The Role of Prognostic Nutritional Index in Predicting Coronary Slow Flow Phenomena
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Coronary Angiography
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CSF | Coronary Slow Flow Phenomenon |
PNI | Prognostic Nutritional Index |
DM | Diabetes Mellitus |
CAG | Coronary Angiography |
LAD | Left Anterior Descending |
CX | Circumflex |
RCA | Right Coronary Artery (RCA). |
CAD | Coronary Artery Disease |
HT | Hypertension |
AF | Atrial Fibrillation |
References
- Xia, S.; Deng, S.B.; Wang, Y.; Xiao, J.; Du, J.L.; Zhang, Y.; Wang, X.C.; Li, Y.Q.; Zhao, R.; He, L.; et al. Clinical analysis of the risk factors of slow coronary flow. Heart Vessel. 2011, 26, 480–486. [Google Scholar] [CrossRef]
- Singh, S.; Kothari, S.S.; Bahl, V.K. Coronary slow flow phenomenon: An angiographic curiosity. Indian Heart J. 2004, 56, 613–617. [Google Scholar]
- Oktay, V.; Arat Ozkan, A. Coronary slow flow. Turk. Kardiyol. Dern. Ars. 2016, 44, 193–195. [Google Scholar] [CrossRef]
- Yazici, M.; Demircan, S.; Aksakal, E.; Sahin, M.; Meric, M.; Dursun, I.; Yuksel, S.; Sagkan, O. Plasma insulin, glucose and lipid levels, and their relations with corrected TIMI frame count in patients with slow coronary flow. Anadolu Kardiyol. Derg. 2003, 3, 222–226. [Google Scholar]
- Zavala-Alarcon, E.; Cecena, F.; Little, R.; Bant, A.; Van Poppel, S.; Patel, R. The no-flow phenomenon during diagnostic coronary angiography. Cardiovasc. Revasc. Med. 2005, 6, 126–132. [Google Scholar] [CrossRef]
- Aparicio, A.; Cuevas, J.; Moris, C.; Martin, M. Slow Coronary Blood Flow: Pathogenesis and Clinical Implications. Eur. Cardiol. 2022, 17, e08. [Google Scholar] [CrossRef]
- Chalikias, G.; Tziakas, D. Slow Coronary Flow: Pathophysiology, Clinical Implications, and Therapeutic Management. Angiology 2021, 72, 808–818. [Google Scholar] [CrossRef]
- Kalay, N.; Aytekin, M.; Kaya, M.G.; Ozbek, K.; Karayakali, M.; Sogut, E.; Altunkas, F.; Ozturk, A.; Koc, F. The relationship between inflammation and slow coronary flow: Increased red cell distribution width and serum uric acid levels. Turk. Kardiyol. Dern. Ars. 2011, 39, 463–468. [Google Scholar] [CrossRef]
- Buzby, G.P.; Mullen, J.L.; Matthews, D.C.; Hobbs, C.L.; Rosato, E.F. Prognostic nutritional index in gastrointestinal surgery. Am. J. Surg. 1980, 139, 160–167. [Google Scholar] [CrossRef]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar]
- Narumi, T.; Arimoto, T.; Funayama, A.; Kadowaki, S.; Otaki, Y.; Nishiyama, S.; Takahashi, H.; Shishido, T.; Miyashita, T.; Miyamoto, T.; et al. Prognostic importance of objective nutritional indexes in patients with chronic heart failure. J. Cardiol. 2013, 62, 307–313. [Google Scholar] [CrossRef]
- Hayashi, J.; Uchida, T.; Ri, S.; Hamasaki, A.; Kuroda, Y.; Yamashita, A.; Sadahiro, M. Clinical significance of the prognostic nutritional index in patients undergoing cardiovascular surgery. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 774–779. [Google Scholar] [CrossRef]
- Raposeiras Roubin, S.; Abu Assi, E.; Cespon Fernandez, M.; Barreiro Pardal, C.; Lizancos Castro, A.; Parada, J.A.; Perez, D.D.; Blanco Prieto, S.; Rossello, X.; Ibanez, B.; et al. Prevalence and Prognostic Significance of Malnutrition in Patients With Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2020, 76, 828–840. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, X.; Xiao, L.; Long, G.; Yao, L.; Wang, Z.; Zhou, L. Prognostic Nutritional Index and Systemic Immune-Inflammation Index Predict the Prognosis of Patients with HCC. J. Gastrointest. Surg. 2021, 25, 421–427. [Google Scholar] [CrossRef]
- Sanati, H.; Kiani, R.; Shakerian, F.; Firouzi, A.; Zahedmehr, A.; Peighambari, M.; Shokrian, L.; Ashrafi, P. Coronary Slow Flow Phenomenon Clinical Findings and Predictors. Res. Cardiovasc. Med. 2016, 5, e30296. [Google Scholar] [CrossRef]
- Li, J.J.; Qin, X.W.; Li, Z.C.; Zeng, H.S.; Gao, Z.; Xu, B.; Zhang, C.Y.; Li, J. Increased plasma C-reactive protein and interleukin-6 concentrations in patients with slow coronary flow. Clin. Chim. Acta 2007, 385, 43–47. [Google Scholar] [CrossRef]
- Tokunaga, R.; Sakamoto, Y.; Nakagawa, S.; Miyamoto, Y.; Yoshida, N.; Oki, E.; Watanabe, M.; Baba, H. Prognostic nutritional index predicts severe complications, recurrence, and poor prognosis in patients with colorectal cancer undergoing primary tumor resection. Dis. Colon Rectum 2015, 58, 1048–1057. [Google Scholar] [CrossRef]
- Zivanic, A.; Stankovic, I.; Ilic, I.; Putnikovic, B.; Neskovic, A.N. Prognosis of patients with previous myocardial infarction, coronary slow flow, and normal coronary angiogram. Herz 2020, 45, 88–94. [Google Scholar] [CrossRef]
- Gibson, C.M.; Cannon, C.P.; Daley, W.L.; Dodge, J.T., Jr.; Alexander, B., Jr.; Marble, S.J.; McCabe, C.H.; Raymond, L.; Fortin, T.; Poole, W.K.; et al. TIMI frame count: A quantitative method of assessing coronary artery flow. Circulation 1996, 93, 879–888. [Google Scholar] [CrossRef]
- Jiang, Y.T.; Yan, Z.M.; Gu, W.; Guo, H.S.; Li, X.T.; Zheng, S.Q.; Liao, X.; Xue, D.G. Advanced Lung Cancer Inflammation Index as a Predictor of Coronary Slow Flow Phenomenon in Patients with Angina and Non-Obstructive Coronary Arteries. Int. J. Gen. Med. 2025, 18, 2497–2505. [Google Scholar] [CrossRef]
- Beltrame, J.F.; Limaye, S.B.; Horowitz, J.D. The coronary slow flow phenomenon--a new coronary microvascular disorder. Cardiology 2002, 97, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Siu, H. Coronary Slow-Flow Phenomenon as an Underrecognized and Treatable Source of Chest Pain: Case Series and Literature Review. J. Investig. Med. High Impact Case Rep. 2018, 6, 2324709618789194. [Google Scholar] [CrossRef]
- Wang, X.; Nie, S.P. The coronary slow flow phenomenon: Characteristics, mechanisms and implications. Cardiovasc. Diagn. Ther. 2011, 1, 37–43. [Google Scholar] [CrossRef]
- Yilmaz, H.; Demir, I.; Uyar, Z. Clinical and coronary angiographic characteristics of patients with coronary slow flow. Acta Cardiol. 2008, 63, 579–584. [Google Scholar] [CrossRef]
- Tambe, A.A.; Demany, M.A.; Zimmerman, H.A.; Mascarenhas, E. Angina pectoris and slow flow velocity of dye in coronary arteries--a new angiographic finding. Am. Heart J. 1972, 84, 66–71. [Google Scholar] [CrossRef]
- Sezgin, A.T.; Barutcu, I.; Sezgin, N.; Gullu, H.; Esen, A.M.; Acikgoz, N.; Topal, E.; Ozdemir, R. Contribution of plasma lipid disturbances to vascular endothelial function in patients with slow coronary flow. Angiology 2006, 57, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, H.; Evrengul, H.; Enli, Y.; Kuru, O.; Seleci, D.; Tanriverdi, S.; Tuzun, N.; Kaftan, H.A.; Karabulut, N. Effect of homocysteine-induced oxidative stress on endothelial function in coronary slow-flow. Cardiology 2007, 107, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, B.M.; Stavrakis, S.; Rousan, T.A.; Abu-Fadel, M.; Schechter, E. Coronary slow flow--prevalence and clinical correlations. Circ. J. 2012, 76, 936–942. [Google Scholar] [CrossRef]
- Rafiei, A.; Ferns, G.A.; Ahmadi, R.; Khaledifar, A.; Rahimzadeh-Fallah, T.; Mohmmad-Rezaei, M.; Emami, S.; Bagheri, N. Expression levels of miR-27a, miR-329, ABCA1, and ABCG1 genes in peripheral blood mononuclear cells and their correlation with serum levels of oxidative stress and hs-CRP in the patients with coronary artery disease. IUBMB Life 2021, 73, 223–237. [Google Scholar] [CrossRef]
- Özmen, M.; Karakelleoğlu, Ş.; Ardahanli, İ. Comparison of Ischemia-modified Albumin and Exercise Stress Test in Stable Angina Pectoris. E J. Cardiovasc. Med. 2022, 10, 64–71. [Google Scholar] [CrossRef]
- Khalil, M.A.; Khalfallah, M.; Elsheikh, A. Predictors and clinical outcomes of slow flow phenomenon in diabetic patients with chronic coronary syndrome. BMC Cardiovasc. Disord. 2024, 24, 518. [Google Scholar] [CrossRef]
- Binak, E.; Gunduz, H.; Sahin, M.; Kurtoglu, N.; Dindar, I. The relation between impaired glucose tolerance and slow coronary flow. Int. J. Cardiol. 2006, 111, 142–146. [Google Scholar] [CrossRef]
- Kaplan, M.; Abacioglu, O.O.; Yavuz, F.; Kaplan, G.I.; Topuz, M. Slow Flow Phenomenon Impairs the Prognosis of Coronary Artery Ectasia as Well as Coronary Atherosclerosis. Braz. J. Cardiovasc. Surg. 2021, 36, 346–353. [Google Scholar] [CrossRef]
- Akkaya, H.; Gunturk, E.E. The relationship between coronary slow flow phenomenon and carotid femoral pulse wave velocity and aortic elastic properties. JRSM Cardiovasc. Dis. 2020, 9, 2048004020973094. [Google Scholar] [CrossRef] [PubMed]
- İslamoğlu, Y.; Aksakal, E. Kardiyak Sendrom X Ve Koroner Yavaş Akım. Haseki Tıp Bülteni 2009, 47, 147–150. [Google Scholar]
- Caliskan, M.; Erdogan, D.; Gullu, H.; Topcu, S.; Ciftci, O.; Yildirir, A.; Muderrisoglu, H. Effects of atorvastatin on coronary flow reserve in patients with slow coronary flow. Clin. Cardiol. 2007, 30, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, M.; Tanriverdi, H.; Cakmak, N.; Evrengul, H.; Cetemen, S.; Kuru, O. Simvastatin may improve myocardial perfusion abnormality in slow coronary flow. Cardiology 2008, 110, 39–44. [Google Scholar] [CrossRef]
- Basta, G.; Chatzianagnostou, K.; Paradossi, U.; Botto, N.; Del Turco, S.; Taddei, A.; Berti, S.; Mazzone, A. The prognostic impact of objective nutritional indices in elderly patients with ST-elevation myocardial infarction undergoing primary coronary intervention. Int. J. Cardiol. 2016, 221, 987–992. [Google Scholar] [CrossRef]
- Wada, H.; Dohi, T.; Miyauchi, K.; Jun, S.; Endo, H.; Doi, S.; Konishi, H.; Naito, R.; Tsuboi, S.; Ogita, M.; et al. Relationship between the prognostic nutritional index and long-term clinical outcomes in patients with stable coronary artery disease. J. Cardiol. 2018, 72, 155–161. [Google Scholar] [CrossRef]
- Poyraz, E.; Savas, G.; Erdem, A.; Dinc Asarcikli, L.; Yazici, S.; Osken, A.; Guzelburc, O.; Terzi, S. The Mean Corrected TIMI Frame Count Could Predict Major Adverse Cardiovascular Events in Patients with Coronary Slow-Flow Phenomenon. Turk. Kardiyol. Dern. Ars. 2022, 50, 250–255. [Google Scholar] [CrossRef]
- Ford, T.J.; Ong, P.; Sechtem, U.; Beltrame, J.; Camici, P.G.; Crea, F.; Kaski, J.C.; Bairey Merz, C.N.; Pepine, C.J.; Shimokawa, H.; et al. Assessment of Vascular Dysfunction in Patients Without Obstructive Coronary Artery Disease: Why, How, and When. JACC Cardiovasc. Interv. 2020, 13, 1847–1864. [Google Scholar] [CrossRef] [PubMed]
CSF(+) (n = 181) | CSF(−) (n = 2404) | p Value | |
---|---|---|---|
Gender (M) n (%) | 125 (69) | 1544 (64) | 0.11 |
Age | 58 ± 11 | 62 ± 12 | <0.001 |
CAD n (%) | 160 (88.4) | 2131 (88.3) | 0.54 |
AF n (%) | 21 (11.6) | 217 (9) | 0.13 |
DM n (%) | 20 (11) | 465 (19.3) | 0.003 |
HT n (%) | 105 (58) | 1557 (64.5) | 0.55 |
β-Blocker n (%) | 46 (25.9) | 1514 (62.1) | 0.07 |
Long-acting nitrates n (%) | 19 (10.4) | 1298 (53.8) | 0.08 |
Calcium-channel blockers n (%) | 23 (12.9) | 759 (31.4) | 0.06 |
Lipid-lowering drugs n (%) | 25 (13.8) | 2123 (87.9) | 0.03 |
ACE inhibitors n (%) | 56 (30.9) | 1146 (47.4) | 0.06 |
ARB n (%) | 49 (27) | 411(17.2) | 0.14 |
Acetylsalicylic acid n (%) | 130 (71.8) | 2123(87.9) | 0.16 |
Oral anticoagulants n (%) | 20 (11) | 215(8.9) | 0.23 |
HbA1c (%) | 6.91 ± 1.61 | 5.79 ± 0.74 | 0.01 |
Systolic BP, mm Hg | 136.7 ± 19.07 | 134.2 ± 16.76 | 0.15 |
Diastolic BP, mm Hg | 84.96 ± 12.14 | 83.42 ± 10.62 | 0.18 |
Heart rate (bpm) | 74.9 ± 24 | 76.2 ± 27 | 0.19 |
WBC 103/mm3 | 10.07 ± 0.3 | 10.02 ± 3.7 | 0.84 |
Neutrophil 109/L | 6.7 ± 1.3 | 6.4 ± 1.4 | 0.25 |
Hb g/dL | 14.4 ± 2.1 | 14.09 ± 2.3 | 0.01 |
PLT 103/mm3 | 243.5 ± 67.6 | 251.6 ± 77.8 | 0.02 |
Lymphocyte 103/mm3 | 2.1 ± 0.9 | 2.0 ± 1.0 | 0.22 |
Glukose mg/dL | 133 ± 70 | 123 ± 62 | 0.061 |
Albumine g/dL | 33.9 ± 6.7 | 40 ± 6.9 | <0.001 |
Total Cholesterol mg/dL | 169 ± 49 | 170 ± 48 | 0.97 |
LDL mg/dL | 124 ± 39 | 125 ± 40 | 0.59 |
HDL mg/dL | 46 ± 11 | 40 ± 12 | 0.08 |
Triglyceride mg/dL | 170 ± 77 | 148 ± 58 | 0.001 |
Creatinine mg/dL | 0.9 ± 0.7 | 0.8 ± 0.5 | 0.72 |
Sodium mmol/L | 138 ± 3.9 | 139 ± 4.8 | 0.91 |
Potassium mmol/L | 4.2 ± 0.4 | 4.3 ± 0.6 | 0.73 |
Calcium mg/dL | 9.2 ± 0.4 | 9.3 ± 0.6 | 0.40 |
CRP mg/dL | 2.8 ± 0.8 | 4.7 ± 2.1 | 0.27 |
Uric Asid mg/dL | 5.4 ± 1.7 | 5.5 ± 2.1 | 0.23 |
NLR | 3.9 ± 2.5 | 4.1 ± 3.6 | 0.89 |
CAR | 0.07 ± 0.06 | 0.13 ± 0.18 | 0.57 |
PNI | 35.0 ± 6 | 40.6 ± 6.6 | <0.001 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
OR | % 95 CI | p | OR | % 95 CI | p | |
Age | 0.978 | 0.966–0.990 | <0.001 | 0.977 | 0.964–0.991 | 0.001 |
DM | 0.491 | 0.304–0.793 | 0.004 | 0.463 | 0.270–0.792 | 0.005 |
Hb (g/dL) | 1.089 | 1.016–1.167 | 0.010 | 1.173 | 1.084–1.268 | <0.001 |
Triglyceride mg/dL | 1.004 | 1.002–1.006 | <0.001 | 1.003 | 1.001–1.005 | 0.005 |
PNI | 0.887 | 0.866–0.908 | <0.001 | 0.878 | 0.855–0.901 | <0.001 |
CSF (n = 181) | Group-1 (n = 47) | Group-2 (n = 44) | Group-3 (n = 90) | p | |
---|---|---|---|---|---|
Gender (M) (%) | 125 (69) | 29 (63.8) | 28 (65.9) | 59 (66) | 0.33 |
Age | 62 ± 12 | 61 ± 11 | 62 ± 13 | 60 ± 10 | 0.11 |
CAD n (%) | 160 (88.4) | 41 (87.2) | 37 (84.1) | 81 (91.1) | 0.47 |
AF n (%) | 21 (11.6) | 6 (12.8) | 8 (18.2) | 7 (7.8) | 0.20 |
DM n (%) | 20 (11) | 10 (21.3) | 5 (11.4) | 5 (5.6) | 0.020 b |
HT n (%) | 105 (58) | 32 (68.1) | 24 (56.8) | 47 (53.3) | 0.25 |
β-Blocker n (%) | 46 (25.9) | 15 (31.9) | 17 (38.6) | 14 (15.5) | 0.25 |
Long-acting nitrates n (%) | 19 (10.4) | 9 (19.1) | 5 (11.3) | 5 (5.5) | 0.34 |
Calcium-channel blockers n (%) | 23 (12.9) | 7 (14.8) | 10 (22.7) | 6 (7) | 0.89 |
Lipid-lowering drugs n (%) | 25 (13.8) | 8 (17) | 9 (20.4) | 8 (9) | 0.19 |
ACE inhibitors n (%) | 56 (30.9) | 24 (51) | 19 (43) | 13 (14) | 0.76 |
ARB n (%) | 49 (27) | 22 (46.8) | 21 (47) | 6 (7) | 0.54 |
Acetylsalicylic acid n (%) | 130 (71.8) | 40 (85) | 36 (82) | 54 (60) | 0.24 |
Oral anticoagulants n (%) | 20 (11) | 8 (17) | 7 (16) | 5 (6) | 0.46 |
WBC 103/mm3 | 10.07 ± 0.3 | 9.09 ± 2.5 | 10.6 ± 5 | 10.3 ± 3.4 | 0.098 |
Hb g/dL | 14.4 ± 2.1 | 15 ± 2.1 | 14.2 ± 2.2 | 14.3 ± 2 | 0.099 |
PLT 103/mm3 | 243.5 ± 67.6 | 251.6 ± 66.3 | 242.8 ± 65.6 | 239.6 ± 69.6 | 0.61 |
Lymphocyte 103/mm3 | 2.1 ± 0.9 | 2.2 ± 0.8 | 2.1 ± 0.9 | 2 ± 0.8 | 0.93 |
Glukose mg/dL | 133 ± 70 | 140 ± 86 | 112 ± 37 | 119 ± 55 | 0.07 |
Albumine g/dL | 33.9 ± 6.7 | 43.3 ± 3.2 | 31.2 ± 5.4 | 30 ± 2.4 | <0.001 a,b |
Total Cholesterol mg/dL | 169 ± 49 | 176 ± 50 | 160 ± 50 | 168 ± 47 | 0.43 |
LDL mg/dL | 124 ± 39 | 120 ± 40 | 129 ± 40 | 124 ± 39 | 0.73 |
HDL mg/dL | 46 ± 11 | 47 ± 14 | 39 ± 6 | 49 ± 9 | 0.34 |
Triglyceride mg/dL | 170 ± 77 | 150 ± 61 | 149 ± 73 | 156 ± 65 | 0.99 |
Creatinine mg/dL | 0.9 ± 0.7 | 0.8 ± 0.2 | 0.8 ± 0.3 | 1 ± 0.9 | 0.42 |
Sodium mmol/L | 138 ± 3.9 | 139 ± 3 | 138 ± 2 | 138 ± 4 | 0.72 |
Potassium mmol/L | 4.2 ± 0.4 | 4.3 ± 0.6 | 4.1 ± 0.4 | 4.1 ± 0.5 | 0.31 |
Calcium mg/dL | 9.2 ± 0.4 | 9.3 ± 0.6 | 9.2 ± 0.3 | 9.1 ± 0.6 | 0.30 |
CRP mg/dL | 2.8 ± 0.8 | 2.5 ± 1 | 2.9 ± 0.9 | 3.1 ± 0.7 | 0.95 |
Uric Aside mg/dL | 5.4 ± 1.7 | 5.7 ± 1.8 | 5.2 ± 1.6 | 5.2 ± 1.8 | 0.31 |
PNI | 35.0 ± 6 | 43.4 ± 3.2 | 36 ± 0.7 | 30.2 ± 2.4 | <0.001 a,b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özmen, M.; Altınkaya, O.; Aydemir, S.; Aydın, S.Ş.; Aydınyılmaz, F. The Role of Prognostic Nutritional Index in Predicting Coronary Slow Flow Phenomena. Diagnostics 2025, 15, 2324. https://doi.org/10.3390/diagnostics15182324
Özmen M, Altınkaya O, Aydemir S, Aydın SŞ, Aydınyılmaz F. The Role of Prognostic Nutritional Index in Predicting Coronary Slow Flow Phenomena. Diagnostics. 2025; 15(18):2324. https://doi.org/10.3390/diagnostics15182324
Chicago/Turabian StyleÖzmen, Murat, Onur Altınkaya, Selim Aydemir, Sidar Şiyar Aydın, and Faruk Aydınyılmaz. 2025. "The Role of Prognostic Nutritional Index in Predicting Coronary Slow Flow Phenomena" Diagnostics 15, no. 18: 2324. https://doi.org/10.3390/diagnostics15182324
APA StyleÖzmen, M., Altınkaya, O., Aydemir, S., Aydın, S. Ş., & Aydınyılmaz, F. (2025). The Role of Prognostic Nutritional Index in Predicting Coronary Slow Flow Phenomena. Diagnostics, 15(18), 2324. https://doi.org/10.3390/diagnostics15182324