwal, C.; Thompson, J.C.; Black, T.A.; Katz, S.I.; Fan, R.; Yee, S.S.; Chien, A.L.; Evans, T.L.; Bauml, J.M.; Alley, E.W.; et al. Clinical Implications of Plasma-Based Genotyping With the Delivery of Personalized Therapy in Metastatic Non-Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 173–180. [Google Scholar] [CrossRef]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid Biopsy in Cancer: Current Status, Challenges and Future Prospects. Sig. Transduct. Target Ther. 2024, 9, 336. [Google Scholar] [CrossRef]
- Chae, Y.K.; Oh, M.S. Detection of Minimal Residual Disease Using ctDNA in Lung Cancer: Current Evidence and Future Directions. J. Thorac. Oncol. 2019, 14, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Bartolomucci, A.; Nobrega, M.; Ferrier, T.; Dickinson, K.; Kaorey, N.; Nadeau, A.; Castillo, A.; Burnier, J.V. Circulating Tumor DNA to Monitor Treatment Response in Solid Tumors and Advance Precision Oncology. npj Precis. Onc. 2025, 9, 84. [Google Scholar] [CrossRef]
- Chaudhuri, A.A.; Chabon, J.J.; Lovejoy, A.F.; Newman, A.M.; Stehr, H.; Azad, T.D.; Khodadoust, M.S.; Esfahani, M.S.; Liu, C.L.; Zhou, L.; et al. Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov. 2017, 7, 1394–1403. [Google Scholar] [CrossRef]
- Mouliere, F.; Chandrananda, D.; Piskorz, A.M.; Moore, E.K.; Morris, J.; Ahlborn, L.B.; Mair, R.; Goranova, T.; Marass, F.; Heider, K.; et al. Enhanced Detection of Circulating Tumor DNA by Fragment Size Analysis. Sci. Transl. Med. 2018, 10, eaat4921. [Google Scholar] [CrossRef]
- Kim, H.; Park, K.U. Clinical Circulating Tumor DNA Testing for Precision Oncology. Cancer Res. Treat. 2023, 55, 351–366. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Z.; Zhan, J.; Zhao, X.; Chen, X.; Xiao, L.; Wu, K.; Ma, Y.; Li, M.; Yang, Y.; et al. Utility of Comprehensive Genomic Profiling in Directing Treatment and Improving Patient Outcomes in Advanced Non-Small Cell Lung Cancer. BMC Med. 2021, 19, 223. [Google Scholar] [CrossRef] [PubMed]
- Yates, L.R.; Seoane, J.; Le Tourneau, C.; Siu, L.L.; Marais, R.; Michiels, S.; Soria, J.C.; Campbell, P.; Normanno, N.; Scarpa, A.; et al. The European Society for Medical Oncology (ESMO) Precision Medicine Glossary. Ann. Oncol. 2018, 29, 30–35. [Google Scholar] [CrossRef]
- Zameer, U.; Shaikh, W.; Khan, A.M. A Paradigm Shift in Non-Small-Cell Lung Cancer (NSCLC) Diagnostics: From Single Gene Tests to Comprehensive Genomic Profiling. Cancer Inf. 2024, 23, 11769351241243243. [Google Scholar] [CrossRef]
- Avila, M.; Meric-Bernstam, F. Next-Generation Sequencing for the General Cancer Patient. Clin. Adv. Hematol. Oncol. 2019, 17, 447–454. [Google Scholar]
- Wallenta Law, J.; Bapat, B.; Sweetnam, C.; Mohammed, H.; McBratney, A.; Izano, M.A.; Scannell Bryan, M.; Spencer, S.; Schroeder, B.; Hostin, D.; et al. Real-World Impact of Comprehensive Genomic Profiling on Biomarker Detection, Receipt of Therapy, and Clinical Outcomes in Advanced Non-Small Cell Lung Cancer. JCO Precis. Oncol. 2024, 8, e2400075. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.; Wu, Y.-L.; Thongprasert, S.; Yang, C.-H.; Chu, D.-T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Y.-L.; Chen, G.; Feng, J.; Liu, X.-Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; et al. Erlotinib versus Chemotherapy as First-Line Treatment for Patients with Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer (OPTIMAL, CTONG-0802): A Multicentre, Open-Label, Randomised, Phase 3 Study. Lancet Oncol. 2011, 12, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Au, J.S.-K.; Thongprasert, S.; Srinivasan, S.; Tsai, C.-M.; Khoa, M.T.; Heeroma, K.; Itoh, Y.; Cornelio, G.; Yang, P.-C. A Prospective, Molecular Epidemiology Study of EGFR Mutations in Asian Patients with Advanced Non-Small-Cell Lung Cancer of Adenocarcinoma Histology (PIONEER). J. Thorac. Oncol. 2014, 9, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Hsu, K.-H.; Tseng, J.-S.; Chen, K.-C.; Hsu, C.-H.; Su, K.-Y.; Chen, J.J.W.; Chen, H.-W.; Yu, S.-L.; Yang, T.-Y.; et al. The Association of Acquired T790M Mutation with Clinical Characteristics after Resistance to First-Line Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in Lung Adenocarcinoma. Cancer Res. Treat. 2018, 50, 1294–1303. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, H.S.; Lee, B.; Kim, H.K.; Sun, J.-M.; Ahn, J.S.; Ahn, M.-J.; Park, K.; Lee, S.-H. Genomic Landscape of Acquired Resistance to Third-Generation EGFR Tyrosine Kinase Inhibitors in EGFR T790M-Mutant Non–Small Cell Lung Cancer. Cancer 2020, 126, 2704–2712. [Google Scholar] [CrossRef]
- Lettig, L.; Sahnane, N.; Pepe, F.; Cerutti, R.; Albeni, C.; Franzi, F.; Veronesi, G.; Ogliari, F.; Pastore, A.; Tuzi, A.; et al. EGFR T790M Detection Rate in Lung Adenocarcinomas at Baseline Using Droplet Digital PCR and Validation by Ultra-Deep next Generation Sequencing. Transl. Lung Cancer Res. 2019, 8, 584–592. [Google Scholar] [CrossRef]
- Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance Mechanisms to Osimertinib in EGFR-Mutated Non-Small Cell Lung Cancer. Br. J. Cancer 2019, 121, 725–737. [Google Scholar] [CrossRef]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Hashemi, S.M.S.; Mazieres, J.; Kim, T.M.; Quoix, E.; Souquet, P.-J.; Barlesi, F.; Baik, C.; et al. Phase 2 Study of Dabrafenib Plus Trametinib in Patients With BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J. Thorac. Oncol. 2022, 17, 103–115. [Google Scholar] [CrossRef]
- Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus Trametinib in Patients with Previously Untreated BRAFV600E-Mutant Metastatic Non-Small-Cell Lung Cancer: An Open-Label, Phase 2 Trial. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.-W.; Ou, S.-H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef]
- Wu, J.; Savooji, J.; Liu, D. Second- and Third-Generation ALK Inhibitors for Non-Small Cell Lung Cancer. J. Hematol. Oncol. 2016, 9, 19. [Google Scholar] [CrossRef]
- Camidge, D.R.; Kim, H.R.; Ahn, M.-J.; Yang, J.C.-H.; Han, J.-Y.; Lee, J.-S.; Hochmair, M.J.; Li, J.Y.-C.; Chang, G.-C.; Lee, K.H.; et al. Brigatinib versus Crizotinib in ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2027–2039. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef]
- Jänne, P.A.; Riely, G.J.; Gadgeel, S.M.; Heist, R.S.; Ou, S.-H.I.; Pacheco, J.M.; Johnson, M.L.; Sabari, J.K.; Leventakos, K.; Yau, E.; et al. Adagrasib in Non–Small-Cell Lung Cancer Harboring a KRASG12C Mutation. N. Engl. J. Med. 2022, 387, 120–131. [Google Scholar] [CrossRef]
- O’Leary, C.G.; Andelkovic, V.; Ladwa, R.; Pavlakis, N.; Zhou, C.; Hirsch, F.; Richard, D.; O’Byrne, K. Targeting BRAF Mutations in Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2019, 8. [Google Scholar] [CrossRef]
- Huo, K.-G.; Notsuda, H.; Fang, Z.; Liu, N.F.; Gebregiworgis, T.; Li, Q.; Pham, N.-A.; Li, M.; Liu, N.; Shepherd, F.A.; et al. Lung Cancer Driven by BRAFG469V Mutation Is Targetable by EGFR Kinase Inhibitors. J. Thorac. Oncol. 2022, 17, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Wang, S.; Zhang, F.; Wang, Z.; An, T.; Wang, Y.; Zhuo, M.; Li, J.; Yang, X.; Chen, H.; et al. Prevalence, Genetic Variations and Clinical Outcomes of BRAF-V600 Mutated Advanced NSCLC in China: A Retrospective Real-World Multi-Centre Study. eBioMedicine 2025, 114, 105652. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.E.; Baik, C.S.; Mazieres, J.; Groen, H.J.M.; Melosky, B.; Wolf, J.; Zadeh Vosta Kolaei, F.A.; Wu, W.-H.; Knoll, S.; Ktiouet Dawson, M.; et al. Clinical Outcomes With Dabrafenib Plus Trametinib in a Clinical Trial Versus Real-World Standard of Care in Patients With BRAF-Mutated Advanced NSCLC. JTO Clin. Res. Rep. 2022, 3, 100324. [Google Scholar] [CrossRef] [PubMed]
- Bergethon, K.; Shaw, A.T.; Ou, S.-H.I.; Katayama, R.; Lovly, C.M.; McDonald, N.T.; Massion, P.P.; Siwak-Tapp, C.; Gonzalez, A.; Fang, R.; et al. ROS1 Rearrangements Define a Unique Molecular Class of Lung Cancers. J. Clin. Oncol. 2012, 30, 863–870. [Google Scholar] [CrossRef]
- Panda, G.S.; Noronha, V.; Patil, V.; Joshi, A.; Menon, N.; Kumar, R.; Pai, T.; Shetty, O.; Janu, A.; Chakrabarty, N.; et al. Clinical Outcomes of ROS1-Positive Non-Small Cell Lung Cancer with Limited Access to ROS1-Tyrosine Kinase Inhibitors (TKIs): Experience from an Indian Tertiary Referral Centre. Ecancermedicalscience 2024, 18, 1654. [Google Scholar] [CrossRef]
- Cho, B.C.; Camidge, D.R.; Lin, J.J.; Kim, S.-W.; Solomon, B.; Dziadziuszko, R.; Besse, B.; Goto, K.; de Langen, A.J.; Wolf, J.; et al. OA03.06 Repotrectinib in Patients with ROS1 Fusion-Positive (ROS1+) NSCLC: Update from the Pivotal Phase 1/2 TRIDENT-1 Trial. J. Thorac. Oncol. 2023, 18, S50–S51. [Google Scholar] [CrossRef]
- Ou, S.-H.I.; Hagopian, G.G.; Zhang, S.S.; Nagasaka, M. Comprehensive Review of ROS1 Tyrosine Kinase Inhibitors-Classified by Structural Designs and Mutation Spectrum (Solvent Front Mutation [G2032R] and Central β-Sheet 6 [Cβ6] Mutation [L2086F]). J. Thorac. Oncol. 2024, 19, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.T.; Riely, G.J.; Bang, Y.-J.; Kim, D.-W.; Camidge, D.R.; Solomon, B.J.; Varella-Garcia, M.; Iafrate, A.J.; Shapiro, G.I.; Usari, T.; et al. Crizotinib in ROS1-Rearranged Advanced Non-Small-Cell Lung Cancer (NSCLC): Updated Results, Including Overall Survival, from PROFILE 1001. Ann. Oncol. 2019, 30, 1121–1126. [Google Scholar] [CrossRef]
- Thein, K.Z.; Velcheti, V.; Mooers, B.H.M.; Wu, J.; Subbiah, V. Precision Therapy for RET-Altered Cancers with RET Inhibitors. Trends Cancer 2021, 7, 1074–1088. [Google Scholar] [CrossRef]
- Ke, J.; Huang, S.; Jing, Z.; Duan, M. The Efficacy and Safety of Selective RET Inhibitors in RET Fusion-Positive Non-Small Cell Lung Cancer: A Meta-Analysis. Investig. New Drugs 2023, 41, 768–776. [Google Scholar] [CrossRef]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinib in RET Fusion–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 813–824. [Google Scholar] [CrossRef]
- Drilon, A.; Subbiah, V.; Gautschi, O.; Tomasini, P.; de Braud, F.; Solomon, B.J.; Shao-Weng Tan, D.; Alonso, G.; Wolf, J.; Park, K.; et al. Selpercatinib in Patients With RET Fusion–Positive Non–Small-Cell Lung Cancer: Updated Safety and Efficacy From the Registrational LIBRETTO-001 Phase I/II Trial. JCO 2023, 41, 385–394. [Google Scholar] [CrossRef]
- Lucibello, F.; Gounant, V.; Aldea, M.; Duruisseaux, M.; Perol, M.; Chouaid, C.; Bennouna, J.; Fallet, V.; Renault, A.; Guisier, F.; et al. Real-World Outcomes of Pralsetinib in RET Fusion-Positive NSCLC. JTO Clin. Res. Rep. 2025, 6, 100743. [Google Scholar] [CrossRef]
- Wolf, J.; Hochmair, M.; Han, J.-Y.; Reguart, N.; Souquet, P.-J.; Smit, E.F.; Orlov, S.V.; Vansteenkiste, J.; Nishio, M.; de Jonge, M.; et al. Capmatinib in MET Exon 14-Mutated Non-Small-Cell Lung Cancer: Final Results from the Open-Label, Phase 2 GEOMETRY Mono-1 Trial. Lancet Oncol. 2024, 25, 1357–1370. [Google Scholar] [CrossRef] [PubMed]
- Reungwetwattana, T.; Liang, Y.; Zhu, V.; Ou, S.-H.I. The Race to Target MET Exon 14 Skipping Alterations in Non-Small Cell Lung Cancer: The Why, the How, the Who, the Unknown, and the Inevitable. Lung Cancer 2017, 103, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef]
- Riely, G.J.; Wood, D.E.; Ettinger, D.S.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; et al. Non-Small Cell Lung Cancer, Version 4.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2024, 22, 249–274. [Google Scholar] [CrossRef] [PubMed]
- Overbeck, T.R.; Reiffert, A.; Schmitz, K.; Rittmeyer, A.; Körber, W.; Hugo, S.; Schnalke, J.; Lukat, L.; Hugo, T.; Hinterthaner, M.; et al. NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients. Cancers 2023, 15, 2966. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wei, Y.; Zhang, H.; Jiang, J.; Zhang, P.; Chu, Q. NTRK Fusion in Non-Small Cell Lung Cancer: Diagnosis, Therapy, and TRK Inhibitor Resistance. Front. Oncol. 2022, 12, 864666. [Google Scholar] [CrossRef]
- Amatu, A.; Sartore-Bianchi, A.; Bencardino, K.; Pizzutilo, E.G.; Tosi, F.; Siena, S. Tropomyosin Receptor Kinase (TRK) Biology and the Role of NTRK Gene Fusions in Cancer. Ann. Oncol. 2019, 30, viii5–viii15. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in Patients with TRK Fusion-Positive Solid Tumours: A Pooled Analysis of Three Phase 1/2 Clinical Trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Dunn, D.B. Larotrectinib and Entrectinib: TRK Inhibitors for the Treatment of Pediatric and Adult Patients With NTRK Gene Fusion. J. Adv Pract. Oncol. 2020, 11, 418–423. [Google Scholar] [CrossRef]
- Davis, A.A.; Patel, V.G. The Role of PD-L1 Expression as a Predictive Biomarker: An Analysis of All US Food and Drug Administration (FDA) Approvals of Immune Checkpoint Inhibitors. J. Immunother. Cancer 2019, 7, 278. [Google Scholar] [CrossRef]
- Xu, Y.; Wan, B.; Chen, X.; Zhan, P.; Zhao, Y.; Zhang, T.; Liu, H.; Afzal, M.Z.; Dermime, S.; Hochwald, S.N.; et al. The Association of PD-L1 Expression with the Efficacy of Anti- PD-1/PD-L1 Immunotherapy and Survival of Non-Small Cell Lung Cancer Patients: A Meta-Analysis of Randomized Controlled Trials. Transl. Lung Cancer Res. 2019, 8. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus Docetaxel in Patients with Previously Treated Non-Small-Cell Lung Cancer (OAK): A Phase 3, Open-Label, Multicentre Randomised Controlled Trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, W.; Käsmann, L.; Sorich, M.J.; Tao, H.; Hu, Y. Immunotherapy for Advanced Non-Small Cell Lung Cancer with Negative Programmed Death-Ligand 1 Expression: A Literature Review. Transl. Lung Cancer Res. 2024, 13, 398–422. [Google Scholar] [CrossRef]
- Plass, M.; Olteanu, G.; Dacic, S.; Kern, I.; Zacharias, M.; Popper, H.; Fukuoka, J.; Ishijima, S.; Kargl, M.; Murauer, C.; et al. Comparative Performance of PD-L1 Scoring by Pathologists and AI Algorithms. Histopathology 2025, 87, 90–100. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Y.; Jin, Y.; Zheng, Q.; Shen, L.; Chen, Y.; Li, Y. PD-L1 Expression in Non-Small Cell Lung Cancer: Heterogeneity by Pathologic Types, Tissue Sampling and Metastasis. J. Thorac. Dis. 2021, 13, 4360–4370. [Google Scholar] [CrossRef]
- Xing, S.; Hu, K.; Wang, Y. Tumor Immune Microenvironment and Immunotherapy in Non-Small Cell Lung Cancer: Update and New Challenges. Aging Dis. 2022, 13, 1615–1632. [Google Scholar] [CrossRef]
- Meng, G.; Liu, X.; Ma, T.; Lv, D.; Sun, G. Predictive Value of Tumor Mutational Burden for Immunotherapy in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. PLoS ONE 2022, 17, e0263629. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Papillon-Cavanagh, S.; Doshi, P.; Dobrin, R.; Szustakowski, J.; Walsh, A.M. STK11 and KEAP1 Mutations as Prognostic Biomarkers in an Observational Real-World Lung Adenocarcinoma Cohort. ESMO Open 2020, 5, e000706. [Google Scholar] [CrossRef]
- Sumii, M.; Namba, M.; Tokumo, K.; Yamauchi, M.; Okamoto, W.; Hattori, N.; Sugiyama, K. Concurrent Mutations in STK11 and KEAP1 Cause Treatment Resistance in KRAS Wild-Type Non-Small-Cell Lung Cancer. Intern. Med. 2023, 62, 3001–3004. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Zhang, F.; Xing, Y.; Hu, X.; Zhang, H.; Chen, S.; Li, M.; Peng, C.; Ding, G.; Zhang, D.; et al. Artificial Intelligence-Assisted Score Analysis for Predicting the Expression of the Immunotherapy Biomarker PD-L1 in Lung Cancer. Front. Immunol. 2022, 13, 893198. [Google Scholar] [CrossRef]
- Wang, F.-Y.; Yeh, Y.-C.; Lin, S.-Y.; Wang, S.-Y.; Chen, P.C.-H.; Chou, T.-Y.; Ho, H.-L. Real-World Application of Targeted next-Generation Sequencing for Identifying Molecular Variants in Asian Non-Small-Cell Lung Cancer. BMC Cancer 2025, 25, 715. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, X.; Wu, C.; Qiao, J.; Jin, H.; Li, H. A Protracted War against Cancer Drug Resistance. Cancer Cell Int. 2024, 24, 326. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, X.; Wang, Y.; Zheng, D.; Meng, Q.; Jiang, L.; Yang, S.; Zhang, S.; Zhang, X.; Liu, Y.; et al. Mechanisms of Resistance to Targeted Therapy and Immunotherapy in Non-Small Cell Lung Cancer: Promising Strategies to Overcoming Challenges. Front. Immunol. 2024, 15, 1366260. [Google Scholar] [CrossRef]
- Xiao, H.; Zheng, Y.; Ma, L.; Tian, L.; Sun, Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front. Pharmacol. 2021, 12, 648407. [Google Scholar] [CrossRef]
- Begicevic, R.-R.; Falasca, M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int. J. Mol. Sci. 2017, 18, 2362. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Tang, X.; Peterson, D.R.; Kilari, D.; Chow, C.-W.; Fujimoto, J.; Kalhor, N.; Swisher, S.G.; Stewart, D.J.; Wistuba, I.I.; et al. Copper Transporter CTR1 Expression and Tissue Platinum Concentration in Non-Small Cell Lung Cancer. Lung Cancer 2014, 85, 88–93. [Google Scholar] [CrossRef]
- Khan, S.U.; Fatima, K.; Aisha, S.; Malik, F. Unveiling the Mechanisms and Challenges of Cancer Drug Resistance. Cell Commun. Signal. 2024, 22, 109. [Google Scholar] [CrossRef] [PubMed]
- Olaussen, K.A.; Dunant, A.; Fouret, P.; Brambilla, E.; André, F.; Haddad, V.; Taranchon, E.; Filipits, M.; Pirker, R.; Popper, H.H.; et al. DNA Repair by ERCC1 in Non-Small-Cell Lung Cancer and Cisplatin-Based Adjuvant Chemotherapy. N. Engl. J. Med. 2006, 355, 983–991. [Google Scholar] [CrossRef]
- He, Y.; Chen, D.; Yi, Y.; Zeng, S.; Liu, S.; Li, P.; Xie, H.; Yu, P.; Jiang, G.; Liu, H. Histone Deacetylase Inhibitor Sensitizes ERCC1-High Non-Small-Cell Lung Cancer Cells to Cisplatin via Regulating miR-149. Mol. Ther. Oncolytics 2020, 17, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Shanker, M.; Willcutts, D.; Roth, J.A.; Ramesh, R. Drug Resistance in Lung Cancer. Lung Cancer 2010, 1, 23–36. [Google Scholar] [PubMed]
- Lord, R.V.N.; Brabender, J.; Gandara, D.; Alberola, V.; Camps, C.; Domine, M.; Cardenal, F.; Sánchez, J.M.; Gumerlock, P.H.; Tarón, M.; et al. Low ERCC1 Expression Correlates with Prolonged Survival after Cisplatin plus Gemcitabine Chemotherapy in Non-Small Cell Lung Cancer. Clin. Cancer Res. 2002, 8, 2286–2291. [Google Scholar]
- Ashrafi, A.; Akter, Z.; Modareszadeh, P.; Modareszadeh, P.; Berisha, E.; Alemi, P.S.; Chacon Castro, M.d.C.; Deese, A.R.; Zhang, L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers 2022, 14, 4562. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Yang, R.; Zhang, Y.; Guo, M.; Takehiro, K.; Zhan, M.; Yang, L.; Wang, H. Molecular Mechanisms and Therapeutic Strategies in Overcoming Chemotherapy Resistance in Cancer. Mol. Biomed. 2025, 6, 2. [Google Scholar] [CrossRef]
- Nesic, K.; Parker, P.; Swisher, E.M.; Krais, J.J. DNA Repair and the Contribution to Chemotherapy Resistance. Genome Med. 2025, 17, 62. [Google Scholar] [CrossRef]
- Alam, M.; Alam, S.; Shamsi, A.; Adnan, M.; Elasbali, A.M.; Al-Soud, W.A.; Alreshidi, M.; Hawsawi, Y.M.; Tippana, A.; Pasupuleti, V.R.; et al. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front. Oncol. 2022, 12, 869672. [Google Scholar] [CrossRef]
- Cho, B.C.; Han, J.-Y.; Kim, S.-W.; Lee, K.H.; Cho, E.K.; Lee, Y.-G.; Kim, D.-W.; Kim, J.-H.; Lee, G.-W.; Lee, J.-S.; et al. A Phase 1/2 Study of Lazertinib 240 Mg in Patients With Advanced EGFR T790M-Positive NSCLC After Previous EGFR Tyrosine Kinase Inhibitors. J. Thorac. Oncol. 2022, 17, 558–567. [Google Scholar] [CrossRef]
- Camidge, D.R.; Pao, W.; Sequist, L.V. Acquired Resistance to TKIs in Solid Tumours: Learning from Lung Cancer. Nat. Rev. Clin. Oncol. 2014, 11, 473–481. [Google Scholar] [CrossRef]
- Cho, B.C.; Lu, S.; Felip, E.; Spira, A.I.; Girard, N.; Lee, J.-S.; Lee, S.-H.; Ostapenko, Y.; Danchaivijitr, P.; Liu, B.; et al. Amivantamab plus Lazertinib in Previously Untreated EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2024, 391, 1486–1498. [Google Scholar] [CrossRef]
- Song, J.; Yang, P.; Chen, C.; Ding, W.; Tillement, O.; Bai, H.; Zhang, S. Targeting Epigenetic Regulators as a Promising Avenue to Overcome Cancer Therapy Resistance. Sig. Transduct. Target Ther. 2025, 10, 219. [Google Scholar] [CrossRef]
- McGowan, P.; Hyter, S.; Cui, W.; Plummer, R.; Godwin, A.K.; Zhang, D. Comparison of Flow Cytometry and Next-generation Sequencing in Minimal Residual Disease Monitoring of Acute Myeloid Leukemia: One Institute’s Practical Clinical Experience. Int. J. Lab. Hematol. 2021, 44, 118–126. [Google Scholar] [CrossRef]
- Sánchez, R.; Ayala, R.; Martínez-López, J. Minimal Residual Disease Monitoring With Next-Generation Sequencing Methodologies in Hematological Malignancies. Int. J. Mol. Sci. 2019, 20, 2832. [Google Scholar] [CrossRef]
- Press, R.D.; Eickelberg, G.; Froman, A.; Yang, F.; Stentz, A.; Flatley, E.; Fan, G.; Lim, J.Y.; Meyers, G.; Maziarz, R.T.; et al. Next-generation Sequencing-defined Minimal Residual Disease Before Stem Cell Transplantation Predicts Acute Myeloid Leukemia Relapse. Am. J. Hematol. 2019, 94, 902–912. [Google Scholar] [CrossRef]
- Zhong, L.; Chen, J.; Huang, X.; Li, Y.; Jiang, T. Monitoring Immunoglobulin Heavy Chain and T-cell Receptor Gene Rearrangement in cfDNA as Minimal Residual Disease Detection for Patients With Acute Myeloid Leukemia. Oncol. Lett. 2018, 16, 2279–2288. [Google Scholar] [CrossRef]
- Colmenares, R.; Álvarez, N.; Barrio, S.; Martínez-López, J.; Ayala, R. The Minimal Residual Disease Using Liquid Biopsies in Hematological Malignancies. Cancers 2022, 14, 1310. [Google Scholar] [CrossRef] [PubMed]
- Vashisht, V.; Vashisht, A.; Mondal, A.K.; Woodall, J.; Kolhe, R. From Genomic Exploration to Personalized Treatment: Next-Generation Sequencing in Oncology. Curr. Issues Mol. Biol. 2024, 46, 12527–12549. [Google Scholar] [CrossRef]
- Wästerlid, T.; Cavelier, L.; Haferlach, C.; Konopleva, M.; Fröhling, S.; Östling, P.; Bullinger, L.; Fioretos, T.; Smedby, K.E. Application of Precision Medicine in Clinical Routine in Haematology—Challenges and Opportunities. J. Intern. Med. 2022, 292, 243–261. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.L.; Milan, M.S.D.; Tamen, R.M.; Bertram, A.A.; Michael, K.; Ricciuti, B.; Kehl, K.L.; Awad, M.M.; Sholl, L.M.; Paweletz, C.P.; et al. Plasma cfDNA Genotyping in Hospitalized Patients With Suspected Metastatic NSCLC. JCO Precis. Oncol. 2021, 5, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Lou, F.; Ma, Y.; Li, J.; Yang, B.; Chen, W.; Ye, H.; Zhang, J.-B.; Zhao, M.-Y.; Wu, W.; et al. Circulating Tumor DNA Detection in Lung Cancer Patients Before and After Surgery. Sci. Rep. 2016, 6, 33519. [Google Scholar] [CrossRef]
- Drilon, A.; Wang, L.; Arcila, M.E.; Balasubramanian, S.; Greenbowe, J.; Ross, J.S.; Stephens, P.; Lipson, D.; Miller, V.A.; Kris, M.G.; et al. Broad, Hybrid Capture–Based Next-Generation Sequencing Identifies Actionable Genomic Alterations in Lung Adenocarcinomas Otherwise Negative for Such Alterations by Other Genomic Testing Approaches. Clin. Cancer Res. 2015, 21, 3631–3639. [Google Scholar] [CrossRef]
- Huang, C.; Du, M.; Wang, L. Bioinformatics Analysis for Circulating Cell-Free DNA in Cancer. Cancers 2019, 11, 805. [Google Scholar] [CrossRef]
- Hollanda, C.N.; Moura Gualberto, A.C.; Motoyama, A.B.; Silva, F.P. Advancing Leukemia Management Through Liquid Biopsy: Insights Into Biomarkers and Clinical Utility. Cancers 2025, 17, 1438. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Zhang, H.; Cao, H.; Mao, J.; Chen, X.; Wang, L.; Zhang, N.; Luo, P.; Xue, J.; et al. Liquid Biopsy for Human Cancer: Cancer Screening, Monitoring, and Treatment. MedComm 2024, 5, e564. [Google Scholar] [CrossRef]
- Basyuni, S.; Heskin, L.; Degasperi, A.; Black, D.; Koh, G.C.C.; Chmelova, L.; Rinaldi, G.; Bell, S.; Grybowicz, L.; Elgar, G.; et al. Large-Scale Analysis of Whole Genome Sequencing Data from Formalin-Fixed Paraffin-Embedded Cancer Specimens Demonstrates Preservation of Clinical Utility. Nat. Commun. 2024, 15, 7731. [Google Scholar] [CrossRef] [PubMed]
- Marino, P.; Touzani, R.; Perrier, L.; Rouleau, E.; Kossi, D.S.; Zhaomin, Z.; Charrier, N.; Goardon, N.; Preudhomme, C.; Durand-Zaleski, I.; et al. Cost of Cancer Diagnosis Using Next-Generation Sequencing Targeted Gene Panels in Routine Practice: A Nationwide French Study. Eur. J. Hum. Genet. 2018, 26, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Tan, O.; Shrestha, R.; Cunich, M.; Schofield, D.J. Application of Next-Generation Sequencing to Improve Cancer Management: A Review of the Clinical Effectiveness and Cost-Effectiveness. Clin. Genet. 2018, 93, 533–544. [Google Scholar] [CrossRef]
- Potter, S.S. Single-Cell RNA Sequencing for the Study of Development, Physiology and Disease. Nat. Rev. Nephrol. 2018, 14, 479–492. [Google Scholar] [CrossRef] [PubMed]
- De Zuani, M.; Xue, H.; Park, J.S.; Dentro, S.C.; Seferbekova, Z.; Tessier, J.; Curras-Alonso, S.; Hadjipanayis, A.; Athanasiadis, E.I.; Gerstung, M.; et al. Single-Cell and Spatial Transcriptomics Analysis of Non-Small Cell Lung Cancer. Nat. Commun. 2024, 15, 4388. [Google Scholar] [CrossRef]
- Ståhl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss, M.; et al. Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics. Science 2016, 353, 78–82. [Google Scholar] [CrossRef]
- Moncada, R.; Barkley, D.; Wagner, F.; Chiodin, M.; Devlin, J.C.; Baron, M.; Hajdu, C.H.; Simeone, D.M.; Yanai, I. Integrating Microarray-Based Spatial Transcriptomics and Single-Cell RNA-Seq Reveals Tissue Architecture in Pancreatic Ductal Adenocarcinomas. Nat. Biotechnol. 2020, 38, 333–342. [Google Scholar] [CrossRef]
- Liu, J.; Li, W.; Wu, L. Pan-Cancer Analysis Suggests Histocompatibility Minor 13 Is an Unfavorable Prognostic Biomarker Promoting Cell Proliferation, Migration, and Invasion in Hepatocellular Carcinoma. Front. Pharmacol. 2022, 13, 950156. [Google Scholar] [CrossRef]
- Tang, M.; Antić, Ž.; Fardzadeh, P.; Pietzsch, S.; Schröder, C.; Eberhardt, A.; van Bömmel, A.; Escherich, G.; Hofmann, W.; Horstmann, M.A.; et al. An Artificial Intelligence-Assisted Clinical Framework to Facilitate Diagnostics and Translational Discovery in Hematologic Neoplasia. Ebiomedicine 2024, 104, 105171. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ma, N.; Li, X.; Gou, Y.; Duan, Y.; Liu, B.; Xia, J.; Zhao, X.; Wang, X.; Li, Q.; et al. Advances in Single-Cell RNA Sequencing and Its Applications in Cancer Research. J. Hematol. Oncol. 2023, 16, 98. [Google Scholar] [CrossRef] [PubMed]
- Tirosh, I.; Suvà, M.L. Dissecting Human Gliomas by Single-Cell RNA Sequencing. Neuro Oncol. 2018, 20, 37–43. [Google Scholar] [CrossRef]
- Kinker, G.S.; Greenwald, A.C.; Tal, R.; Orlova, Z.; Cuoco, M.S.; McFarland, J.M.; Warren, A.; Rodman, C.; Roth, J.A.; Bender, S.A.; et al. Pan-Cancer Single-Cell RNA-Seq Identifies Recurring Programs of Cellular Heterogeneity. Nat. Genet. 2020, 52, 1208–1218. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Hao, Y.; Li, X.; Qi, Y.; Xin, M.; Xiao, Q.; Wang, P. Characterizing the Metabolic and Immune Landscape of Non-Small Cell Lung Cancer Reveals Prognostic Biomarkers Through Omics Data Integration. Front. Cell Dev. Biol. 2021, 9, 702112. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M.; Zheng, S.; Butler, A.; Lee, M.; Wilk, A.J.; Darby, C.A.; Zager, M.; et al. Integrated Analysis of Multimodal Single-Cell Data. Cell 2021, 184, 3573–3587.e29. [Google Scholar] [CrossRef]
- Lee, H.W.; Chung, W.; Lee, H.; Jeong, D.E.; Jo, A.; Lim, J.E.; Hong, J.H.; Nam, D.; Jeong, B.C.; Park, S.H.; et al. Single-Cell RNA Sequencing Reveals the Tumor Microenvironment and Facilitates Strategic Choices to Circumvent Treatment Failure in a Chemorefractory Bladder Cancer Patient. Genome Med. 2020, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Yu, X.; Segura, C.M.; Xu, H.; Li, T.; Davis, J.; Vosoughi, A.; Grass, G.D.; Li, R.; Wang, X. ROICellTrack: A Deep Learning Framework for Integrating Cellular Imaging Modalities in Subcellular Spatial Transcriptomic Profiling of Tumor Tissues. Bioinformatics 2025, 41, btaf152. [Google Scholar] [CrossRef]
- Peng, Z.; Ye, M.; Ding, H.; Feng, Z.; Hu, K. Spatial Transcriptomics Atlas Reveals the Crosstalk Between Cancer-Associated Fibroblasts and Tumor Microenvironment Components in Colorectal Cancer. J. Transl. Med. 2022, 20, 302. [Google Scholar] [CrossRef]
- Natarajan, K.N.; Miao, Z.; Jiang, M.; Huang, X.; Zhou, H.; Xie, J.; Wang, C.; Qin, S.; Zhao, Z.; Wu, L.; et al. Comparative Analysis of Sequencing Technologies for Single-Cell Transcriptomics. Genome Biol. 2019, 20, 70. [Google Scholar] [CrossRef]
- Tian, L.; Jabbari, J.S.; Thijssen, R.; Gouil, Q.; Amarasinghe, S.L.; Voogd, O.; Kariyawasam, H.; Du, M.R.M.; Schuster, J.; Wang, C.; et al. Comprehensive Characterization of Single-Cell Full-Length Isoforms in Human and Mouse With Long-Read Sequencing. Genome Biol. 2021, 22, 310. [Google Scholar] [CrossRef] [PubMed]
- Chamberlin, J.; Gillen, A.E.; Quinlan, A.R. Improved Characterization of Single-Cell RNA-Seq Libraries With Paired-End Avidity Sequencing. bioRxiv 2024. [Google Scholar] [CrossRef]
- Schieck, M.; Lentes, J.; Thomay, K.; Hofmann, W.; Behrens, Y.L.; Hagedorn, M.; Ebersold, J.; Davenport, C.; Fazio, G.; Möricke, A.; et al. Implementation of RNA Sequencing and Array CGH in the Diagnostic Workflow of the AIEOP-BFM ALL 2017 Trial on Acute Lymphoblastic Leukemia. Ann. Hematol. 2020, 99, 809–818. [Google Scholar] [CrossRef]
- Gu, Z.; Churchman, M.L.; Roberts, K.G.; Moore, I.; Zhou, X.; Nakitandwe, J.; Hagiwara, K.; Pelletier, S.W.; Gingras, S.; Berns, H.; et al. PAX5-Driven Subtypes of B-Progenitor Acute Lymphoblastic Leukemia. Nat. Genet. 2019, 51, 296–307. [Google Scholar] [CrossRef]
- Qin, H.; Wang, J.; Liao, B.; Liu, Z.; Shi, F.; Wang, R. 6-Phosphofructo-2-Kinase as Therapeutic Targets in Cancer Based on an Integrated Pan-Cancer Study6-Phosphofructo-2-Kinase as Therapeutic Targets in Cancer Based on an Integrated Pan-Cancer Study. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, J. Pan-Cancer Transcriptional Regulatory Network Analysis Reveals Key Drivers and Epigenetic Modulators in Tumorigenesis. bioRxiv 2025. [Google Scholar] [CrossRef]
- Chen, W.; Peng, L.; Zeng, X.; Wen, W.; Sun, W. Predictors of Myelosuppression for Patients with Head and Neck Squamous Cell Carcinoma After Induction Chemotherapy. Clin. Med. Insights Oncol. 2024, 18, 11795549231219497. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, Y.; Yang, J.; Zhao, X.; Wei, X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front. Cell Dev. Biol. 2020, 8, 758. [Google Scholar] [CrossRef]
- Lai, S.; Ma, L.; Weigao, E.; Ye, F.; Chen, H.; Han, X.; Guo, G. Mapping a Mammalian Adult Adrenal Gland Hierarchy Across Species by Microwell-Seq. Cell Regen. 2020, 9, 11. [Google Scholar] [CrossRef]
- Vandenbempt, V. Validation of Single-cell Transcriptomic Profiles From Illumina and MGI Tech Sequencing Platforms. FEBS Lett. 2025, 599, 2533–2542. [Google Scholar] [CrossRef]
- Jeon, S.A.; Park, J.; Kim, J.-H.; Kim, J.; Kim, Y.S.; Kim, J.C.; Kim, S. Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 Sequencing Platforms for RNA Sequencing. Genom. Inform. 2019, 17, e32. [Google Scholar] [CrossRef]
- Gao, J.; Li, Z.; Lu, Q.; Zhong, J.; Pan, L.; Feng, C.; Tang, S.; Wang, X.; Tao, Y.; Lin, J.; et al. Single-Cell RNA Sequencing Reveals Cell Subpopulations in the Tumor Microenvironment Contributing to Hepatocellular Carcinoma. Front. Cell Dev. Biol. 2023, 11, 1194199. [Google Scholar] [CrossRef] [PubMed]
- Andor, N.; Maley, C.C.; Ji, H.P. Genomic Instability in Cancer: Teetering on the Limit of Tolerance. Cancer Res. 2017, 77, 2179–2185. [Google Scholar] [CrossRef]
- Berglund, E.; Maaskola, J.; Schultz, N.; Friedrich, S.; Marklund, M.; Bergenstråhle, J.; Tarish, F.; Tanoglidi, A.; Vickovic, S.; Larsson, L.; et al. Spatial Maps of Prostate Cancer Transcriptomes Reveal an Unexplored Landscape of Heterogeneity. Nat. Commun. 2018, 9, 2419. [Google Scholar] [CrossRef] [PubMed]
- Thrane, K.; Eriksson, H.; Maaskola, J.; Hansson, J.; Lundeberg, J. Spatially Resolved Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage III Cutaneous Malignant Melanoma. Cancer Res. 2018, 78, 5970–5979. [Google Scholar] [CrossRef]
- He, B.; Bergenstråhle, L.; Stenbeck, L.; Abid, A.; Andersson, A.; Borg, Å.; Maaskola, J.; Lundeberg, J.; Zou, J. Integrating Spatial Gene Expression and Breast Tumour Morphology via Deep Learning. Nat. Biomed. Eng. 2020, 4, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-Omics Approaches to Disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Snyder, M.P. Integrative Omics for Health and Disease. Nat. Rev. Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef]
- Argelaguet, R.; Velten, B.; Arnol, D.; Dietrich, S.; Zenz, T.; Marioni, J.C.; Buettner, F.; Huber, W.; Stegle, O. Multi-Omics Factor Analysis—A Framework for Unsupervised Integration of Multi-Omics Data Sets. Mol. Syst. Biol. 2018, 14, e8124. [Google Scholar] [CrossRef]
- Wang, Q.; Armenia, J.; Zhang, C.; Penson, A.V.; Reznik, E.; Zhang, L.; Minet, T.; Ochoa, A.; Gross, B.E.; Iacobuzio-Donahue, C.A.; et al. Unifying Cancer and Normal RNA Sequencing Data from Different Sources. Sci. Data 2018, 5, 180061. [Google Scholar] [CrossRef] [PubMed]
- Rappoport, N.; Shamir, R. Multi-Omic and Multi-View Clustering Algorithms: Review and Cancer Benchmark. Nucleic Acids Res. 2018, 46, 10546–10562. [Google Scholar] [CrossRef]
- Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in Cancer Therapy: Challenges, Opportunities, and Clinical Applications. J. Control. Release 2015, 200, 138–157. [Google Scholar] [CrossRef]
- Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer Nanomedicine: Progress, Challenges and Opportunities. Nat. Rev. Cancer 2017, 17, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-Responsive Nanocarriers for Drug Delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
Aspect | Sanger Sequencing [46] | Next-Generation Sequencing (NGS) [35,36,52] |
---|---|---|
Throughput | Single DNA fragment at a time | Massively parallel; millions of fragments simultaneously |
Sensitivity (detection limit) | Low (~15–20%) | High (down to 1% for low-frequency variants) |
Cost-effectiveness | Cost-effective for 1–20 targets, high for large regions | Cost-effective for high sample volumes/many targets |
Discovery power | Limited; interrogates a gene of interest | High; detects novel or rare variants with deep sequencing |
Read length | Typically, up to 1000 base pairs | Short (75–300 bp) to Ultra-long (100,000+ bp) |
Workflow | Labor-intensive, serial processing | High-throughput, automated workflows |
Data output | Small, limited DNA snapshot | Massive datasets, comprehensive genomic coverage |
Primary use | Validation of NGS results, single gene analysis | Comprehensive genomic profiling, discovery, and large-scale studies |
Turnaround time | Years for the whole genome | About a week for the whole genome |
Variant detection capability | Limited to specific regions; single gene analysis | Single-base resolution; detects SNPs, indels, CNVs, SVs, and large chromosomal rearrangements |
Aspect | Illumina [35,36,46] | Oxford Nanopore Technologies (ONT) [52,59,60] | Pacific Biosciences (PacBio) [61,64,66] |
---|---|---|---|
Sequencing chemistry/Principle | Sequencing by Synthesis (SBS) | Nanopore sequencing (direct reading of single molecules) | Single-Molecule Real-Time (SMRT) sequencing |
Read length | Short (typically 75–300 bp) | Ultra-long (tens of thousands to 100,000+ bp) | Long (up to 100,000 bp, routinely 15–25 kb HiFi reads) |
Accuracy/Error rate | High (0.1–0.5%) | Traditionally higher (10–15%), improving with Q20+ chemistry and duplex reads | Traditionally higher (10–15%), improving with HiFi reads (circular consensus sequencing) |
Throughput | Very high (millions of reads per run) | Variable, real-time data acquisition | Relatively lower than Illumina |
Cost-effectiveness | Most cost-effective for short-read sequencing (per Gb often < $50) | Improving with newer platforms (e.g., PromethION) | Improving with newer platforms (e.g., Revio) |
Key applications | Genome resequencing, transcriptomics, genome-wide association studies (GWAS), WES, RNA-seq, ChIP-seq, Hi-C | De novo genome assembly, structural variant detection, haplotype phasing, rapid diagnostics, telomere-to-telomere sequencing, repeat-rich regions | Full-length transcript sequencing, metagenomics, epigenomics, large indel detection, complex genomic regions (high GC, repetitive) |
Bioinformatics complexity | Easier to work with, mature, and stable tools | More challenging initially, but improving tools, pipeline design depends on the project goal | More challenging initially, but improving tools, pipeline design depends on the project goal |
NGS Type | Targeted Region | Primary Applications | Key Advantages | Key Limitations |
---|---|---|---|---|
WGS [78,81,82] | Entire human genome | Comprehensive variant detection (SNPs, indels, SVs, CNVs), identification of disease-influencing factors, and disease evolution tracking | Most comprehensive genomic coverage, unbiased detection of variants across coding and non-coding regions | Highest cost, massive data volume requiring extensive storage and analysis, challenges in interpreting non-coding variants, limitations in detecting certain complex structural variants or repeats |
WES [83,87,88] | Protein-coding exons (exome) (~1% of genome) | Identifying genetic causes of rare diseases, detection of known disease-causing variants in coding regions | More cost-effective than WGS, focused on clinically relevant coding regions, generates fewer variants of uncertain significance (VUS) than WGS | Misses variants in non-coding regions (except canonical splice sites) [25], less reliable for detecting Copy Number Variants (CNVs) and large structural rearrangements, may not detect mosaicism reliably, technical challenges in some regions (pseudogenes, repeats), risk of incidental findings |
RNA-Seq [90,93,96,99] | RNA transcripts (gene expression) | Gene expression profiling, detection of alternative splicing and transcript isoforms, fusion gene detection, biomarker discovery | Provides dynamic view of gene activity, detects novel transcripts, provides insights into regulatory elements and pathways | RNA prone to degradation, library preparation biases, data complexity, and interpretation challenges, may not fully represent post-transcriptional modifications, lack of standardization affects reproducibility, costly, onerous, and time-intensive workflow |
Biomarker | Role/ Mechanism | Assessment Method | Clinical Implications | Challenges/ Limitations |
---|---|---|---|---|
PD-L1 expression [12,191,192,193,194] | Ligand binding to PD-1 on T cells, suppressing immune response and promoting immune evasion | Immunohistochemistry (IHC) with various cut-offs (1%, 5%, 10%, 50%) | Higher expression associated with worse overall survival in early NSCLC; predictive of benefit from immune checkpoint inhibitors | Imprecise relationship with therapeutic benefit; assay variability; tumor heterogeneity (spatial and temporal); some PD-L1 negative patients still benefit |
TMB [43,200] | Total number of somatic mutations in a tumor; higher TMB often correlates with more neoantigens | NGS-based comprehensive genomic profiling | Potential predictor of immunotherapy response; may indicate benefit even in PD-L1 negative cases | Requires further validation and standardization across different cancer types and assays |
MSI [43,201] | Genomic instability due to defects in DNA mismatch repair | NGS-based comprehensive genomic profiling | Predicts response to immune checkpoint inhibitors in certain tumor types (e.g., colorectal cancer) | Requires further standardization and understanding of its full predictive value in various cancers |
Genetic alterations [159,202] (e.g., KRAS co-mutations) | Influence tumor immune resistance or sensitivity to specific therapies | NGS-based genomic profiling | May indicate resistance to single-agent immunotherapy, suggesting need for combination therapies (e.g., KRAS/SDK11 or KRAS/KEAP1 co-mutations) | Complex interplay of multiple mutations; requires comprehensive genomic analysis for detection and interpretation |
Immune cell infiltrates [43,199] | Composition and density of immune cells within the tumor microenvironment | Immunohistochemistry, flow cytometry, spatial transcriptomics | May indicate a “hot” tumor more likely to respond to immunotherapy | Challenging to quantify and standardize; dynamic nature of immune microenvironment |
Circulating biomarkers (e.g., ctDNA) [145,147] | Tumor-derived molecules in blood reflecting real-time tumor evolution | NGS-based liquid biopsy | Potential for early detection of resistance, monitoring response, and novel biomarker discovery | Low analyte concentration in early stages; challenges in purification and isolation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaic, A.; Motofelea, N.; Hoinoiu, T.; Motofelea, A.C.; Leancu, I.C.; Stan, E.; Gheorghe, S.R.; Dutu, A.G.; Crintea, A. Next-Generation Sequencing: A Review of Its Transformative Impact on Cancer Diagnosis, Treatment, and Resistance Management. Diagnostics 2025, 15, 2425. https://doi.org/10.3390/diagnostics15192425
Isaic A, Motofelea N, Hoinoiu T, Motofelea AC, Leancu IC, Stan E, Gheorghe SR, Dutu AG, Crintea A. Next-Generation Sequencing: A Review of Its Transformative Impact on Cancer Diagnosis, Treatment, and Resistance Management. Diagnostics. 2025; 15(19):2425. https://doi.org/10.3390/diagnostics15192425
Chicago/Turabian StyleIsaic, Alexandru, Nadica Motofelea, Teodora Hoinoiu, Alexandru Catalin Motofelea, Ioan Cristian Leancu, Emanuela Stan, Simona R. Gheorghe, Alina Gabriela Dutu, and Andreea Crintea. 2025. "Next-Generation Sequencing: A Review of Its Transformative Impact on Cancer Diagnosis, Treatment, and Resistance Management" Diagnostics 15, no. 19: 2425. https://doi.org/10.3390/diagnostics15192425
APA StyleIsaic, A., Motofelea, N., Hoinoiu, T., Motofelea, A. C., Leancu, I. C., Stan, E., Gheorghe, S. R., Dutu, A. G., & Crintea, A. (2025). Next-Generation Sequencing: A Review of Its Transformative Impact on Cancer Diagnosis, Treatment, and Resistance Management. Diagnostics, 15(19), 2425. https://doi.org/10.3390/diagnostics15192425