Clinical Applications of Optical Coherence Tomography and Optical Coherence Tomography Angiography in Uveal Melanoma: A Narrative Review
Abstract
1. Introduction
2. Uveal Melanoma: Bridging Genes, Pathogenesis, and Diagnosis
2.1. Epidemiology and Pathogenesis
2.2. Clinical Presentation and Diagnostic Challenges
3. Optical Coherence Tomography in Uveal Melanoma
3.1. Technical Principles and Modalities
3.2. Posterior Segment Tumors: Choroidal Melanoma
3.3. Anterior Segment Tumors: Iris and Ciliary Body Melanoma
4. OCT Angiography
4.1. Principles and Capabilities
4.2. Tumor Vasculature and Diagnostic Use
4.3. Strengths and Limitations
- Penetration and shadowing: Melanin and thickness attenuate signal and can obscure deep choroid or the tumor core, so an apparent absence of vasculature may reflect physics rather than biology.
- Segmentation and projection artifacts: Elevation, subretinal fluid, and remodeling challenge automated slabs; manual Bruch’s membrane delineation and projection-artifact suppression are often required to avoid false findings.
- Device and protocol heterogeneity: Platforms, wavelengths, scan sizes, and algorithms differ, which limits direct comparison and pooled thresholds; the Zhang grading requires external, device-agnostic validation [61].
- Selection and spectrum bias: Single-center series often over-represent posterior, smaller, well-fixating lesions; peripheral or thick tumors and poor-quality images are frequently excluded, which can inflate reported yields.
- Biological attribution: OCTA measures motion contrast; reduced decorrelation may indicate slow flow rather than vessel loss, and anti-VEGF therapy can modify edema and secondarily influence metrics.
- Incremental value and outcomes: While Garcia-Arumi Fuste and Zhang show discriminative patterns [61,62], the added predictive value of OCTA over established multimodal risk models and ultrasound thickness still needs prospective evaluation with clinical endpoints and, where feasible, genetic or histologic anchors.
5. Differential Diagnosis: Melanoma vs. Pseudomelanoma
6. Innovations and Future Perspectives
6.1. AI and Machine Learning Integration
6.2. Multimodal Imaging Protocols
6.3. Prognostic Imaging Biomarkers
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krantz, B.A.; Dave, N.; Komatsubara, K.M.; Marr, B.P.; Carvajal, R.D. Uveal melanoma: Epidemiology, etiology, and treatment of primary disease. Clin. Ophthalmol. 2017, 11, 279–289. [Google Scholar] [CrossRef]
- Gelmi, M.C.; Jager, M.J. Uveal melanoma: Current evidence on prognosis, treatment and potential developments. Asia Pac. J. Ophthalmol. 2024, 13, 100060. [Google Scholar] [CrossRef]
- Solnik, M.; Paduszyńska, N.; Czarnecka, A.M.; Synoradzki, K.J.; Yousef, Y.A.; Chorągiewicz, T.; Rejdak, R.; Toro, M.D.; Zweifel, S.; Dyndor, K.; et al. Imaging of Uveal Melanoma-Current Standard and Methods in Development. Cancers 2022, 14, 3147. [Google Scholar] [CrossRef]
- Hope-Ross, M.; Yannuzzi, L.A.; Gragoudas, E.S.; Guyer, D.R.; Slakter, J.S.; Sorenson, J.A.; Krupsky, S.; Orlock, D.A.; Puliafito, C.A. Adverse reactions due to indocyanine green. Ophthalmology 1994, 101, 529–533. [Google Scholar] [CrossRef]
- Ruia, S.; Tripathy, K. Fluorescein Angiography. 25 August 2023. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Li, Y.; Say, E.A.T.; Ferenczy, S.; Agni, M.; Shields, C.L. Altered parafoveal microvasculature in treatment-naive choroidal melanoma eyes detected by optical coherence tomography angiography. Retina 2017, 37, 32–40. [Google Scholar] [CrossRef]
- Davila, J.R.; Mruthyunjaya, P. Uveal Melanoma: Imaging. In Uveal Melanoma; Bernicker, E.H., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Aumann, S.; Donner, S.; Fischer, J.; Müller, F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]; Bille, J.F., Ed.; Springer: Cham, Switzerland, 2019; Chapter 3. [Google Scholar]
- Rocholz, R.; Corvi, F.; Weichsel, J.; Schmidt, S.; Staurenghi, G. OCT Angiography (OCTA) in Retinal Diagnostics. In High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]; Bille, J.F., Ed.; Springer: Cham, Switzerland, 2019; Chapter 6. [Google Scholar]
- Neroev, V.V.; Saakyan, S.V.; Myakoshina, E.B.; Okhotsimskaya, T.D.; Fadeeva, V.A. Role of optical coherence tomography angiography in diagnostics of early choroidal melanoma and circumscribed choroidal hemangioma. Vestn. Oftalmol. 2018, 134, 4–18. [Google Scholar] [CrossRef]
- Say, E.A.; Shah, S.U.; Ferenczy, S.; Shields, C.L. Optical coherence tomography of retinal and choroidal tumors. J. Ophthalmol. 2012, 2012, 385058. [Google Scholar] [CrossRef][Green Version]
- Sahoo, N.K.; Ranjan, R.; Tyagi, M.; Agrawal, H.; Reddy, S. Radiation Retinopathy: Detection and Management Strategies. Clin. Ophthalmol. 2021, 15, 3797–3809. [Google Scholar] [CrossRef]
- Hu, D.N.; Yu, G.P.; McCormick, S.A.; Schneider, S.; Finger, P.T. Population-based incidence of uveal melanoma in various races and ethnic groups. Am. J. Ophthalmol. 2005, 140, 612–617. [Google Scholar] [CrossRef]
- Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 2017, 32, 204–220.e15. [Google Scholar] [CrossRef]
- Carvajal, R.D.; Sacco, J.J.; Jager, M.J.; Eschelman, D.J.; Bagge, R.O.; Harbour, J.W.; Chieng, N.D.; Patel, S.P.; Joshua, A.M.; Piperno-Neumann, S. Advances in the clinical management of uveal melanoma. Nat. Rev. Clin. Oncol. 2023, 20, 99–115. [Google Scholar] [CrossRef]
- Virgili, G.; Gatta, G.; Ciccolallo, L.; Capocaccia, R.; Biggeri, A.; Crocetti, E.; Lutz, J.-M.; Paci, E.; EUROCARE Working Group. Incidence of uveal melanoma in Europe. Ophthalmology 2007, 114, 2309–2315. [Google Scholar] [CrossRef]
- Scotto, J.; Fraumeni, J.F.; Lee, J.A.H. Melanomas of the eye and other noncutaneous sites: Epidemiologic aspects. J. Natl. Cancer Inst. 1976, 56, 489–491. [Google Scholar] [CrossRef]
- Papastefanou, V.P.; Cohen, V.M. Uveal melanoma. J. Skin Cancer 2011, 2011, 573974. [Google Scholar] [CrossRef]
- Fallico, M.; Raciti, G.; Longo, A.; Reibaldi, M.; Bonfiglio, V.; Russo, A.; Caltabiano, R.; Gattuso, G.; Falzone, L.; Avitabile, T. Current molecular and clinical insights into uveal melanoma (Review). Int. J. Oncol. 2021, 58, 10. [Google Scholar] [CrossRef]
- Singh, M.; Durairaj, P.; Yeung, J. Uveal Melanoma: A Review of the Literature. Oncol. Ther. 2018, 6, 87–104. [Google Scholar] [CrossRef]
- Pandiani, C.; Béranger, G.E.; Leclerc, J.; Ballotti, R.; Bertolotto, C. Focus on cutaneous and uveal melanoma specificities. Genes Dev. 2017, 31, 724–743. [Google Scholar] [CrossRef]
- Cao, J.; Wan, L.; Hacker, E.; Dai, X.; Lenna, S.; Jimenez-Cervantes, C.; Wang, Y.; Leslie, N.R.; Xu, G.X.; Widlund, H.R.; et al. MC1R is a potent regulator of PTEN after UV exposure in melanocytes. Mol. Cell 2013, 51, 409–422. [Google Scholar] [CrossRef]
- Ju, X.; Rokohl, A.C.; Li, X.; Guo, Y.; Yao, K.; Fan, W.; Heindl, L.M. A UV-related risk analysis in ophthalmic malignancies: Increased UV exposure may cause ocular malignancies. Adv. Ophthalmol. Pract. Res. 2024, 4, 98–105. [Google Scholar] [CrossRef]
- Silva-Rodríguez, P.; Fernández-Díaz, D.; Bande, M.; Pardo, M.; Loidi, L.; Blanco-Teijeiro, M.J. GNAQ and GNA11 Genes: A Comprehensive Review on Oncogenesis, Prognosis and Therapeutic Opportunities in Uveal Melanoma. Cancers 2022, 14, 3066. [Google Scholar] [CrossRef]
- Harbour, J.W.; Onken, M.D.; Roberson, E.D.; Duan, S.; Cao, L.; Worley, L.A.; Council, M.L.; Matatall, K.A.; Helms, C.; Bowcock, A.M. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010, 330, 1410–1413. [Google Scholar] [CrossRef]
- Isaacson, A.L.; Sompallae, R.R.; Guseva, N.V.; Bellizzi, A.M.; Bossler, A.D.; Ma, D. Genomic Profiling of Metastatic Uveal Melanoma Shows Frequent Coexisting BAP1 or SF3B1 and GNAQ/GNA11 Mutations and Correlation with Prognosis. Am. J. Clin. Pathol. 2022, 158, 177–186. [Google Scholar] [CrossRef]
- Ewens, K.G.; Kanetsky, P.A.; Richards-Yutz, J.; Purrazzella, J.; Shields, C.L.; Ganguly, T.; Ganguly, A. Chromosome 3 status combined with BAP1 and EIF1AX mutation profiles are associated with metastasis in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5160–5167. [Google Scholar] [CrossRef]
- Nichols, E.E.; Richmond, A.; Daniels, A.B. Tumor Characteristics, Genetics, Management, and the Risk of Metastasis in Uveal Melanoma. Semin. Ophthalmol. 2016, 31, 304–309. [Google Scholar] [CrossRef]
- Kulbay, M.; Marcotte, E.; Remtulla, R.; Lau, T.H.A.; Paez-Escamilla, M.; Wu, K.Y.; Burnier, M.N., Jr. Uveal Melanoma: Comprehensive Review of Its Pathophysiology, Diagnosis, Treatment, and Future Perspectives. Biomedicines 2024, 12, 1758. [Google Scholar] [CrossRef]
- Damato, E.M.; Damato, B.E. Detection and time to treatment of uveal melanoma in the United Kingdom: An evaluation of 2384 patients. Ophthalmology 2012, 119, 1582–1589. [Google Scholar] [CrossRef]
- Eskelin, S.; Kivelä, T. Mode of presentation and time to treatment of uveal melanoma in Finland. Br. J. Ophthalmol. 2002, 86, 333–338. [Google Scholar] [CrossRef]
- Hoffmann, K.; Jung, J.; el Gammal, S.; Altmeyer, P. Malignant melanoma in 20-MHz B scan sonography. Dermatology 1992, 185, 49–55. [Google Scholar] [CrossRef]
- Othman, I.S.; Assem, M.; Zaki, I.M. Secondary glaucoma as initial manifestation of uveal melanoma. Saudi J. Ophthalmol. 2013, 27, 203–208. [Google Scholar] [CrossRef]
- Engqvist, L.; Dahlstrand, U.; Sheikh, R.; Malmsjö, M. Mapping Sentinel Vessels in Uveal Melanomas Using Laser Speckle Contrast Imaging. Ocul. Oncol. Pathol. 2025, 11, 56–60. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Q.; Li, Z.; Leng, F.; Han, X.; Su, Q.; Su, S. Malignant melanoma complicated with cataract and secondary glaucoma: A case report. Oncol. Lett. 2024, 28, 520. [Google Scholar] [CrossRef]
- Krohn, J.; Sundal, K.V.; Frøystein, T. Topography and clinical features of iris melanoma. BMC Ophthalmol. 2022, 22, 6. [Google Scholar] [CrossRef]
- Branisteanu, D.C.; Bogdanici, C.M.; Branisteanu, D.E.; Maranduca, M.A.; Zemba, M.; Balta, F.; Branisteanu, C.I.; Moraru, A.D. Uveal melanoma diagnosis and current treatment options (Review). Exp. Ther. Med. 2021, 22, 1428. [Google Scholar] [CrossRef]
- Fercher, A.F.; Drexler, W.; Hitzenberger, C.K.; Lasser, T. Optical coherence tomography—Principles and applications. Rep. Prog. Phys. 2003, 66, 239–303. [Google Scholar] [CrossRef]
- Schuman, J.S. Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans. Am. Ophthalmol. Soc. 2008, 106, 426–458. [Google Scholar]
- Mrejen, S.; Spaide, R.F. Optical coherence tomography: Imaging of the choroid and beyond. Surv. Ophthalmol. 2013, 58, 387–429. [Google Scholar] [CrossRef]
- Wang, S.B.; Cornish, E.E.; Grigg, J.R.; McCluskey, P.J. Anterior segment optical coherence tomography and its clinical applications: A review. Clin. Exp. Optom. 2019, 102, 195–207. [Google Scholar] [CrossRef]
- Ang, M.; Baskaran, M.; Werkmeister, R.M.; Chua, J.; Schmidl, D.; Santos, V.A.D.; Garhöfer, G.; Mehta, J.S.; Schmetterer, L. Anterior segment optical coherence tomography. Prog. Retin. Eye Res. 2018, 66, 132–156. [Google Scholar] [CrossRef]
- Cennamo, G.; Romano, M.R.; Breve, M.A.; Velotti, N.; Reibaldi, M.; De Crecchio, G. Evaluation of choroidal tumors with optical coherence tomography: Enhanced depth imaging and OCT-angiography features. Eye 2017, 31, 906–915. [Google Scholar] [CrossRef]
- Guner, M.K.; Ferenchak, K.; Olsen, T.W.; Dalvin, L.A. Optical coherence tomography findings in choroidal melanoma-associated subretinal fluid. Retina 2022, 42, 2159–2168. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Dong, L.; Zhou, W.; Wei, W.; Liu, Y. Swept-source optical coherence tomography features of choroidal tumors and tumor mimics: A 5-year retrospective study. Photodiagnosis Photodyn. Ther. 2025, 53, 104571. [Google Scholar] [CrossRef]
- Kivelä, T. Diagnosis of uveal melanoma. Dev. Ophthalmol. 2012, 49, 1–15. [Google Scholar] [CrossRef]
- Hussain, R.N.; Damato, B.; Heimann, H. Choroidal biopsies; a review and optimised approach. Eye 2023, 37, 900–906. [Google Scholar] [CrossRef]
- Arslantürk Eren, M.; Gündüz, A.K.; Gündüz, Ö.Ö. Evaluation of Iris Melanoma with Anterior Segment Optical Coherence Tomography. Turk. J. Ophthalmol. 2017, 47, 231–234. [Google Scholar] [CrossRef]
- Kottaridou, E.; Hatoum, A. Imaging of Anterior Segment Tumours: A Comparison of Ultrasound Biomicroscopy Versus Anterior Segment Optical Coherence Tomography. Cureus 2024, 16, e52578. [Google Scholar] [CrossRef]
- Hau, S.C.; Papastefanou, V.; Shah, S.; Sagoo, M.S.; Restori, M.; Cohen, V. Evaluation of iris and iridociliary body lesions with anterior segment optical coherence tomography versus ultrasound B-scan. Br. J. Ophthalmol. 2015, 99, 81–86. [Google Scholar] [CrossRef]
- Mirzayev, I.; Gündüz, A.K.; Gündüz, Ö.Ö.; Özalp Ateş, F.S.; Okcu Heper, A. Anterior segment swept-source optical coherence tomography and ultrasound biomicroscopy in iris and ciliary body lesions. Expert Rev. Med. Devices 2024, 21, 439–446. [Google Scholar] [CrossRef]
- Mirzayev, I.; Gündüz, A.K.; Gündüz, Ö.Ö. Anterior segment optical coherence tomography in iris and ciliary body tumors: A systematic review. Expert Rev. Ophthalmol. 2023, 18, 193–204. [Google Scholar] [CrossRef]
- Pavlin, C.J.; Vásquez, L.M.; Lee, R.; Simpson, E.R.; Ahmed, I.I. Anterior segment optical coherence tomography and ultrasound biomicroscopy in the imaging of anterior segment tumors. Am. J. Ophthalmol. 2009, 147, 214–219. [Google Scholar] [CrossRef]
- Gao, S.S.; Jia, Y.; Zhang, M.; Su, J.P.; Liu, G.; Hwang, T.S.; Bailey, S.T.; Huang, D. Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT27–OCT36. [Google Scholar] [CrossRef]
- Munk, M.R.; Turgut, F.; Faes, L.; Jaggi, D.; Freund, K.B.; Sadda, S.R.; Peto, T.; Wang, R.K.; Pircher, M.; Curcio, C.A.; et al. Standardization of OCT Angiography Nomenclature in Retinal Vascular Diseases: Consensus-Based Recommendations. Ophthalmol. Retin. 2025, 9, 645–654. [Google Scholar] [CrossRef]
- de Carlo, T.E.; Romano, A.; Waheed, N.K.; Duker, J.S. A review of optical coherence tomography angiography (OCTA). Int. J. Retin. Vitr. 2015, 1, 5. [Google Scholar] [CrossRef]
- Greig, E.C.; Laver, N.V.; Mendonca, L.S.M.; Levine, E.S.; Baumal, C.R.; Waheed, N.K.; Duker, J.S. Swept-source optical coherence tomography angiography in small choroidal melanomas and choroidal nevi. Retina 2021, 41, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Deng, X.; Zhang, Q.; He, J.; Ye, P.; Liu, S.; Li, P.; Zhou, J.; Fang, X. Advances in swept-source optical coherence tomography and optical coherence tomography angiography. Adv. Ophthalmol. Pract. Res. 2022, 3, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Naseripour, M.; Ghasemi Falavarjani, K.; Mirshahi, R.; Sedaghat, A. Optical coherence tomography angiography (OCTA) applications in ocular oncology. Eye 2020, 34, 1535–1545. [Google Scholar] [CrossRef]
- Pellegrini, M.; Corvi, F.; Invernizzi, A.; Ravera, V.; Cereda, M.G.; Staurenghi, G. Swept-source optical coherence tomography angiography in choroidal melanoma: An Analysis of 22 Consecutive Cases. Retina 2019, 39, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, H.; Li, Y.; Zhou, W.; Shi, X.; Yu, C.; Yang, Y.; Zhao, H.; Li, H.; Wang, S.; et al. Swept-source Optical Coherence Tomography Angiography Features of Melanotic Choroidal Tumors: An Analysis of 102 Consecutive Cases. Ophthalmol. Sci. 2025, 100932. [Google Scholar] [CrossRef]
- Garcia-Arumi Fuste, C.; Peralta Iturburu, F.; Garcia-Arumi, J. Is optical coherence tomography angiography helpful in the differential diagnosis of choroidal nevus versus melanoma? Eur. J. Ophthalmol. 2020, 30, 723–729. [Google Scholar] [CrossRef]
- Pellegrini, M.; Staurenghi, G.; Preziosa, C. Clinical Applications of Optical Coherence Tomography Angiography in Ocular Oncology: Pearls and Pitfalls. Ocul. Oncol. Pathol. 2022, 8, 79–87. [Google Scholar] [CrossRef]
- Jung, S.K.; Lee, E.H.; Mishra, K.K.; Daftari, I.K.; Park, S.S. OCT Angiography Analysis of Retinal and Choroidal Flow after Proton Beam Therapy for Choroidal Melanoma. Ophthalmol. Sci. 2024, 5, 100674. [Google Scholar] [CrossRef]
- Torkashvand, A.; Riazi-Esfahani, H.; Ghassemi, F.; Pour, E.K.; Masoomian, B.; Zarei, M.; Fadakar, K.; Arjmand, M.; Tayebi, F.; Ekradi, L.; et al. Evaluation of radiation maculopathy after treatment of choroidal melanoma with ruthenium-106 using optical coherence tomography angiography. BMC Ophthalmol. 2021, 21, 385. [Google Scholar] [CrossRef] [PubMed]
- Binkley, E.M.; Tamplin, M.R.; Vitale, A.H.; Boldt, H.C.; Kardon, R.H.; Grumbach, I.M. Longitudinal optical coherence tomography angiography (OCT-A) in a patient with radiation retinopathy following plaque brachytherapy for uveal melanoma. Am. J. Ophthalmol. Case Rep. 2022, 26, 101508. [Google Scholar] [CrossRef]
- Yang, J.Y.; Wang, Q.; Chen, M.X.; Yan, Y.N.; Zhou, W.J.; Liu, Y.M.; Wei, W.B. Retinal microvascular changes in uveal melanoma following conbercept injection after plaque radiotherapy as detected by optical coherence tomography angiography. Retina 2021, 41, 2605–2611. [Google Scholar] [CrossRef]
- Kwan, A.S.; Barry, C.; McAllister, I.L.; Constable, I. Fluorescein angiography and adverse drug reactions revisited: The Lions Eye experience. Clin. Exp. Ophthalmol. 2006, 34, 33–38. [Google Scholar] [CrossRef]
- Shields, C.L.; Say, E.A.; Samara, W.A.; Khoo, C.T.; Mashayekhi, A.; Shields, J.A. Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: Comparison of irradiated versus nonirradiated eyes in 65 patients. Retina 2016, 36, 1493–1505. [Google Scholar] [CrossRef]
- Reich, M.; Boehringer, D.; Rothaus, K.; Cakir, B.; Bucher, F.; Daniel, M.; Lang, S.J.; Lagrèze, W.A.; Agostini, H.; Lange, C. Swept-source optical coherence tomography angiography alleviates shadowing artifacts caused by subretinal fluid. Int. Ophthalmol. 2020, 40, 2007–2016. [Google Scholar] [CrossRef]
- Anvari, P.; Ashrafkhorasani, M.; Habibi, A.; Falavarjani, K.G. Artifacts in Optical Coherence Tomography Angiography. J. Ophthalmic Vis. Res. 2021, 16, 271–286. [Google Scholar] [CrossRef]
- Al Harby, L.; Sagoo, M.S.; O’Day, R.; Hay, G.; Arora, A.K.; Keane, P.A.; Cohen, V.M.; Damato, B. Distinguishing Choroidal Nevi from Melanomas Using the MOLES Algorithm: Evaluation in an Ocular Nevus Clinic. Ocul. Oncol. Pathol. 2021, 7, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, F.; Mirshahi, R.; Fadakar, K.; Sabour, S. Optical coherence tomography angiography in choroidal melanoma and nevus. Clin. Ophthalmol. 2018, 12, 207–214. [Google Scholar] [CrossRef]
- Negretti, G.S.; Kalafatis, N.E.; Shields, J.A.; Shields, C.L. Choroidal Melanoma Masquerading as Central Serous Chorioretinopathy. Ophthalmol. Retin. 2023, 7, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.E.; Farah, M.E.; Costa, R.A.; Belfort, R. Optical coherence tomography findings in macular cavernous haemangioma. Acta Ophthalmol. Scand. 2005, 83, 267–269. [Google Scholar] [CrossRef]
- Chin, E.K.; Trikha, R.; Morse, L.S.; Zawadzki, R.J.; Werner, J.S.; Park, S.S. Optical Coherence Tomography Findings of Exophytic Retinal Capillary Hemangiomas of the Posterior Pole. Ophthalmic Surg. Lasers Imaging Retin. 2010, 9, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gerba-Górecka, K.; Romanowska-Dixon, B.; Karska-Basta, I.; Cieplińska-Kechner, E.; Nowak, M.S. Clinical Characteristics and Management of Ocular Metastases. Cancers 2025, 17, 1041. [Google Scholar] [CrossRef] [PubMed]
- Dadzie, A.K.; Iddir, S.P.; Ganesh, S.; Ebrahimi, B.; Rahimi, M.; Abtahi, M.; Son, T.; Heiferman, M.J.; Yao, X. Artificial intelligence in the diagnosis of uveal melanoma: Advances and applications. Exp. Biol. Med. 2025, 250, 10444. [Google Scholar] [CrossRef]
- Lim, J.I.; Rachitskaya, A.V.; Hallak, J.A.; Gholami, S.; Alam, M.N. Artificial intelligence for retinal diseases. Asia Pac. J. Ophthalmol. 2024, 13, 100096. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, L.; Runkel, C.B.; Künzel, S.; Kabiri, P.; Rübsam, A.; Bonaventura, T.; Marquardt, P.; Haas, V.; Biniaminov, N.; Biniaminov, S.; et al. Using Deep Learning to Distinguish Highly Malignant Uveal Melanoma from Benign Choroidal Nevi. J. Clin. Med. 2024, 13, 4141. [Google Scholar] [CrossRef]
- Sabazade, S.; Lumia Michalski, M.A.; Bartoszek, J.; Fili, M.; Holmström, M.; Stålhammar, G. Development and Validation of a Deep Learning Algorithm for Differentiation of Choroidal Nevi from Small Melanoma in Fundus Photographs. Ophthalmol. Sci. 2024, 5, 100613. [Google Scholar] [CrossRef]
- Jackson, M.; Kalirai, H.; Hussain, R.N.; Heimann, H.; Zheng, Y.; Coupland, S.E. Differentiating Choroidal Melanomas and Nevi Using a Self-Supervised Deep Learning Model Applied to Clinical Fundoscopy Images. Ophthalmol. Sci. 2024, 5, 100647. [Google Scholar] [CrossRef]
- Zabor, E.C.; Raval, V.; Luo, S.; Pelayes, D.E.; Singh, A.D. A Prediction Model to Discriminate Small Choroidal Melanoma from Choroidal Nevus. Ocul. Oncol. Pathol. 2022, 8, 71–78. [Google Scholar] [CrossRef]
- Tailor, P.D.; Kopinski, P.K.; D’Souza, H.S.; Leske, D.A.; Olsen, T.W.; Shields, C.L.; Shields, J.A.; Dalvin, L.A. Predicting Choroidal Nevus Transformation to Melanoma Using Machine Learning. Ophthalmol. Sci. 2024, 5, 100584. [Google Scholar] [CrossRef]
- Valmaggia, P.; Friedli, P.; Hörmann, B.; Kaiser, P.; Scholl HP, N.; Cattin, P.C.; Sandkühler, R.; Maloca, P.M. Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data with Deep Learning. Transl. Vis. Sci. Technol. 2022, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Karamanli, K.-E.; Maliagkani, E.; Petrou, P.; Papageorgiou, E.; Georgalas, I. Artificial Intelligence in Decoding Ocular Enigmas: A Literature Review of Choroidal Nevus and Choroidal Melanoma Assessment. Appl. Sci. 2025, 15, 3565. [Google Scholar] [CrossRef]
- Dalvin, L.A.; Shields, C.L.; Ancona-Lezama, D.A.; Yu, M.D.; Di Nicola, M.; Williams, B.K., Jr.; Lucio-Alvarez, J.A.; Ang, S.M.; Maloney, S.M.; Welch, R.J.; et al. Combination of multimodal imaging features predictive of choroidal nevus transformation into melanoma. Br. J. Ophthalmol. 2019, 103, 1441–1447. [Google Scholar] [CrossRef]
- Shields, C.L.; Pirondini, C.; Bianciotto, C.; Harmon, S.A.; Shields, J.A. Autofluorescence of congenital hypertrophy of the retinal pigment epithelium. Retina 2007, 27, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Dávila, E.M.; Dalvin, L.A. Clinical Implications of Ultrasound-Based Morphology in Choroidal Melanoma. Ophthalmol. Retin. 2025, 9, 263–271. [Google Scholar] [CrossRef]
- Shields, C.L.; Dalvin, L.A.; Ancona-Lezama, D.; Yu, M.D.; Di Nicola, M.; Williams, B.K., Jr.; Lucio-Alvarez, J.A.; Ang, S.M.; Maloney, S.; Welch, R.J.; et al. Choroidal nevus imaging features in 3806 cases and risk factors for transformation into melanoma in 2355 cases: The 2020 Taylor R. Smith and Victor T. Curtin lecture. Retina 2019, 39, 1840–1851. [Google Scholar] [CrossRef]
- Fionda, B.; Pagliara, M.M.; Lancellotta, V.; Caputo, C.G.; Casà, C.; Sammarco, M.G.; Placidi, E.; Cornacchione, P.; Boselli, F.; Iezzi, R.; et al. Radiological and clinical findings in uveal melanoma treated by plaque interventional radiotherapy (brachytherapy): Visual atlas and literature review on response assessment. J. Contemp. Brachytherapy 2022, 14, 96–106. [Google Scholar] [CrossRef] [PubMed]
Limitation | Practical Mitigations |
---|---|
Penetration and shadowing from melanin or tumor thickness | Use swept-source or EDI settings and longer wavelength; increase averaging and sensitivity; scan from multiple angles; expand field with montage; always cross-check with structural B-scans and ultrasound before calling “no flow.” |
Segmentation and projection artifacts | Manually re-draw Bruch’s membrane and adjust slabs; use projection-resolved processing; review en face maps alongside flow-overlaid B-scans; document any manual edits; avoid interpreting vessels that mirror superficial patterns. |
Device and protocol heterogeneity | Standardize and report device, scan size, slab definitions, and QC thresholds; use consistent metrics (e.g., same vessel density masks); where possible, validate findings across platforms or analyze with device-agnostic measures. |
Selection and spectrum bias | Enroll consecutive cases and report acquisition failures; intentionally include peripheral or thicker tumors and poorer fixation; use wide-field or montaged OCTA to capture off-posterior-pole disease; pre-specify inclusion/exclusion criteria. |
Biological attribution of “no flow” vs. slow flow; treatment effects | Repeat scans to confirm; interpret decorrelation loss cautiously; time OCTA relative to anti-VEGF or corticosteroid therapy and record injection dates; corroborate with FA/ICG when management could change. |
Unclear incremental value for prediction and management | Embed OCTA in prospective, multicenter studies; predefine endpoints (growth, radiation maculopathy, vision); test additive value over ultrasound and multimodal risk models with decision-curve analysis; anchor subsets with genetic or histologic data. |
Limited field of view and topology | Use larger scans (9–12 mm) and montage; apply eye-tracking and fixation targets; for treated eyes, consider sector-based analysis aligned to radiation dose maps; add targeted peripheral scans when margins or extratumoral changes are suspected. |
Feature | Choroidal Melanoma | Choroidal Nevus | CSCR | Choroidal Hemangioma | Metastasis |
---|---|---|---|---|---|
Elevation | Dome- or mushroom-shaped mass | Flat or minimally elevated | No true mass, serous detachment only | Smooth, dome-shaped elevation | Shallow, “lumpy” contour |
SRF Presence | Common (>50% cases) | Rare | Typical feature | Frequent, localized | Occasional |
RPE Disruption | Frequent (detachment, rupture) | Absent or minimal | RPE irregularities in chronic form | Minimal or absent | Variable |
Choroidal Compression | Present | Absent | Absent | Absent | Rare |
OCTA Vascular Pattern | Irregular, intrinsic flow or dropout | Absent or normal flow | Normal or dilated choroidal vessels | Coarse but organized vascular network | Attenuated or distorted vasculature |
FAZ Changes on OCTA | Enlarged or irregular | Normal | Normal | May be slightly enlarged | Occasionally altered |
Growth Over Time | Progressive | Stable | Transient/self-resolving | Usually stable | Rapid progression possible |
Pigmentation | Variable, often pigmented | Typically pigmented | Usually non-pigmented | Orange-red or amelanotic | Amelanotic or yellowish |
Biomarker | Layer/Device & Scan | Risk Directionality (Higher vs. Lower) | Primary Use | Validation Status & Representative Evidence |
---|---|---|---|---|
Subretinal fluid (SRF) presence/extent | Structural OCT (SD/SS-OCT), macular and lesion B-scans | Presence/greater extent → higher malignancy risk and activity | Diagnosis, risk stratification, monitoring | Large multicenter risk model using multimodal criteria; part of established nevus → melanoma risk scores (Shields; validated on 3806 nevi; retrospective, multicenter) [90]. |
Central macular thickness (CMT) | Structural OCT, macular cube (6 × 6 mm) | Higher CMT (edema) → worse function post-radiation; not uniformly dose-dependent | Post-treatment monitoring | Torkashvand et al., retrospective single-center Ru-106, n = 31: thicker CMT and enlarged FAZ vs. fellow eyes; functional association variable [65]. Jung et al., prospective single-center PBRT, n = 24: mixed structure–function correlation across timepoints [64]. |
FAZ area (superficial plexus) | OCTA SCP, 3 × 3 or 6 × 6 mm | Larger FAZ → macular ischemia and worse BCVA | Post-radiation monitoring, prognosis | Jung et al., prospective single-center PBRT, n = 24: SCP/DCP FAZ enlargement tracks BCVA loss [64]. Shields et al., OCTA after plaque, n = 65: FAZ enlargement and parafoveal rarefaction in irradiated eyes [69]. |
FAZ area (deep plexus) | OCTA DCP, 3 × 3 or 6 × 6 mm | Larger deep FAZ → stronger association with BCVA loss than SCP | Post-radiation monitoring, prognosis | Torkashvand, retrospective single-center, 31 eyes (deep FAZ more critical biomarker) [65]; Jung, prospective single-center, 24 eyes (deep plexus metrics correlate with BCVA) [64]. |
Parafoveal vessel density (SCP) | OCTA SCP, parafovea 1–3 mm ring | Lower density → macular ischemia; weaker BCVA link than DCP | Post-radiation monitoring | Jung, prospective single-center, 24 eyes (SCP decrease vs. fellow eyes; BCVA correlation weaker) [64]. |
Parafoveal vessel density (DCP) | OCTA DCP, parafovea 1–3 mm ring | Lower density → stronger link to vision loss | Post-radiation monitoring, prognosis | Jung, prospective single-center, 24 eyes (parafoveal/perifoveal DCP ↓ correlates with BCVA) [64]; Torkashvand, retrospective single-center, 31 eyes (earliest subclinical change at DCP) [65]. |
FD-300 (perifoveal density in 300-µm ring) | OCTA derived (around FAZ), typically 3 × 3 mm | Lower FD-300 → macular ischemia | Baseline assessment, monitoring | Yang et al., prospective nonrandomized interventional after I-125, n = 45 (15 conbercept/30 control): FD-300 lower in UM vs. fellow at baseline; early stabilization at 6 mo with anti-VEGF, waning by 9–12 mo [67]. Li et al., treatment-naïve UM vs. fellow eyes: parafoveal microvasculature altered on OCTA [6]. |
Radial peripapillary capillary (RPC) density and RNFL thickness | OCTA ONH RPC slab; OCT RNFL | Lower RPC and thinner RNFL → radiation papillopathy burden | Post-radiation monitoring | Jung et al., prospective PBRT, n = 24: RPC and RNFL thinning in treated eyes with limited direct BCVA linkage [64]; aligns with broader radiation retinopathy literature [12]. |
Choriocapillaris flow metrics (flow ratio/deficits) | OCTA choriocapillaris slab, 3 × 3 to 6 × 6 mm | More flow voids/lower flow ratio → choroidal ischemia; diagnostic adjunct | Diagnosis adjunct, post-radiation monitoring | Torkashvand et al., retrospective, n = 31: increased CC flow deficits after Ru-106 [65]. Jung et al., prospective, n = 24: CC flow ratio declines post-PBRT [64]. Additional SS-OCT/OCTA series describe CC shadow mitigation and tumor-adjacent changes (Pellegrini n = 22; Greig small cohort) [57,60,70]. |
Intrinsic tumor vasculature grade (disorganized loops/networks) | SS-OCTA choroid slab; 6–12 mm; grading 0–4 | Higher grade (2–4) → melanoma vs. nevus; flags high-risk nevi | Differential diagnosis, risk stratification | Zhang et al., consecutive SS-OCTA cohort, n = 102: higher intralesional disorganization in melanomas; device-agnostic grading proposed; external validation pending [61]. Greig et al., small SS-OCTA series: qualitative differences between nevi and small melanomas [57]. |
Patchy avascular areas at choriocapillaris over lesion | OCTA choriocapillaris slab | Presence/greater extent → melanoma over nevus | Differential diagnosis | Zhang et al., n = 102: lesion-overlying CC avascular patches more frequent in melanoma [61]; corroborated by smaller SS-OCTA case series [57,60]. |
Vessel skeleton density (VSD) (macula) | OCTA post-processing metric (3 × 3 or 6 × 6 mm) | Lower VSD → capillary dropout; tracks sector dose | Longitudinal monitoring, dose–response mapping | Binkley et al., longitudinal single-patient case, 4-year follow-up after I-125: sector-wise VSD loss tracks higher plaque dose; requires cohort-level validation [66]. |
Bacillary layer detachment (BALAD) | Structural OCT through lesion apex | Presence → exudative activity; larger tumors | Disease activity marker | Güner et al., retrospective melanoma cohorts: BALAD associated with tumor-related SRF and exudation; prospective UM validation still needed [44]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troisi, M.; Vitiello, L.; Lixi, F.; Timofte Zorila, M.M.; Abbinante, G.; Pellegrino, A.; Namazbayeva, A.; Adamo, G.G.; Coco, G.; Cuccu, A.; et al. Clinical Applications of Optical Coherence Tomography and Optical Coherence Tomography Angiography in Uveal Melanoma: A Narrative Review. Diagnostics 2025, 15, 2421. https://doi.org/10.3390/diagnostics15192421
Troisi M, Vitiello L, Lixi F, Timofte Zorila MM, Abbinante G, Pellegrino A, Namazbayeva A, Adamo GG, Coco G, Cuccu A, et al. Clinical Applications of Optical Coherence Tomography and Optical Coherence Tomography Angiography in Uveal Melanoma: A Narrative Review. Diagnostics. 2025; 15(19):2421. https://doi.org/10.3390/diagnostics15192421
Chicago/Turabian StyleTroisi, Mario, Livio Vitiello, Filippo Lixi, Mihaela Madalina Timofte Zorila, Giulia Abbinante, Alfonso Pellegrino, Assem Namazbayeva, Ginevra Giovanna Adamo, Giulia Coco, Alberto Cuccu, and et al. 2025. "Clinical Applications of Optical Coherence Tomography and Optical Coherence Tomography Angiography in Uveal Melanoma: A Narrative Review" Diagnostics 15, no. 19: 2421. https://doi.org/10.3390/diagnostics15192421
APA StyleTroisi, M., Vitiello, L., Lixi, F., Timofte Zorila, M. M., Abbinante, G., Pellegrino, A., Namazbayeva, A., Adamo, G. G., Coco, G., Cuccu, A., & Giannaccare, G. (2025). Clinical Applications of Optical Coherence Tomography and Optical Coherence Tomography Angiography in Uveal Melanoma: A Narrative Review. Diagnostics, 15(19), 2421. https://doi.org/10.3390/diagnostics15192421