Enhancing Monkeypox Diagnosis with Transformers: Bridging Explainability and Performance with Quantitative Validation
Abstract
1. Introduction
1.1. Research Problem and Significance
1.2. Related Work
1.2.1. Studies Utilizing XAI Methods
1.2.2. Studies Without XAI Methods
2. Materials and Methods
2.1. Datasets
2.2. Proposed Methodology
2.2.1. Data Preparation
2.2.2. Transformer Architecture
- (a)
- Vision Transformer (ViT)
- (b)
- Data Efficient Vision Transformer (DeiT)
2.2.3. Fine-Tuning Transformer-Based Architectures
2.2.4. Visual Exploration of Feature Embeddings
2.2.5. XAI-Based Methods
- (a)
- Grad-CAM
- (b)
- LRP
- (c)
- AR
- (d)
- Hybrid explainable heatmap generation using PCA
2.2.6. Causal Metrics with XAI
3. Results
3.1. Feature Embedding Distributions Extracted by Transformer Models
3.2. Classification Results of Test Set Images Utilizing ViT and DeiT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
ViT | Vision Transformer |
DeiT | Data-Efficient Image Transformer |
Grad-CAM | Gradient-weighted Class Activation Mapping |
LRP | Layer-wise Relevance Propagation |
AR | Attention Rollout |
PCA | Principal Component Analysis |
XAI | eXplainable Artificial Intelligence |
MSID | Monkeypox Skin Images Dataset |
MSLD | Monkeypox Skin Lesion Dataset |
MID | Monkeypox Image dataset |
LIME | Local Interpretable Model-agnostic Explanations |
ML | Machine Learning |
AUC | Area Under Curve |
References
- World Health Organization (WHO). Mpox. Available online: https://www.who.int/news-room/fact-sheets/detail/mpox (accessed on 2 September 2025).
- Mayoclinic Mpox (Monkeypox): What Is It and How Can It Be Prevented? Available online: https://www.mayoclinic.org/diseases-conditions/infectious-diseases/expert-answers/monkeypox-faq/faq-20533608 (accessed on 2 September 2025).
- Catala, A.; Riera, J.; Fuertes, I. [Translated Article] Mpox—Formerly Monkey Pox—In Dermatology: A Review of Epidemiologic Features, Clinical Presentation, Diagnosis, and Treatment. Actas Dermosifiliogríaficas 2023, 114, T318–T326. [Google Scholar] [CrossRef]
- Mccarthy, M.W. Recent Advances in the Diagnosis Monkeypox: Implications for Public Health ARTICLE HISTORY. Expert Rev. Mol. Diagn. 2022, 22, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Koban, K.C.; Schenck, T.L.; Giunta, R.E.; Li, Q.; Sun, Y. Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends. J. Clin. Med. 2022, 11, 6826. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S. CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Maurício, J.; Domingues, I.; Bernardino, J. Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review. Appl. Sci. 2023, 13, 5521. [Google Scholar] [CrossRef]
- Rahman, A.U.; Alsenani, Y.; Zafar, A.; Ullah, K.; Rabie, K.; Shongwe, T. Enhancing Heart Disease Prediction Using a Self-Attention-Based Transformer Model. Sci. Rep. 2024, 14, 514. [Google Scholar] [CrossRef]
- Al-Gaashani, M.S.A.M.; Mahel, A.S.B.; Khayyat, M.M.; Muthanna, A. A Novel Multi-Scale Context Aggregation and Feature Pooling Network for Mpox Classification. Biomed. Signal Process. Control. 2026, 111, 108254. [Google Scholar] [CrossRef]
- Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable Artificial Intelligence: A Comprehensive Review; Springer: Dordrecht, The Netherlands, 2022; Volume 55, ISBN 0123456789. [Google Scholar]
- Das, A.; Rad, P. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey. arXiv 2020, arXiv:2006.11371. [Google Scholar] [CrossRef]
- Brunner, G.; Liu, Y.; Pascual, D.; Richter, O.; Wattenhofer, R. On the Validity of Self-Attention as Explanation in Transformer Models. arXiv 2019, arXiv:1908.04211. [Google Scholar]
- Bai, Y.; Mei, J.; Yuille, A.; Xie, C. Are Transformers More Robust than CNNs? In Proceedings of the 35th International Conference on Neural Information Processing Systems, Online, 6–14 December 2021; Curran Associates Inc.: New York, NY, USA, 2021. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Lakshmi, M.; Das, R. Classification of Monkeypox Images Using LIME-Enabled Investigation of Deep Convolutional Neural Network. Diagnostics 2023, 13, 1639. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Ali, M.S.; Hassan, M.M.; Abdullah, T.A.; Gupta, K.D.; Bagci, U.; Kaushal, C.; Soliman, N.F. Monkeypox Diagnosis With Interpretable Deep Learning. IEEE Access 2023, 11, 81965–81980. [Google Scholar] [CrossRef]
- Raha, A.D.; Gain, M.; Debnath, R.; Adhikary, A.; Qiao, Y.; Hassan, M.M.; Bairagi, A.K.; Islam, S.M.S. Attention to Monkeypox: An Interpretable Monkeypox Detection Technique Using Attention Mechanism. IEEE Access 2024, 12, 51942–51965. [Google Scholar] [CrossRef]
- Muñoz-Saavedra, L.; Escobar-Linero, E.; Civit-Masot, J.; Luna-Perejón, F.; Civit, A.; Domínguez-Morales, M. A Robust Ensemble of Convolutional Neural Networks for the Detection of Monkeypox Disease from Skin Images. Sensors 2023, 23, 7134. [Google Scholar] [CrossRef]
- Bala, D.; Hossain, S.; Alamgir, M. MonkeyNet: A Robust Deep Convolutional Neural Network for Monkeypox Disease Detection and Classification. Neural Netw. 2023, 161, 757–775. [Google Scholar] [CrossRef]
- Sorayaie Azar, A.; Naemi, A.; Babaei Rikan, S.; Bagherzadeh Mohasefi, J.; Pirnejad, H.; Wiil, U.K. Monkeypox Detection Using Deep Neural Networks. BMC Infect. Dis. 2023, 23, 438. [Google Scholar] [CrossRef] [PubMed]
- Sitaula, C.; Bahadur, T. Monkeypox Virus Detection Using Pre-Trained Deep Learning-Based Approaches. J. Med. Syst. 2022, 46, 78. [Google Scholar] [CrossRef] [PubMed]
- Nayak, T.; Chadaga, K.; Sampathila, N.; Mayrose, H.; Gokulkrishnan, N.; G, M.B.; Prabhu, S.; Swathi, K.S. Deep Learning Based Detection of Monkeypox Virus Using Skin Lesion Images. Med. Nov. Technol. Devices 2023, 18, 100243. [Google Scholar] [CrossRef] [PubMed]
- Aloraini, M. An Effective Human Monkeypox Classification Using Vision Transformer. Int. J. Imaging Syst. Technol. 2024, 34, e22944. [Google Scholar] [CrossRef]
- Siddick, A.B.; Yan, Z.; Aziz, M.T.; Rahman, M.; Mahmud, T.; Farid, S.; Sapayev, V.; Uglu, O.; Irkinovna, M.B.; Kuranbaevich, A.S.; et al. Hybrid Approach of Classification of Monkeypox Disease: Integrating Transfer Learning with ViT and Explainable AI. Int. J. Adv. Comput. Sci. Appl. 2024, 15. [Google Scholar] [CrossRef]
- Setegn, G.M.; Dejene, B.E. Explainable AI for Symptom-Based Detection of Monkeypox: A Machine Learning Approach. BMC Infect. Dis. 2025, 25, 419. [Google Scholar] [CrossRef]
- Kumar Saha, D.; Rafi, S.; Mridha, M.F.; Alfarhood, S.; Safran, M.; Kabir, M.M.; Dey, N. Mpox-XDE: An Ensemble Model Utilizing Deep CNN and Explainable AI for Monkeypox Detection and Classification. BMC Infect. Dis. 2025, 25, 403. [Google Scholar] [CrossRef]
- Shateri, A.; Nourani, N.; Dorrigiv, M.; Nasiri, H. An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm. arXiv 2025, arXiv:2504.17540. [Google Scholar] [CrossRef]
- Kumar, V. Analysis of CNN Features with Multiple Machine Learning Classifiers in Diagnosis of Monkeypox from Digital Skin Images. medRxiv 2022. [Google Scholar] [CrossRef]
- Altun, M.; Gürüler, H.; Özkaraca, O.; Khan, F.; Khan, J.; Lee, Y. Monkeypox Detection Using CNN with Transfer Learning. Sensors 2023, 23, 1783. [Google Scholar] [CrossRef] [PubMed]
- Uysal, F. Detection of Monkeypox Disease from Human Skin Images with a Hybrid Deep Learning Model. Diagnostics 2023, 13, 1772. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, E.M.; Hashim, H.; Atlam, E.-S.; Osman, R.A.; Gad, I. TMS: Ensemble Deep Learning Model for Accurate Classification of Monkeypox Lesions Based on Transformer Models with SVM. Diagnostics 2024, 14, 2638. [Google Scholar] [CrossRef]
- Kundu, D.; Rahman, M.; Rahman, A.; Das, D.; Siddiqi, U.R.; Alam, G.R.; Ali, Z. Federated Deep Learning for Monkeypox Disease Detection on GAN-Augmented Dataset. IEEE Access 2024, 12, 32819–32829. [Google Scholar] [CrossRef]
- Yolcu Oztel, G. Vision Transformer and CNN-Based Skin Lesion Analysis: Classification of Monkeypox. Multimed. Tools Appl. 2024, 83, 71909–71923. [Google Scholar] [CrossRef]
- Haque, M.E.; Ahmed, M.R.; Nila, R.S.; Islam, S. Classification of Human Monkeypox Disease Using Deep Learning Models and Attention Mechanisms. arXiv 2022, arXiv:2211.15459. [Google Scholar] [CrossRef]
- Srinivasan, M.N.; Sikkandar, M.Y.; Alhashim, M.; Chinnadurai, M. Capsule Network Approach for Monkeypox (CAPSMON) Detection and Subclassification in Medical Imaging System. Sci. Rep. 2025, 15, 3296. [Google Scholar] [CrossRef]
- Cao, Y.; Yue, Y.; Ma, X.; Liu, D.; Ni, R.; Liang, H.; Li, Z. Robustly Detecting Mpox and Non-Mpox Using a Deep Learning Framework Based on Image Inpainting. Sci. Rep. 2025, 15, 1576. [Google Scholar] [CrossRef] [PubMed]
- Maheskumar, V.; Vijayarajeswari, R. Enhanced Detection of Mpox Using Federated Learning with Hybrid ResNet-ViT and Adaptive Attention Mechanisms. Sci. Rep. 2025, 15, 24728. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Branda, F.; Alkhedaide, A.Q.; Sarangi, A.K.; Samal, H.B.; Tripathy, L.; Barik, B.; El-Bahy, S.M.; Patel, A.; Mohapatra, R.K.; et al. Early Detection of Human Mpox: A Comparative Study by Using Machine Learning and Deep Learning Models with Ensemble Approach. Digit. Health 2025, 11, 20552076251344135. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.N.; Ahmed, M.T.; Paul, J.; Jahan, T.; Sani, S.M.S.; Noor, N.; Hasan, T. Monkeypox Skin Lesion Detection Using Deep Learning Models: A Feasibility Study. arXiv 2022, arXiv:2207.03342. [Google Scholar] [CrossRef]
- Mitjà, O.; Ogoina, D.; Titanji, B.K.; Galvan, C.; Muyembe, J.-J.; Marks, M.; Orkin, C.M. Monkeypox. Lancet 2023, 401, 60–74. [Google Scholar] [CrossRef]
- Saleh, H.M.; Ayoade, F.; Kumar, S. Varicella-Zoster Virus (Chickenpox). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Minta, A.A.; Ferrari, M.; Antoni, S.; Lambert, B.; Sayi, T.S.; Hsu, C.H.; Steulet, C.; Gacic-Dobo, M.; Rota, P.A.; Mulders, M.N.; et al. Progress Toward Measles Elimination—Worldwide, 2000–2023. MMWR. Morb. Mortal. Wkly. Rep. 2024, 73, 1036–1042. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D. An Image Is Worth 16×16 Words: Transformers for Image Recognition at Scale. In Proceedings of the ICLR 2021, Vienna, Austria, 4 May 2021. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Hendrycks, D.; Gimpel, K. Gaussian Error Linear Units (GELUs). arXiv 2016, arXiv:1606.08415. [Google Scholar]
- Azad, R.; Kazerouni, A.; Heidari, M.; Aghdam, E.K.; Molaei, A.; Jia, Y.; Jose, A.; Roy, R.; Merhof, D. Advances in Medical Image Analysis with Vision Transformers: A Comprehensive Review. Med. Image Anal. 2024, 91, 103000. [Google Scholar] [CrossRef]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training Data-Efficient Image Transformers & Distillation through Attention. Proc. Mach. Learn. Res. 2021, 139, 10347–10357. [Google Scholar]
- Yun, S.; Han, D.; Chun, S.; Oh, S.J.; Choe, J.; Yoo, Y. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6022–6031. [Google Scholar] [CrossRef]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. MixUp: Beyond Empirical Risk Minimization. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Laurens van der, M.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cognit. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Chefer, H.; Gur, S.; Wolf, L. Transformer Interpretability Beyond Attention Visualization. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 782–791. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar] [CrossRef]
- Bach, S.; Binder, A.; Montavon, G.; Klauschen, F. On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLoS ONE 2015, 10, e0130140. [Google Scholar] [CrossRef]
- Abnar, S.; Zuidema, W. Quantifying Attention Flow in Transformers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Jurafsky, D., Chai, J., Schluter, N., Tetreault, J., Eds.; Association for Computational Linguistics: Online, 2020; pp. 4190–4197. [Google Scholar]
- Principal Component Analysis for Special Types of Data. In Principal Component Analysis; Springer: New York, NY, USA, 2002; pp. 338–372. ISBN 978-0-387-22440-4.
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable; Shroff/Molnar: Salt Lake City, UT, USA, 2020; ISBN 978-3-911578-03-5. [Google Scholar]
- Samek, W.; Wiegand, T.; Müller, K.-R. Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models. arXiv 2017, arXiv:1708.08296. [Google Scholar] [CrossRef]
- Petsiuk, V.; Das, A.; Saenko, K. Rise: Randomized Input Sampling for Explanation of Black-Box Models. arXiv 2018, arXiv:1806.07421. [Google Scholar] [CrossRef]
- Achtibat, R.; Hatefi, S.M.V.; Dreyer, M.; Jain, A.; Wiegand, T.; Lapuschkin, S.; Samek, W. AttnLRP: Attention-Aware Layer-Wise Relevance Propagation for Transformers. Proc. Mach. Learn. Res. 2024, 235, 135–168. [Google Scholar]
- Dhore, V.; Bhat, A.; Nerlekar, V.; Chavhan, K.; Umare, A. Enhancing Explainable AI: A Hybrid Approach Combining GradCAM and LRP for CNN Interpretability. arXiv 2024, arXiv:2405.12175. [Google Scholar] [CrossRef]
Images | Augmentation Operations |
---|---|
Normal | |
Measles | |
Chickenpox | |
Monkeypox |
Methods | Details of Hyper-Parameters | Numerical Values |
---|---|---|
Data augmentation | Horizontal flip Vertical flip | probability: 0.5 |
Rotation | degrees: 30 | |
Color jitter | brightness: 0.2 | |
contrast: 0.2 | ||
saturation: 0.2 | ||
hue: 0.1 | ||
Resized crop | scale: 0.8–1.0 | |
Affine | translate: 10% | |
degrees: 10 | ||
scale: 0.8–1.2 | ||
Perspective | distortion scale: 0.5 | |
probability: 0.5 | ||
interpolation: 3 | ||
Gaussian blur | kernel size: 3 | |
Regularization and optimization | Cut Mix/Mix Up | random choice |
Label smoothing | 0.1 | |
Early stopping | 15 | |
Learning rate | 0.0001 |
Train/Validation Accuracy | Train/Validation Loss | Confusion Matrix | ROC Curve with AUC | |
---|---|---|---|---|
ViT | ||||
DeiT |
Train/Validation Accuracy | Train/Validation Loss | Confusion Matrix | ROC Curve with AUC | |
---|---|---|---|---|
ViT | ||||
DeiT |
Transformer Method | Classes | Precision | Recall | F1-Score | Averaged Accuracy | AUC |
---|---|---|---|---|---|---|
ViT | Others | 0.8750 | 1.0000 | 0.9333 | 0.9149 | 0.9192 |
Monkeypox | 1.000 | 0.7895 | 0.8824 | |||
DeiT | Others | 0.8667 | 0.9286 | 0.8966 | 0.8723 | 0.9004 |
Monkeypox | 0.8824 | 0.7895 | 0.8333 |
Transformer Method | Classes | Precision | Recall | F1-Score | Averaged Accuracy | AUC |
---|---|---|---|---|---|---|
ViT | Chickenpox | 0.5909 | 0.8125 | 0.6842 | 0.8961 | 0.9784 |
Measles | 0.8235 | 0.9333 | 0.8750 | |||
Monkeypox | 0.9800 | 0.8167 | 0.8909 | |||
Normal | 0.9538 | 0.9841 | 0.9688 | |||
DeiT | Chickenpox | 0.6667 | 0.7500 | 0.7059 | 0.8831 | 0.9708 |
Measles | 0.9167 | 0.7333 | 0.8148 | |||
Monkeypox | 0.9804 | 0.8333 | 0.9009 | |||
Normal | 0.8630 | 1.000 | 0.9265 |
Causal Metrics | Grad-CAM | LRP | AR | Paired Hybrid (Grad-CAM + LRP) |
---|---|---|---|---|
Deletion | 0.278 ± 0.002 | 0.228 ± 0.017 | 0.345 ± 0.032 | 0.209 ± 0.026 |
Insertion | 0.842 ± 0.011 | 0.859 ± 0.013 | 0.843 ± 0.026 | 0.865 ± 0.005 |
Causal Metrics | Grad-CAM | LRP | AR | Paired Hybrid (Grad-CAM + LRP) |
---|---|---|---|---|
Deletion | 0.238 ± 0.015 | 0.219 ± 0.012 | 0.265 ± 0.018 | 0.192 ± 0.010 |
Insertion | 0.873 ± 0.009 | 0.888 ± 0.006 | 0.855 ± 0.014 | 0.899 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şeker, D.; Yıldız, A. Enhancing Monkeypox Diagnosis with Transformers: Bridging Explainability and Performance with Quantitative Validation. Diagnostics 2025, 15, 2354. https://doi.org/10.3390/diagnostics15182354
Şeker D, Yıldız A. Enhancing Monkeypox Diagnosis with Transformers: Bridging Explainability and Performance with Quantitative Validation. Diagnostics. 2025; 15(18):2354. https://doi.org/10.3390/diagnostics15182354
Chicago/Turabian StyleŞeker, Delal, and Abdulnasır Yıldız. 2025. "Enhancing Monkeypox Diagnosis with Transformers: Bridging Explainability and Performance with Quantitative Validation" Diagnostics 15, no. 18: 2354. https://doi.org/10.3390/diagnostics15182354
APA StyleŞeker, D., & Yıldız, A. (2025). Enhancing Monkeypox Diagnosis with Transformers: Bridging Explainability and Performance with Quantitative Validation. Diagnostics, 15(18), 2354. https://doi.org/10.3390/diagnostics15182354