Evaluation of Operated Dextro-Transposition of Great Arteries Patients in Follow-Up: Comparison of Transthoracic Echocardiography and Cardiac CT Angiography
Abstract
1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villafañe, J.; Lantin-Hermoso, M.R.; Bhatt, A.B.; Tweddell, J.S.; Geva, T.; Nathan, M.; Elliott, M.J.; Vetter, V.L.; Paridon, S.M.; Kochilas, L.; et al. D-transposition of the great arteries: The current era of the arterial switch operation. J. Am. Coll. Cardiol. 2014, 64, 498–511. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Zühlke, L.; Black, G.C.; Choy, M.K.; Li, N.; Keavney, B.D. Global birth prevalence of congenital heart defects 1970-2017: Updated systematic review and meta-analysis of 260 studies. Int. J. Epidemiol. 2019, 48, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.; Castela, E. Transposition of the great arteries. Orphanet J. Rare Dis. 2008, 3, 27. [Google Scholar] [CrossRef]
- Jatene, A.D.; Fontes, V.F.; Paulista, P.P.; Souza, L.C.; Neger, F.; Galantier, M.; Sousa, J.E. Anatomic correction of transposition of the great vessels. J. Thorac. Cardiovasc. Surg. 1976, 72, 364–370. [Google Scholar] [CrossRef]
- Lecompte, Y.; Zannini, L.; Hazan, E.; Jarreau, M.M.; Bex, J.P.; Tu, T.V.; Neveux, J.Y. Anatomic correction of transposition of the great arteries. J. Thorac. Cardiovasc. Surg. 1981, 82, 629–631. [Google Scholar] [CrossRef]
- Tobler, D.; Williams, W.G.; Jegatheeswaran, A.; Van Arsdell, G.S.; McCrindle, B.W.; Greutmann, M.; Oechslin, E.N.; Silversides, C.K. Cardiac outcomes in young adult survivors of the arterial switch operation for transposition of the great arteries. J. Am. Coll. Cardiol. 2010, 56, 58–64. [Google Scholar] [CrossRef]
- Fricke, T.A.; Buratto, E.; Weintraub, R.G.; Bullock, A.; Wheaton, G.; Grigg, L.; Disney, P.; d’Udekem, Y.; Brizard, C.P.; Konstantinov, I.E. Long-term outcomes of the arterial switch operation. J. Thorac. Cardiovasc. Surg. 2022, 163, 212–219. [Google Scholar] [CrossRef]
- van der Palen, R.L.F.; Blom, N.A.; Kuipers, I.M.; Rammeloo, L.A.J.; Jongbloed, M.R.M.; Konings, T.C.; Bouma, B.J.; Koolbergen, D.R.; Hazekamp, M.G. Long-term outcome after the arterial switch operation: 43 years of experience. Eur. J. Cardiothorac. Surg. 2021, 59, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Broberg, C.S.; van Dissel, A.; Minnier, J.; Aboulhosn, J.; Kauling, R.M.; Ginde, S.; Krieger, E.V.; Rodriguez, F., 3rd; Gupta, T.; Shah, S.; et al. Long-Term Outcomes After Atrial Switch Operation for Transposition of the Great Arteries. J. Am. Coll. Cardiol. 2022, 80, 951–963. [Google Scholar] [CrossRef]
- Engele, L.J.; van der Palen, R.L.F.; Joosen, R.S.; Sieswerda, G.T.; Schoof, P.H.; van Melle, J.P.; Berger, R.M.F.; Accord, R.E.; Rammeloo, L.A.J.; Konings, T.C.; et al. Clinical Course of TGA After Arterial Switch Operation in the Current Era. JACC Adv. 2024, 3, 100772. [Google Scholar] [CrossRef]
- Engele, L.J.; Mulder, B.J.M.; Schoones, J.W.; Kiès, P.; Egorova, A.D.; Vliegen, H.W.; Hazekamp, M.G.; Bouma, B.J.; Jongbloed, M.R.M. The Coronary Arteries in Adults after the Arterial Switch Operation: A Systematic Review. J. Cardiovasc. Dev. Dis. 2021, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, J.D.; Feygin, Y.; Stone, S.; Kozik, D.; Hall, M.; Stevenson, M. Prevalence of Pulmonary Artery Interventions Following the Arterial Switch Operation. World J. Pediatr. Congenit. Heart Surg. 2025, 83, 1616. [Google Scholar] [CrossRef]
- Lim, R.S.; Lefkovits, J.; Menahem, S. Long-Term Coronary Artery Complications Following the Arterial Switch Operation for Transposition of the Great Arteries-A Scoping Review. World J. Pediatr. Congenit. Heart Surg. 2025, 16, 402–408. [Google Scholar] [CrossRef]
- Sengupta, A.; Carreon, C.K.; Gauvreau, K.; Lee, J.M.; Sanders, S.P.; Colan, S.D.; Del Nido, P.J.; Mayer, J.E., Jr.; Nathan, M. Growth of the Neo-Aortic Root and Prognosis of Transposition of the Great Arteries. J. Am. Coll. Cardiol. 2024, 83, 516–527. [Google Scholar] [CrossRef]
- Sobczak-Budlewska, K.; Łubisz, M.; Moll, M.; Moszura, T.; Moll, J.A.; Korabiewska-Pluta, S.; Moll, J.J.; Michalak, K.W. 30 years’ experience with the arterial switch operation: Risk of pulmonary stenosis and its impact on post-operative prognosis. Cardiol. Young 2023, 33, 1550–1555. [Google Scholar] [CrossRef]
- van der Palen, R.L.F.; van der Bom, T.; Dekker, A.; Tsonaka, R.; van Geloven, N.; Kuipers, I.M.; Konings, T.C.; Rammeloo, L.A.J.; Ten Harkel, A.D.J.; Jongbloed, M.R.M.; et al. Progression of aortic root dilatation and aortic valve regurgitation after the arterial switch operation. Heart 2019, 105, 1732–1740. [Google Scholar] [CrossRef]
- Morgan, C.T.; Mertens, L.; Grotenhuis, H.; Yoo, S.J.; Seed, M.; Grosse-Wortmann, L. Understanding the mechanism for branch pulmonary artery stenosis after the arterial switch operation for transposition of the great arteries. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 180–185. [Google Scholar] [CrossRef]
- Cohen, M.S.; Mertens, L.L. Educational series in congenital heart disease: Echocardiographic assessment of transposition of the great arteries and congenitally corrected transposition of the great arteries. Echo Res. Pract. 2019, 6, R107–R119. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Bhatia, M. Role of Computed Tomography in Postoperative Follow-up of Arterial Switch Operation. J. Cardiovasc. Imaging 2021, 29, 1–19. [Google Scholar] [CrossRef]
- Siripornpitak, S.; Goo, H.W. CT and MRI for Repaired Complex Adult Congenital Heart Diseases. Korean J. Radiol. 2021, 22, 308–323. [Google Scholar] [CrossRef]
- Stout, K.K.; Daniels, C.J.; Aboulhosn, J.A.; Bozkurt, B.; Broberg, C.S.; Colman, J.M.; Crumb, S.R.; Dearani, J.A.; Fuller, S.; Gurvitz, M.; et al. 2018 AHA/ACC Guideline for the Management of Adults with Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e698–e800. [Google Scholar] [CrossRef]
- Goo, H.W. Radiation dose, contrast enhancement, image noise and heart rate variability of ECG-gated CT volumetry using 3D threshold-based segmentation: Comparison between conventional single scan and dual focused scan methods. Eur. J. Radiol. 2021, 137, 109606. [Google Scholar] [CrossRef]
- Baş, S.; Alkara, U.; Aliyev, B. Evaluation of complex congenital heart disease with prospective ECG-gated cardiac CT in a single heartbeat at low tube voltage (70 kV) and adaptive statistical iterative reconstruction in infants: A single center experience. Int. J. Cardiovasc. Imaging 2022, 38, 413–422. [Google Scholar] [CrossRef]
- Trattner, S.; Halliburton, S.; Thompson, C.M.; Xu, Y.; Chelliah, A.; Jambawalikar, S.R.; Peng, B.; Peters, M.R.; Jacobs, J.E.; Ghesani, M.; et al. Cardiac-Specific Conversion Factors to Estimate Radiation Effective Dose From Dose-Length Product in Computed Tomography. JACC Cardiovasc. Imaging 2018, 11, 64–74. [Google Scholar] [CrossRef]
- Deak, P.D.; Smal, Y.; Kalender, W.A. Multisection CT protocols: Sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 2010, 257, 158–166. [Google Scholar] [CrossRef]
- Gautier, M.; Detaint, D.; Fermanian, C.; Aegerter, P.; Delorme, G.; Arnoult, F.; Milleron, O.; Raoux, F.; Stheneur, C.; Boileau, C.; et al. Nomograms for aortic root diameters in children using two-dimensional echocardiography. Am. J. Cardiol. 2010, 105, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.; Colan, S.; Stylianou, M.; Granger, S.; Trachtenberg, F.; Frommelt, P.; Pearson, G.; Camarda, J.; Cnota, J.; Cohen, M.; et al. Relationship of Echocardiographic Z Scores Adjusted for Body Surface Area to Age, Sex, Race, and Ethnicity: The Pediatric Heart Network Normal Echocardiogram Database. Circ. Cardiovasc. Imaging 2017, 10, e006979. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, M.D.; Du, W.; Skeens, M.E.; Humes, R.A. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: An echocardiographic study. J. Am. Soc. Echocardiogr. 2008, 21, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Abdullah Shahbah, D.; El-Said, H.; Rios, R.; Ratnayaka, K.; Moore, J. Pulmonary artery interventions after the arterial switch operation: Unique and significant risks. Congenit. Heart Dis. 2019, 14, 288–296. [Google Scholar] [CrossRef]
- Luo, S.; Haranal, M.; Deng, M.X.; Varenbut, J.; Runeckles, K.; Steve Fan, C.P.; Van Arsdell, G.S.; Haller, C.; Honjo, O. Branch pulmonary artery stenosis after arterial switch operation: The effect of preoperative anatomic factors on reintervention. J. Thorac. Cardiovasc. Surg. 2022, 164, 317–327.e318. [Google Scholar] [CrossRef]
- Rakha, S.; Batouty, N.M.; ElDerie, A.A.; Hussein, A. Pulmonary, aorta, and coronary arteries post-arterial switch in transposition of great arteries: Intermediate-term surveillance utilizing conventional echocardiography and cardiac multislice computed tomography. Ital. J. Pediatr. 2024, 50, 122. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, G.; Qureshi, A.M.; Prieto, L.R.; Nagaraju, L.; Moore, P.; Bergersen, L.; Taggart, N.W.; Meadows, J. Balloon Angioplasty and Stenting for Unilateral Branch Pulmonary Artery Stenosis Improve Exertional Performance. JACC Cardiovasc. Interv. 2019, 12, 289–297. [Google Scholar] [CrossRef]
- Joosen, R.S.; Frissen, J.P.B.; van den Hoogen, A.; Krings, G.J.; Voskuil, M.; Slieker, M.G.; Breur, J. The effects of percutaneous branch pulmonary artery interventions on exercise capacity, lung perfusion, and right ventricular function in biventricular CHD: A systematic review. Cardiol. Young 2024, 34, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Delaney, M.; Cleveland, V.; Mass, P.; Capuano, F.; Mandell, J.G.; Loke, Y.H.; Olivieri, L. Right ventricular afterload in repaired D-TGA is associated with inefficient flow patterns, rather than stenosis alone. Int. J. Cardiovasc. Imaging 2022, 38, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Jacquemyn, X.; Van den Eynde, J.; Schuermans, A.; van der Palen, R.L.F.; Budts, W.; Danford, D.A.; Ravekes, W.J.; Kutty, S. Neoaortic Regurgitation Detected by Echocardiography After Arterial Switch Operation: A Systematic Review and Meta-Analysis. JACC Adv. 2024, 3, 100878. [Google Scholar] [CrossRef]
- Grotenhuis, H.B.; Ottenkamp, J.; Fontein, D.; Vliegen, H.W.; Westenberg, J.J.; Kroft, L.J.; de Roos, A. Aortic elasticity and left ventricular function after arterial switch operation: MR imaging--initial experience. Radiology 2008, 249, 801–809. [Google Scholar] [CrossRef]
- Schwartz, M.L.; Gauvreau, K.; del Nido, P.; Mayer, J.E.; Colan, S.D. Long-term predictors of aortic root dilation and aortic regurgitation after arterial switch operation. Circulation 2004, 110 (Suppl. S1), Ii128–Ii132. [Google Scholar] [CrossRef]
- Park, W.Y.; Lee, S.Y.; Seo, J. Hemodynamic Analysis in Aortic Dilatation after Arterial Switch Operation for Patients with Transposition of Great Arteries Using Computational Fluid Dynamics. J. Cardiovasc. Transl. Res. 2025, 18, 79–90. [Google Scholar] [CrossRef]
- Batteux, C.; Abakka, S.; Gaudin, R.; Vouhé, P.; Raisky, O.; Bonnet, D. Three-dimensional geometry of coronary arteries after arterial switch operation for transposition of the great arteries and late coronary events. J. Thorac. Cardiovasc. Surg. 2021, 161, 1396–1404. [Google Scholar] [CrossRef]
- Fontos, M.; Nagy, Z.; Prodán, Z.; Ablonczy, L.; Kozma, I.; Vértesaljai, M.; Kis, É.; Bálint, O.H. Coronary Artery Dimensions on Computed Tomography Following the Neonatal Arterial Switch Operation for the Complete Transposition of the Great Arteries. Pediatr. Cardiol. 2024. [Google Scholar] [CrossRef]
- Güzelbağ, A.N.; Baş, S.; Özcanoğlu, H.D.; Tanıdır, İ.C.; Hatemi, A.C.; Öztürk, E. Prediction of Coronary Artery Abnormalities Using Computed Tomography Angiography and Transthoracic Echocardiography Before Arterial Switch Operation İn Neonates With Dextro-Transposition of the Great Arteries. J. Clin. Ultrasound JCU 2025, 53, 1538–1546. [Google Scholar] [CrossRef]
- Szymczyk, K.; Moll, M.; Sobczak-Budlewska, K.; Moll, J.A.; Stefańczyk, L.; Grzelak, P.; Moll, J.J.; Michalak, K.W. Usefulness of Routine Coronary CT Angiography in Patients with Transposition of the Great Arteries After an Arterial Switch Operation. Pediatr. Cardiol. 2018, 39, 335–346. [Google Scholar] [CrossRef] [PubMed]
- van Wijk, S.W.H.; van der Stelt, F.; Ter Heide, H.; Schoof, P.H.; Doevendans, P.; Meijboom, F.J.; Breur, J. Sudden Death Due to Coronary Artery Lesions Long-term After the Arterial Switch Operation: A Systematic Review. Can. J. Cardiol. 2017, 33, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.S.; Eidem, B.W.; Cetta, F.; Fogel, M.A.; Frommelt, P.C.; Ganame, J.; Han, B.K.; Kimball, T.R.; Johnson, R.K.; Mertens, L.; et al. Multimodality Imaging Guidelines of Patients with Transposition of the Great Arteries: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. J. Am. Soc. Echocardiogr. 2016, 29, 571–621. [Google Scholar] [CrossRef] [PubMed]
- Gritti, M.N.; Farid, P.; Hassan, A.; Marshall, A.C. Cardiac Catheterization Interventions in the Right Ventricular Outflow Tract and Branch Pulmonary Arteries Following the Arterial Switch Operation. Pediatr. Cardiol. 2025, 46, 339–348. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Demographics | |
Sex (male), n (%) | 31 (66%) |
Age at follow-up (months) | 37.2 (8.4–128.8) |
Weight (kg) | 14.7 (7.4–36.2) |
Weight (percentile) | 32.1 (22.3–47.1) |
Weight (SDS) | −0.29 (−1.07–1.16) |
Height (cm) | 97.8 (73.6–128.9) |
Height (percentile) | 35.19 (24.9–51.6) |
Height (SDS) | 0.11 (−0.89–1.24) |
BMI (kg/m2) | 17.6 (12.1–19.4) |
BMI (percentile) | 28.75 (23.9–41.12) |
BMI (SDS) | −0.53 (−1.26–0.87) |
Surgical Variables | |
ASO Age (days) | 9 (3–14) |
Pre-operative septostomy, n (%) | 12 (25.5%) |
Imaging Parameters | |
Contrast agent (cc/kg) | 4.5 (3.2–6.9) |
Radiation dose (mSv) | 2.684 (1.5–4.6) |
Parameter | Value |
---|---|
Pulmonary Arteries | |
Pulmonary Annulus (mm) | 14.7 (8.1–16.7) |
Pulmonary Annulus Z Score | 0.26 (−1.12–0.79) |
Main PA Diameter (mm) | 11.5 (7.9–15.9) |
Main PA Diameter Z Score | −1.62 (−0.68 to −2.12) |
RPA Diameter (mm) | 7.12 (4.91–9.8) |
RPA Diameter Z score | −1.29 (−0.79 to −2.27) |
LPA Diameter (mm) | 6.08 (4.32–8.5) |
LPA Diameter Z score | −1.79 (−0.62 to −2.51) |
RPA area (mm2/m2) | 91.87 (49.56–120.94) |
LPA area (mm2/m2) | 74.19 (42.71–101.35) |
Main PA axial Angle (degree) | 2.1 (−12.1–6.6) |
RPA bending Angle (degree) | 98.45 ± 19.82 |
LPA bending Angle (degree) | 92.45 ± 16.89 |
Pulmonary Stenosis | |
Branch PA stenosis, n (%) | 31 (65.9%) |
Bilateral PAs stenosis, n (%) | 12 (25.5%) |
Unilateral PA stenosis, n (%) | 19 (40.4%) |
Unilateral RPA stenosis, n (%) | 11 (23.4%) |
Unilateral LPA stenosis, n (%) | 8 (17.0%) |
Main PA stenosis, n (%) | 11 (23.4%) |
Aortic Measurements | |
Aortic annulus Diameter (mm) | 17.3 (13.5–23.9) |
Aortic annulus Z score | 2.95 (1.78–3.86) |
SOV Diameter (mm) | 22.4 (18.1–32.5) |
SOV Z score | 2.56 (1.56–3.11) |
SOV area (mm2/m2) | 594.25 (467.25–723.53) |
STJ Diameter (mm) | 18.5 (15.1–25.8) |
STJ Z score | 2.47 (1.65–3.04) |
STJ area (mm2/m2) | 496.26 (412.29–547.89) |
Ascending aorta Diameter (mm) | 16.2 (14.9–24.1) |
Ascending aorta Z score | 1.03 (−0.12–1.65) |
Ascending aorta area (mm2/m2) | 275.49 (241.12–329.86) |
Transverse Arch (mm) | 15.3 (11–21.29) |
Transverse Arch Z score | 1.09 (−0.67–1.92) |
Distal Arch (mm) | 11.2 (8.1–15.2) |
Distal Arch Z score | 0.76 (0.12–1.71) |
Isthmus Diameter (mm) | 10.8 (8.3–15.4) |
Isthmus Z score | 0.75 (0.19–1.58) |
Aortic Abnormalities | |
Dilated Aortic annulus, n (%) | 26 (55.3%) |
Dilated Aortic Root, n (%) | 31 (65.9%) |
Dilated STJ, n (%) | 22 (46.8%) |
Dilated Ascending aorta, n (%) | 19 (40.4%) |
Supravalvular aortic stenosis, n (%) | 3 (6.5%) |
Aortic coarctation/arch abnormalities, n (%) | 2 (4.3%) |
APCAs or MAPCAs, n (%) | 6 (12.7%) |
Coronary Patterns | |
Normal coronary artery (1LCx-2R), n (%) | 28 (59.5%) |
Unusual coronary patterns, n (%) | 19 (40.5%) |
- 1L-2RCx, n (%) | 8 (17.0%) |
- 2LCxR, n (%) | 4 (8.5%) |
- 1R-2LCx, n (%) | 3 (6.4%) |
- 1LR-2Cx, n (%) | 2 (4.3%) |
- 1RCxL, n (%) | 1 (2.1%) |
Parameter | Value |
---|---|
Pulmonary Assessment | |
Neo-pulmonary valve pressure gradient (mmHg) | 14.7 (11.4–31.6) |
Neo-pulmonary stenosis, n (%) | |
- Trivial | 14 (29.7%) |
- Mild | 16 (34.0%) |
- Moderate | 4 (8.5%) |
- Severe | 6 (12.8%) |
Neo-pulmonary regurgitation, n (%) | |
- Trivial | 16 (34.0%) |
- Mild | 7 (14.9%) |
- Moderate | 2 (4.3%) |
- Severe | 1 (2.1%) |
RPA pressure gradient (mmHg) | 15.2 (12.9–26.8) |
LPA pressure gradient (mmHg) | 18.9 (14.2–31.5) |
Pulmonary Annulus (mm) | 15.1 (7.9–17.1) |
Pulmonary Annulus Z Score | 0.34 (−1.01–0.65) |
Main PA Diameter (mm) | 11.8 (7.7–15.3) |
Main PA Diameter Z score | −1.45 (−0.78 to −2.27) |
RPA Diameter (mm) | 6.95 (4.57–10.23) |
RPA Diameter Z score | −1.09 (−0.68 to −2.37) |
LPA Diameter (mm) | 5.37 (4.29–8.96) |
LPA Diameter Z score | −1.46 (−0.57 to −2.64) |
Pulmonary not evaluated, n (%) | 11 (23.4%) |
Aortic Assessment | |
Neo-aortic valve pressure gradient (mmHg) | 9.2 (4.5–14.3) |
Neo-aortic Regurgitation, n (%) | |
- Trivial | 16 (34.0%) |
- Mild | 4 (8.5%) |
- Moderate | 4 (8.5%) |
- Severe | 3 (6.4%) |
Neo-aortic stenosis, n (%) | |
- Trivial | 9 (19.1%) |
- Mild | 4 (8.5%) |
- Moderate | 2 (4.3%) |
- Severe | 3 (6.4%) |
Aortic coarctation/abnormalities, n (%) | 5 (10.6%) |
Aortic annulus Diameter (mm) | 16.9 (12.1–25.6) |
Aortic annulus Z score | 2.62 (1.65–3.65) |
SOV Diameter (mm) | 21.6 (16.9–34.5) |
SOV Z score | 2.32 (1.45–3.21) |
STJ Diameter (mm) | 17.9 (14.1–26.8) |
STJ Z score | 2.35 (1.52–3.24) |
Ascending aorta Diameter (mm) | 15.2 (13.9–23.1) |
Ascending aorta Z score | 0.89 (−0.24–1.55) |
Transverse Arch (mm) | 14.9 (11.3–20.12) |
Transverse Arch Z score | 0.98 (−0.57–1.72) |
Distal Arch (mm) | 12.1 (7.9–16.1) |
Distal Arch Z score | 0.94 (0.32–1.96) |
Isthmus Diameter (mm) | 11.7 (7.8–16.9) |
Isthmus Z score | 0.82 (0.21–1.63) |
Aortic Abnormalities | |
Dilated Aortic annulus, n (%) | 21 (44.6%) |
Dilated Aortic Root, n (%) | 24 (51.0%) |
Dilated STJ, n (%) | 19 (40.4%) |
Dilated Ascending aorta, n (%) | 17 (36.2%) |
Supravalvular aortic stenosis, n (%) | 4 (8.5%) |
Aortic coarctation/arch abnormalities, n (%) | 3 (6.4%) |
APCAs or MAPCAs, n (%) | 8 (17.0%) |
Coronary Assessment | |
Normal coronary artery, n (%) | 14 (29.7%) |
Unusual coronary artery, n (%) | 20 (42.5%) |
Not evaluated, n (%) | 13 (27.6%) |
Ventricular Function | |
LV FS (%) | 34.12 (32.19–39.65) |
Parameter | CT | Echocardiography | p Value |
---|---|---|---|
Pulmonary Measurements | |||
Pulmonary Annulus (mm) | 14.7 (8.1–16.7) | 15.1 (7.9–17.1) | 0.44 |
Pulmonary Annulus Z Score | 0.26 (−1.12–0.79) | 0.34 (−1.01–0.65) | 0.53 |
Main PA Diameter (mm) | 11.5 (7.9–15.9) | 11.8 (7.7–15.3) | 0.31 |
Main PA Diameter Z Score | −1.62 (−0.68 to −2.12) | −1.45 (−0.78 to −2.27) | 0.67 |
RPA Diameter (mm) | 7.12 (4.91–9.8) | 6.95 (4.57–10.23) | 0.76 |
RPA Diameter Z score | −1.29 (−0.79 to −2.27) | −1.09 (−0.68 to −2.37) | 0.54 |
LPA Diameter (mm) | 6.08 (4.32–8.5) | 5.37 (4.29–8.96) | 0.27 |
LPA Diameter Z score | −1.79 (−0.62 to −2.51) | −1.46 (−0.57 to −2.64) | 0.46 |
Aortic Measurements | |||
Aortic annulus Diameter (mm) | 17.3 (13.5–23.9) | 16.9 (12.1–25.6) | 0.39 |
Aortic annulus Z score | 2.95 (1.78–3.86) | 2.62 (1.65–3.65) | 0.54 |
SOV Diameter (mm) | 22.4 (18.1–32.5) | 21.6 (16.9–34.5) | 0.47 |
SOV Z score | 2.56 (1.56–3.11) | 2.32 (1.45–3.21) | 0.13 |
STJ Diameter (mm) | 18.5 (15.1–25.8) | 17.9 (14.1–26.8) | 0.32 |
STJ Z score | 2.47 (1.65–3.04) | 2.35 (1.52–3.24) | 0.49 |
Ascending aorta Diameter (mm) | 16.2 (14.9–24.1) | 15.2 (13.9–23.1) | 0.17 |
Ascending aorta Z score | 1.03 (−0.12–1.65) | 0.89 (−0.24–1.55) | 0.29 |
Transverse Arch (mm) | 15.3 (11–21.29) | 14.9 (11.3–20.12) | 0.52 |
Transverse Arch Z score | 1.09 (−0.67–1.92) | 0.98 (−0.57–1.72) | 0.73 |
Distal Arch (mm) | 11.2 (8.1–15.2) | 12.1 (7.9–16.1) | 0.61 |
Distal Arch Z score | 0.76 (0.12–1.71) | 0.94 (0.32–1.96) | 0.59 |
Isthmus Diameter (mm) | 10.8 (8.3–15.4) | 11.7 (7.8–16.9) | 0.37 |
Isthmus Z score | 0.75 (0.19–1.58) | 0.82 (0.21–1.63) | 0.53 |
Parameter | RPA Bending Angle | p | LPA Bending Angle | p |
---|---|---|---|---|
Rho | Rho | |||
Aortic annulus (mm) | −0.37 | 0.08 | 0.21 | 0.49 |
Aortic annulus Z score | −0.28 | 0.56 | 0.11 | 0.72 |
SOV (mm) | −0.19 | 0.33 | 0.65 | 0.016 |
SOV Z score | 0.05 | 0.47 | 0.69 | 0.021 |
STJ (mm) | 0.13 | 0.67 | 0.53 | 0.038 |
STJ Z score | 0.16 | 0.31 | 0.42 | 0.042 |
Ascending Aorta (mm) | −0.11 | 0.32 | 0.36 | 0.23 |
Ascending Aorta Z score | 0.24 | 0.34 | 0.53 | 0.06 |
Transverse Arch (mm) | 0.19 | 0.21 | 0.42 | 0.05 |
Transverse Arch Z score | 0.06 | 0.38 | 0.38 | 0.42 |
Isthmus (mm) | 0.09 | 0.65 | 0.54 | 0.11 |
Isthmus Z score | 0.31 | 0.43 | 0.64 | 0.19 |
Parameter | CT Assessment | TTE Assessment | Total |
---|---|---|---|
Aortic Valve Interventions | |||
- Complete pre-intervention assessment | 3 (100%) | 3 (100%) | 3 |
- Valve repair | 2 | 2 | 2 |
- Valve replacement | 1 | 1 | 1 |
Pulmonary Artery Interventions | |||
- Complete pre-intervention assessment | 7 (100%) | 0 (0%) | 7 |
- Percutaneous balloon angioplasty | 6 | - | 6 |
- Surgical intervention | 1 | - | 1 |
Intervention sites | |||
- RPA + LPA + MPA | 2 | 0 (0%) | 2 |
- LPA only | 2 | 0 (0%) | 2 |
- RPA only | 1 | 0 (0%) | 1 |
- LPA + RPA | 1 | 0 (0%) | 1 |
- Surgical PA intervention | 1 | 0 (0%) | 1 |
High-risk anatomy identification | |||
- Coronary-PA proximity (surgical indication) | 1 (100%) | 0 (0%) | 1 |
Total patients requiring intervention | 10 (21.3%) | 3 (30%) | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güzelbağ, A.N.; Özyılmaz, İ.; Kangel, D.; Bayrak, O.N.; Özcanoğlu, H.D.; Tüzün, B.; Hatemi, A.C.; Öztürk, E.; Baş, S. Evaluation of Operated Dextro-Transposition of Great Arteries Patients in Follow-Up: Comparison of Transthoracic Echocardiography and Cardiac CT Angiography. Diagnostics 2025, 15, 2419. https://doi.org/10.3390/diagnostics15192419
Güzelbağ AN, Özyılmaz İ, Kangel D, Bayrak ON, Özcanoğlu HD, Tüzün B, Hatemi AC, Öztürk E, Baş S. Evaluation of Operated Dextro-Transposition of Great Arteries Patients in Follow-Up: Comparison of Transthoracic Echocardiography and Cardiac CT Angiography. Diagnostics. 2025; 15(19):2419. https://doi.org/10.3390/diagnostics15192419
Chicago/Turabian StyleGüzelbağ, Ali Nazım, İsa Özyılmaz, Demet Kangel, Osman Nuri Bayrak, Hatice Dilek Özcanoğlu, Behzat Tüzün, Ali Can Hatemi, Erkut Öztürk, and Serap Baş. 2025. "Evaluation of Operated Dextro-Transposition of Great Arteries Patients in Follow-Up: Comparison of Transthoracic Echocardiography and Cardiac CT Angiography" Diagnostics 15, no. 19: 2419. https://doi.org/10.3390/diagnostics15192419
APA StyleGüzelbağ, A. N., Özyılmaz, İ., Kangel, D., Bayrak, O. N., Özcanoğlu, H. D., Tüzün, B., Hatemi, A. C., Öztürk, E., & Baş, S. (2025). Evaluation of Operated Dextro-Transposition of Great Arteries Patients in Follow-Up: Comparison of Transthoracic Echocardiography and Cardiac CT Angiography. Diagnostics, 15(19), 2419. https://doi.org/10.3390/diagnostics15192419