The Relationship Between FIB-4 Score and Dynapenia in Older Adults
Abstract
1. Introduction
2. Materials & Methods
2.1. Study Design and Participants
2.2. Eligibility Criteria
2.3. Data Collection and Clinical Evaluation
2.4. Calculation of the FIB-4 Score
2.5. Definition of Low Grip Strength
2.6. Laboratory Assessments
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
FIB-4 | The fibrosis-4 |
AST | Aspartate transaminase |
ALT | Alanine transaminase |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
COPD | Chronic Obstructive Pulmonary Disease |
ADLs | Activities of Daily Living |
POMA | Performance-Oriented Mobility Assessment |
TUG | Timed Up and Go |
EWGSOP | European Working Group on Sarcopenia in Older People |
MNA-SF | Mini Nutritional Assessment-Short Form |
GFR | Glomerular filtration rate |
References
- Thomaides-Brears, H.B.; Alkhouri, N.; Allende, D.; Harisinghani, M.; Noureddin, M.; Reau, N.S.; French, M.; Pantoja, C.; Mouchti, S.; Cryer, D.R. Incidence of complications from percutaneous biopsy in chronic liver disease: A systematic review and meta-analysis. Dig. Dis. Sci. 2022, 67, 3366–3394. [Google Scholar] [CrossRef]
- Canivet, C.M.; Boursier, J. Screening for liver fibrosis in the general population: Where do we stand in 2022? Diagnostics 2022, 13, 91. [Google Scholar] [CrossRef]
- Berzigotti, A.; Tsochatzis, E.; Boursier, J.; Castera, L.; Cazzagon, N.; Friedrich-Rust, M.; Petta, S.; Thiele, M. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef]
- Shibamoto, A.; Namisaki, T.; Suzuki, J.; Kubo, T.; Iwai, S.; Tomooka, F.; Takeda, S.; Fujimoto, Y.; Inoue, T.; Tanaka, M.; et al. Hemoglobin and Endotoxin Levels Predict Sarcopenia Occurrence in Patients with Alcoholic Cirrhosis. Diagnostics 2023, 13, 2218. [Google Scholar] [CrossRef]
- Sterling, R.K.; Duarte-Rojo, A.; Patel, K.; Asrani, S.K.; Alsawas, M.; Dranoff, J.A.; Fiel, M.I.; Murad, M.H.; Leung, D.H.; Levine, D. AASLD Practice Guideline on imaging-based noninvasive liver disease assessment of hepatic fibrosis and steatosis. Hepatology 2025, 81, 672–724. [Google Scholar] [CrossRef]
- Sung, S.; Al-Karaghouli, M.; Tam, M.; Wong, Y.J.; Jayakumar, S.; Davyduke, T.; Ma, M.; Abraldes, J.G. Age-dependent differences in FIB-4 predictions of fibrosis in patients with MASLD referred from primary care. Hepatol. Commun. 2025, 9, e0609. [Google Scholar] [CrossRef] [PubMed]
- Vali, Y.; Lee, J.; Boursier, J.; Petta, S.; Wonders, K.; Tiniakos, D.; Bedossa, P.; Geier, A.; Francque, S.; Allison, M. Biomarkers for staging fibrosis and non-alcoholic steatohepatitis in non-alcoholic fatty liver disease (the LITMUS project): A comparative diagnostic accuracy study. Lancet Gastroenterol. Hepatol. 2023, 8, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.-W.; Baek, Y.-H.; Moon, S.-Y. Sequential Diagnostic Approach Using FIB-4 and ELF for Predicting Advanced Fibrosis in Metabolic Dysfunction-Associated Steatotic Liver Disease. Diagnostics 2024, 14, 2517. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). Obes. Facts 2024, 17, 374–444. [Google Scholar] [CrossRef]
- Beaudart, C.; Alcazar, J.; Aprahamian, I.; Batsis, J.A.; Yamada, Y.; Prado, C.M.; Reginster, J.-Y.; Sanchez-Rodriguez, D.; Lim, W.S.; Sim, M. Health outcomes of sarcopenia: A consensus report by the outcome working group of the Global Leadership Initiative in Sarcopenia (GLIS). Aging Clin. Exp. Res. 2025, 37, 100. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.K.; Kim, W. Interaction between sarcopenia and nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2022, 29, S68. [Google Scholar] [CrossRef]
- Eslam, M.; Fan, J.-G.; Yu, M.-L.; Wong, V.W.-S.; Cua, I.H.; Liu, C.-J.; Tanwandee, T.; Gani, R.; Seto, W.-K.; Alam, S. The Asian Pacific association for the study of the liver clinical practice guidelines for the diagnosis and management of metabolic dysfunction-associated fatty liver disease. Hepatol. Int. 2025, 19, 261–301. [Google Scholar] [CrossRef]
- DiLeo, D.A.; Gidener, T.; Aytaman, A. Chronic liver disease in the older patient—Evaluation and management. Curr. Gastroenterol. Rep. 2023, 25, 390–400. [Google Scholar] [CrossRef]
- van Kleef, L.A.; Sonneveld, M.J.; de Man, R.A.; de Knegt, R.J. Poor performance of FIB-4 in elderly individuals at risk for chronic liver disease–implications for the clinical utility of the EASL NIT guideline. J. Hepatol. 2022, 76, 245–246. [Google Scholar] [CrossRef] [PubMed]
- Unutmaz, G.D.; Soysal, P.; Tuven, B.; Isik, A.T. Costs of medication in older patients: Before and after comprehensive geriatric assessment. Clin. Interv. Aging 2018, 2018, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Ates Bulut, E.; Soysal, P.; Dokuzlar, O.; Kocyigit, S.E.; Aydin, A.E.; Yavuz, I.; Isik, A.T. Validation of population-based cutoffs for low muscle mass and strength in a population of Turkish elderly adults. Aging Clin. Exp. Res. 2020, 32, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Shi, Z.W.; Yu, J.J.; Wang, L.F.; Luo, Y.Y.; Jin, S.M.; Zhang, L.Y.; Tan, W.; Shi, P.M.; Yu, H. Sarcopenia as a prognostic predictor of liver cirrhosis: A multicentre study in China. J. Cachexia Sarcopenia Muscle 2021, 12, 1948–1958. [Google Scholar] [CrossRef]
- Dajti, E.; Rodrigues, S.G.; Perazza, F.; Colecchia, L.; Marasco, G.; Renzulli, M.; Barbara, G.; Azzaroli, F.; Berzigotti, A.; Colecchia, A. Sarcopenia evaluated by EASL/AASLD computed tomography-based criteria predicts mortality in patients with cirrhosis: A systematic review and meta-analysis. JHEP Rep. 2024, 6, 101113. [Google Scholar] [CrossRef]
- Jiang, M.; Hua, X.; Wu, M.; Wu, J.; Xu, X.; Li, J.; Meng, Q. Longitudinal changes in sarcopenia was associated with survival among cirrhotic patients. Front. Nutr. 2024, 11, 1375994. [Google Scholar] [CrossRef]
- Plauth, M.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Bischoff, S.C. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 2019, 38, 485–521. [Google Scholar] [CrossRef]
- Singal, A.K.; Wong, R.J.; Dasarathy, S.; Abdelmalek, M.F.; Neuschwander-Tetri, B.A.; Limketkai, B.N.; Petrey, J.; McClain, C.J. ACG Clinical Guideline: Malnutrition and Nutritional Recommendations in Liver Disease. Off. J. Am. Coll. Gastroenterol.|ACG 2025, 120, 950–972. [Google Scholar] [CrossRef]
- Lai, J.C.; Tandon, P.; Bernal, W.; Tapper, E.B.; Ekong, U.; Dasarathy, S.; Carey, E.J. Malnutrition, frailty, and sarcopenia in patients with cirrhosis: 2021 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 2021, 74, 1611–1644. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Fukunishi, S.; Asai, A.; Nishiguchi, S.; Higuchi, K. Sarcopenia and frailty in liver cirrhosis. Life 2021, 11, 399. [Google Scholar] [CrossRef] [PubMed]
- Tandon, P.; Montano-Loza, A.J.; Lai, J.C.; Dasarathy, S.; Merli, M. Sarcopenia and frailty in decompensated cirrhosis. J. Hepatol. 2021, 75, S147. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Li, W.; Liu, J.; Li, J. Frailty and transplant-free survival of patients with liver cirrhosis: A meta-analysis. PLoS ONE 2024, 19, e0302836. [Google Scholar] [CrossRef]
- Seo, Y.-G.; Polyzos, S.A.; Park, K.-H.; Mantzoros, C.S. Fibrosis-4 index predicts long-term all-cause, cardiovascular and liver-related mortality in the adult Korean population. Clin. Gastroenterol. Hepatol. 2023, 21, 3322–3335. [Google Scholar] [CrossRef]
- Boeckmans, J.; Prochaska, J.H.; Gieswinkel, A.; Böhm, M.; Wild, P.S.; Schattenberg, J.M. Clinical utility of the Fibrosis-4 index for predicting mortality in patients with heart failure with or without metabolic dysfunction-associated steatotic liver disease: A prospective cohort study. Lancet Reg. Health–Eur. 2025, 48, 101153. [Google Scholar] [CrossRef]
- Liu, H.-H.; Yen, C.-L.; Jeng, W.-J.; Hung, C.-C.; Hsiao, C.-C.; Tian, Y.-C.; Chen, K.-H. Fibrosis-4 Score Is Associated with Mortality in Hemodialysis Patients with Chronic Viral Hepatitis: A Retrospective Study. Diagnostics 2024, 14, 2048. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Armstrong, M.J. Sarcopenia in cirrhosis: A practical overview. Clin. Med. 2020, 20, 489–492. [Google Scholar] [CrossRef]
- Chen, H.; Yang, C.; Yan, S.; Liu, X.; Zhou, L.; Yuan, X. Sarcopenia in cirrhosis: From pathophysiology to interventional therapy. Exp. Gerontol. 2024, 196, 112571. [Google Scholar] [CrossRef]
- Guan, L.; Li, L.; Zou, Y.; Zhong, J.; Qiu, L. Association between FIB-4, all-cause mortality, cardiovascular mortality, and cardiovascular disease risk among diabetic individuals: NHANES 1999–2008. Front. Cardiovasc. Med. 2023, 10, 1172178. [Google Scholar] [CrossRef]
- De Vincentis, A.; Costanzo, L.; Vespasiani-Gentilucci, U.; Picardi, A.; Bandinelli, S.; Ferrucci, L.; Incalzi, R.A.; Pedone, C. Association between non-invasive liver fibrosis scores and occurrence of health adverse outcomes in older people. Dig. Liver Dis. 2019, 51, 1330–1336. [Google Scholar] [CrossRef]
- Hong, S.N.; Mak, I.L.; Chin, W.Y.; Yu, E.Y.T.; Tse, E.T.Y.; Chen, J.Y.; Wong, C.K.H.; Chao, D.V.K.; Tsui, W.W.S.; Lam, C.L.K. Age-specific associations between the number of co-morbidities, all-cause mortality and public direct medical costs in patients with type 2 diabetes: A retrospective cohort study. Diabetes Obes. Metab. 2023, 25, 454–467. [Google Scholar] [CrossRef]
- Clayton-Chubb, D.; Commins, I.; Roberts, S.K.; Majeed, A.; Woods, R.L.; Ryan, J.; Schneider, H.G.; Lubel, J.S.; Hodge, A.D.; McNeil, J.J. Scores to predict steatotic liver disease–correlates and outcomes in older adults. npj Gut Liver 2025, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Almohaisen, N.; Gittins, M.; Todd, C.; Sremanakova, J.; Sowerbutts, A.M.; Aldossari, A.; Almutairi, A.; Jones, D.; Burden, S. Prevalence of undernutrition, frailty and sarcopenia in community-dwelling people aged 50 years and above: Systematic review and meta-analysis. Nutrients 2022, 14, 1537. [Google Scholar] [CrossRef] [PubMed]
- Wiedmer, P.; Jung, T.; Castro, J.P.; Pomatto, L.C.; Sun, P.Y.; Davies, K.J.; Grune, T. Sarcopenia–Molecular mechanisms and open questions. Ageing Res. Rev. 2021, 65, 101200. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, Q.; Zhou, C.-Y.; Sun, H.-X.; Lin, Y.-S.; Jiao, X.-F.; Lu, X.; Xu, J.-S.; Shen, Z.-K.; Guo, Y. Association of AST/ALT (De Ritis) ratio with sarcopenia in a Chinese population of community-dwelling elderly. Heliyon 2023, 9, e20427. [Google Scholar] [CrossRef]
- Vespasiani-Gentilucci, U.; De Vincentis, A.; Ferrucci, L.; Bandinelli, S.; Antonelli Incalzi, R.; Picardi, A. Low alanine aminotransferase levels in the elderly population: Frailty, disability, sarcopenia, and reduced survival. J. Gerontol. Ser. A 2018, 73, 925–930. [Google Scholar] [CrossRef]
- Geraci, A.; Calvani, R.; Ferri, E.; Marzetti, E.; Arosio, B.; Cesari, M. Sarcopenia and menopause: The role of estradiol. Front. Endocrinol. 2021, 12, 682012. [Google Scholar] [CrossRef]
- Xing, M.; Ni, Y.; Zhang, Y.; Zhao, X.; Yu, X. The relationship between skeletal muscle mass to visceral fat area ratio and metabolic dysfunction-associated fatty liver disease subtypes in middle-aged and elderly population: A single-center retrospective study. Front. Nutr. 2023, 10, 1246157. [Google Scholar] [CrossRef]
Total Participants n = 537 | Low FIB-4 Score n = 372 | High FIB-4 Score n = 165 | p Value | |
---|---|---|---|---|
Demographic Features | ||||
Age (mean ± SD) | 76.52 ± 6.02 | 75.60 ± 5.79 | 78.60 ± 6.02 | <0.001 |
Gender (female;%) | 68.7 | 71.8 | 61.8 | 0.022 |
Education year | 5.27 ± 3.74 | 5.29 ± 3.82 | 5.23 ± 3.56 | 0.909 |
Marital status (marriage;%) | 55.1 | 56.7 | 51.5 | 0.200 |
BMI (kg/m2) | 26.90 ± 5.37 | 27.64 ± 5.69 | 25.47 ± 4.38 | 0.005 |
Comorbidities and Geriatric Syndromes (%) | ||||
Hypertension | 72.6 | 74.5 | 68.5 | 0.152 |
Coronary Heart Disease | 21.0 | 20.7 | 21.8 | 0.769 |
Peripheral Artery Disease | 5.8 | 6.5 | 4.2 | 0.311 |
Diabetes Mellitus | 38.4 | 41.4 | 31.5 | 0.030 |
COPD | 5.8 | 4.8 | 7.9 | 0.163 |
Osteoporosis | 25.5 | 26.1 | 24.2 | 0.653 |
Dementia | 25.7 | 21.8 | 34.5 | 0.002 |
Orthostatic Hypotension | 43.8 | 44.9 | 41.1 | 0.426 |
Malnutrition | 34.3 | 31.7 | 40.2 | 0.048 |
Polypharmacy (≥5 medication use) | 67.0 | 68.3 | 64.2 | 0.359 |
Frailty | 40.0 | 39.0 | 42.4 | 0.452 |
Laboratory Findings (mean ± SD) | ||||
Hemoglobin (g/dL) | 12.65 ± 1.67 | 12.63 ± 1.63 | 12.68 ± 1.75 | 0.658 |
Leucocyte count (×103/µL) | 7.25 ± 2.31 | 7.57 ± 2.35 | 6.52 ± 2.04 | <0.001 |
Platelet count (×103) | 256.93 ± 94.82 | 285.60 ± 97.14 | 191.33 ± 42.95 | <0.001 |
ALT (IU/L) | 17.34 ± 14.57 | 16.97 ± 10.49 | 18.16 ± 21.06 | 0.258 |
AST (IU/L) | 21.21 ± 11.67 | 19.25 ± 8.35 | 25.62 ± 16.08 | <0.001 |
eGFR (mL/min/1.73 m2) | 65.86 ± 18.98 | 66.43 ± 19.14 | 64.57 ± 18.59 | 0.246 |
LDL-cholesterol (mg/dL) | 125.50 ± 37.95 | 128.88 ± 38.96 | 117.83 ± 34.47 | 0.001 |
HDL-cholesterol (mg/dL) | 57.02 ± 14.02 | 57.13 ± 14.16 | 56.77 ± 13.73 | 0.958 |
Triglyceride (mg/dL) | 140.58 ± 108.27 | 147.72 ± 122.58 | 124.33 ± 62.18 | 0.001 |
Comprehensive Geriatric Assessment Parameters | ||||
Tinetti POMA score | 23.02 ± 6.26 | 23.40 ± 6.17 | 22.17 ± 6.40 | 0.017 |
Timed up and go test duration (s) | 22.16 ± 20.03 | 21.64 ± 19.66 | 23.36 ± 20.85 | 0.125 |
Basic ADLs | 85.30 ± 16.46 | 85.82 ± 16.10 | 84.13 ± 17.24 | 0.164 |
Instrumental ADLs | 16.52 ± 5.98 | 16.95 ± 5.85 | 15.55 ± 6.17 | 0.002 |
Female Older Adults | Male Older Adults | |||
---|---|---|---|---|
Correlation Coefficient (r) | p Value | Correlation Coefficient (r) | p Value | |
Age | 0.277 | <0.001 | 0.230 | 0.003 |
BMI (kg/m2) | −0.101 | 0.204 | −0.052 | 0.632 |
Medicine number | −0.027 | 0.601 | −0.063 | 0.421 |
Leucocyte count (×103/µL) | −0.345 | <0.001 | −0.256 | 0.001 |
Platelet count (×103) | −0.775 | <0.001 | −0.717 | <0.001 |
LDL-cholesterol (mg/dL) | −0.101 | 0.057 | −0.113 | 0.149 |
Triglyceride (mg/dL) | −0.204 | <0.001 | −0.088 | 0.263 |
ALT (IU/L) | −0.036 | 0.496 | −0.157 | 0.042 |
AST (IU/L) | 0.420 | <0.001 | 0.421 | <0.001 |
MNA-SF score | −0.096 | 0.066 | −0.106 | 0.171 |
POMA score | −0.167 | 0.001 | −0.103 | 0.188 |
TUG duration | 0.121 | 0.022 | 0.089 | 0.257 |
FRIED score | 0.102 | 0.052 | 0.079 | 0.310 |
Basic ADLs | −0.102 | 0.050 | −0.044 | 0.569 |
Instrumental ADLs | −0.157 | 0.003 | −0.147 | 0.057 |
Handgrip strength (kg) | −0.111 | 0.035 | −0.125 | 0.109 |
High FIB-4 Score | OR | 95% CI (Min–Max) | p Value | ||
---|---|---|---|---|---|
Univariate analysis | Female | Dynapenia | |||
Unadjusted | 1.52 | 1.03–1.42 | 0.043 | ||
Model 1 | 1.19 | 0.50–2.80 | 0.684 | ||
Model 2 | 1.31 | 0.54–3.19 | 0.543 | ||
Model 3 | 1.12 | 0.42–2.98 | 0.816 | ||
Male | Dynapenia | ||||
Unadjusted | 1.31 | 0.70–2.47 | 0.392 | ||
Model 1 | 0.97 | 0.28–3.35 | 0.962 | ||
Model 2 | 0.88 | 0.23–3.33 | 0.852 | ||
Model 3 | 0.60 | 0.14–2.64 | 0.508 | ||
Multivariable analysis | Variables | Gender | 1.05 | 0.50–2.21 | 0.891 |
BMI | 0.93 | 0.86–0.99 | 0.047 | ||
DM | 0.92 | 0.49–1.91 | 0.926 | ||
Dementia | 1.23 | 0.49–3.03 | 0.652 | ||
COPD | 2.68 | 0.69–10.32 | 0.151 | ||
Malnutrition | 1.17 | 0.55–2.49 | 0.668 | ||
Leucocyte count | 1.00 | 1.00–1.00 | 0.004 | ||
Total cholesterol | 0.99 | 0.98–1.00 | 0.165 | ||
Instrumental DLs | 1.04 | 0.94–1.14 | 0.386 | ||
POMA score | 0.99 | 0.92–1.06 | 0.884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilic, G.; Karatas, A.; Cindoruk, M.; Karakan, T.; Kirman, D.; Demir, B.; Kocyigit, S.E. The Relationship Between FIB-4 Score and Dynapenia in Older Adults. Diagnostics 2025, 15, 2323. https://doi.org/10.3390/diagnostics15182323
Kilic G, Karatas A, Cindoruk M, Karakan T, Kirman D, Demir B, Kocyigit SE. The Relationship Between FIB-4 Score and Dynapenia in Older Adults. Diagnostics. 2025; 15(18):2323. https://doi.org/10.3390/diagnostics15182323
Chicago/Turabian StyleKilic, Guner, Ali Karatas, Mehmet Cindoruk, Tarkan Karakan, Derya Kirman, Beril Demir, and Suleyman Emre Kocyigit. 2025. "The Relationship Between FIB-4 Score and Dynapenia in Older Adults" Diagnostics 15, no. 18: 2323. https://doi.org/10.3390/diagnostics15182323
APA StyleKilic, G., Karatas, A., Cindoruk, M., Karakan, T., Kirman, D., Demir, B., & Kocyigit, S. E. (2025). The Relationship Between FIB-4 Score and Dynapenia in Older Adults. Diagnostics, 15(18), 2323. https://doi.org/10.3390/diagnostics15182323