Prevalence of Tuberculosis in Central Asia and Southern Caucasus: A Systematic Literature Review †
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Protocol and Registration
2.3. Eligibility Criteria
2.4. Sources of Information
2.5. Search
2.6. Selecting Articles
2.7. Data Elements
2.8. Quality Assessment
Quality of Studies
2.9. Summary Measures
3. Results
3.1. Study Selection
3.2. Prevalence of TB in Central Asia
3.3. Prevalence of TB by Sex, Age, and Risk Factors
3.4. Economics of TB
4. Discussion
5. Conclusions
6. Strengths and Limitations
7. Recommendations for Future Research and Policy
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | COronaVIrus Disease 2019 |
DALYs | Disability-Adjusted Life Years |
DR-TB | Drug-Resistant Tuberculosis |
TB | TuBerculosis |
EU countries | European Union countries |
HIV | Human Immunodeficiency Virus |
HPCs | High-Priority Countries |
WHO | World Health Organization |
MDR-TB | Multidrug-Resistant Tuberculosis |
NOS | Newcastle–Ottawa Scale |
RR-TB | Rifampicin-resistant TB |
SD | Standard Deviation |
SDG | Sustainable Development Goal |
USA | United States of America |
References
- World Health Organization. Tuberculosis [Internet]; World Health Organization: Geneva, Switzerland, 2025; Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 31 March 2025).
- European Centre for Disease Prevention and Control; World Health Organization Regional Office for Europe. Tuberculosis Surveillance and Monitoring in Europe 2019: 2017 Data; WHO Regional Office for Europe: Copenhagen, Denmark, 2019; Available online: https://www.ecdc.europa.eu/en/publications-data/tuberculosis-surveillance-and-monitoring-europe-2019 (accessed on 31 March 2025).
- Vasilyeva, I.A.; Belilovsky, E.M.; Borisov, S.E.; Sterlikov, S.A. Incidence, mortality and prevalence as indicators of tuberculosis burden in WHO regions, countries of the world and the Russian Federation. Part 2. Tuberculosis mortality. Tuberc. Lung Dis. 2017, 95, 8–16. [Google Scholar] [CrossRef]
- Ledesma, J.R.; Ma, J.; Vongpradith, A.; Maddison, E.R.; Novotney, A.; Biehl, M.H.; LeGrand, K.E.; Ross, J.M.; Jahagirdar, D.; Bryazka, D.; et al. Global, regional, and national sex differences in the global burden of tuberculosis by HIV status, 1990–2019: Results from the Global Burden of Disease Study 2019. Lancet Infect. Dis. 2022, 22, 222–241. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report. 2024. Available online: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024 (accessed on 31 August 2025).
- Jarde, A.; Romano, E.; Afaq, S.; Elsony, A.; Lin, Y.; Huque, R.; Elsey, H.; Siddiqi, K.; Stubbs, B.; Siddiqi, N. Prevalence and risks of tuberculosis multimorbidity in low-income and middle-income countries: A meta-review. BMJ Open 2022, 12, e060906. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report. 2018. Available online: https://iris.who.int/bitstream/handle/10665/274453/9789241565646-eng.pdf (accessed on 31 August 2025).
- Skrahin, A. Available online: http://qims.amegroups.com/article/view/11254/12011 (accessed on 31 March 2025).
- WHO-USAID Project to End Drug-Resistant Tuberculosis in Central Asia Concludes. Available online: https://www.who.int/europe/news-room/20-10-2023-who-usaid-project-to-end-drug-resistant-tuberculosis-in-central-asia-concludes (accessed on 31 March 2025).
- European Centre for Disease Prevention and Control; World Health Organization. Tuberculosis Surveillance and Monitoring in Europe 2025—2023 Data; Publications Office of the European Union: Luxembourg, 2025; Available online: https://data.europa.eu/doi/10.2900/2650058 (accessed on 31 March 2025).
- Dadu, A.; Hovhannesyan, A.; Ahmedov, S.; van der Werf, M.J.; Dara, M. Drug-resistant tuberculosis in eastern Europe and central Asia: A time-series analysis of routine surveillance data. Lancet Infect. Dis. 2020, 20, 250–258. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. TB Data Portal: Country Profiles; WHO: Geneva, Switzerland, 2024; Available online: https://worldhealthorg.shinyapps.io/tb_profiles/ (accessed on 31 March 2025).
- Mongolia-Tuberculosis Death Rate (per 100,000 People)—2025 Data 2026 Forecast 2000–2023 Historical. Available online: https://tradingeconomics.com/mongolia/tuberculosis-death-rate-per-100000-people-wb-data.html (accessed on 31 March 2025).
- Saranjav, A.; Parisi, C.; Zhou, X.; Dorjnamjil, K.; Samdan, T.; Erdenebaatar, S.; Chuluun, A.; Dalkh, T.; Ganbaatar, G.; Brooks, M.B.; et al. Assessing the quality of tuberculosis care using routine surveillance data: A process evaluation employing the Zero TB Indicator Framework in Mongolia. BMJ Open 2022, 12, e061229. [Google Scholar] [CrossRef] [PubMed]
- Millet, J.-P.; Moreno, A.; Fina, L.; del Baño, L.; Orcau, A.; de Olalla, P.G.; Caylà, J.A. Factors that influence current tuberculosis epidemiology. Eur. Spine J. 2012, 22, 539. [Google Scholar] [CrossRef] [PubMed]
- Winetsky, D.E.; Almukhamedov, O.; Pulatov, D.; Vezhnina, N.; Dooronbekova, A.; Zhussupov, B.; Mokrousov, I. Prevalence, Risk Factors and Social Context of Active Pulmonary Tuberculosis among Prison Inmates in Tajikistan. PLoS ONE 2014, 9, 86046. [Google Scholar] [CrossRef]
- Tilloeva, Z.; Aghabekyan, S.; Davtyan, K.; Goncharova, O.; Kabirov, O.; Pirmahmadzoda, B.; Rajabov, A.; Mirzoev, A.; Aslanyan, G. Tuberculosis in key populations in Tajikistan-a snapshot in 2017. J. Infect. Dev. Ctries. 2020, 14, 94S–100S. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report. 2019. Available online: https://iris.who.int/bitstream/handle/10665/329368/9789241565714-eng.pdf (accessed on 30 April 2025).
- World Health Organization. Impact of the COVID-19 Pandemic on TB Detection and Mortality in 2020 [Internet]; World Health Organization: Geneva, Switzerland, 2021; 22 March 2021; Available online: https://www.who.int/publications/m/item/impact-of-the-COVID-19-pandemic-on-tb-detection-and-mortality-in-2020 (accessed on 30 April 2025).
- Davies, M.-A. HIV and risk of COVID-19 death: A population cohort study from the Western Cape Province, South Africa. medRxiv 2020. [Google Scholar] [CrossRef]
- Glaziou, P. Predicted impact of the COVID-19 pandemic on global tuberculosis deaths in 2020. medRxiv 2020. [Google Scholar] [CrossRef]
- Kohler, S.; Sitali, N.; Achar, J.; Paul, N. Programme costs of longer and shorter tuberculosis drug regimens and drug import: A modelling study for Karakalpakstan, Uzbekistan. ERJ Open Res. 2022, 8, 00622–02021. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report. 2021. Available online: https://www.iom.int/sites/g/files/tmzbdl486/files/documents/2023-03/Global-TB-Report-2021.pdf (accessed on 30 April 2025).
- Micah, A.E.; Su, Y.; Bachmeier, S.D.; Chapin, A.; Cogswell, I.E.; Crosby, S.W.; Cunningham, B.; Harle, A.C.; Maddison, E.R.; Moitra, M.; et al. Health sector spending and spending on HIV/AIDS, tuberculosis, and malaria, and development assistance for health: Progress towards Sustainable Development Goal 3. Lancet 2020, 396, 693. [Google Scholar] [CrossRef]
- Tabyshova, A.; Emilov, B.; Postma, M.J.; Chavannes, N.H.; Sooronbaev, T.; van Boven, J.F.M. Prevalence and Economic Burden of Respiratory Diseases in Central Asia and Russia: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 7483. [Google Scholar] [CrossRef]
- Cox, H.S.; Orozco, J.D.; Male, R.; Ruesch-Gerdes, S.; Falzon, D.; Small, I.; Doshetov, D.; Kebede, Y.; Aziz, M. Multidrug-resistant Tuberculosis in Central Asia. Emerg. Infect. Dis. 2004, 10, 865. [Google Scholar] [CrossRef]
- Alikhanova, N.; Akhundova, I.; Seyfaddinova, M.; Mammadbayov, E.; Mirtskulava, V.; Rüsch-Gerdes, S.; Bayramov, R.; Suleymanova, J.; Kremer, K.; Dadu, A.; et al. First national survey of anti-tuberculosis drug resistance in Azerbaijan and risk factors analysis. Public Health Action 2014, 4, S17–S23. [Google Scholar] [CrossRef]
- Zanaa, A.; Paramita, S.A.; Erdenee, O.; Tsolmon, B.; Purevdagva, A.; Yamazaki, C.; Uchida, M.; Hamazaki, K. Childhood Tuberculosis in Mongolia: Trends and Estimates, 2010–2030. Tohoku J. Exp. Med. 2022, 257, 193–203. [Google Scholar] [CrossRef]
- Sadykova, L.; Abramavičius, S.; Maimakov, T.; Berikova, E.; Kurakbayev, K.; Carr, N.T.; Padaiga, Ž.; Naudžiūnas, A.; Stankevičius, E. A retrospective analysis of treatment outcomes of drug-susceptible TB in Kazakhstan, 2013–2016. Medicine 2019, 98, e16071. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Beran, D.; Haghparast-Bidgoli, H.; Batura, N.; Akkazieva, B.; Abdraimova, A.; Skordis-Worrall, J. Coping with the economic burden of Diabetes, TB and co-prevalence: Evidence from Bishkek, Kyrgyzstan. BMC Health Serv. Res. 2016, 16, 118. [Google Scholar] [CrossRef]
- Boldoo, T.; Otero, L.; Uranchimeg, B.; Purevdagva, A.; Enebish, T.; Erdenee, O.; Islam, T.; Morishita, F. Epidemiology of tuberculosis in Mongolia: Analysis of surveillance data, 2015–2019. West. Pac. Surveill. Response 2023, 14, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Gadoev, J.; Asadov, D.; Harries, A.D.; Parpieva, N.; Tayler-Smith, K.; Isaakidis, P.; Ali, E.; Hinderaker, S.G.; Ogtay, G.; Ramsay, A.; et al. Recurrent tuberculosis and associated factors: A five-year countrywide study in Uzbekistan. PLoS ONE 2017, 12, e0176473. [Google Scholar] [CrossRef]
- Trubnikov, A.; Hovhannesyan, A.; Akopyan, K.; Ciobanu, A.; Sadirova, D.; Kalandarova, L.; Parpieva, N.; Gadoev, J. Effectiveness and Safety of a Shorter Treatment Regimen in a Setting with a High Burden of Multidrug-Resistant Tuberculosis. Int. J. Environ. Res. Public Health 2021, 18, 4121. [Google Scholar] [CrossRef]
- Bastard, M.; Sanchez-Padilla, E.; du Cros, P.; Khamraev, A.K.; Parpieva, N.; Tillyashaykov, M.; Hayrapetyan, A.; Kimenye, K.; Khurkhumal, S.; Dlamini, T.; et al. Outcomes of HIV-infected versus HIV-non-infected patients treated for drug-resistance tuberculosis: Multicenter cohort study. PLoS ONE 2018, 13, e0193491. [Google Scholar] [CrossRef]
- Jenkins, H.E.; Gegia, M.; Furin, J.; Kalandadze, I.; Nanava, U.; Chakhaia, T.; Cohen, T. Geographical heterogeneity of multidrug-resistant tuberculosis in Georgia, January 2009 to June 2011. Euro Surveill. 2014, 19, 20743. [Google Scholar] [CrossRef]
- Hof, S.v.D.; Collins, D.; Hafidz, F.; Beyene, D.; Tursynbayeva, A.; Tiemersma, E. The socioeconomic impact of multidrug resistant tuberculosis on patients: Results from Ethiopia, Indonesia and Kazakhstan. BMC Infect. Dis. 2016, 16, 470. [Google Scholar] [CrossRef]
- Rechel, B.; McKee, M. The effects of dictatorship on health: The case of Turkmenistan. BMC Med. 2007, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Schluger, N.W.; El-Bassel, N.; Hermosilla, S.; Terlikbayeva, A.; Darisheva, M.; Aifah, A.; Galea, S. Tuberculosis, drug use and HIV infection in Central Asia: An urgent need for attention. Drug Alcohol. Depend. 2013, 132, S32–S36. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report. 2023. Available online: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2023 (accessed on 30 April 2025).
- Stop TB Partnership. Home [Internet]. Geneva: Stop TB Partnership. Available online: https://www.stoptb.org/ (accessed on 30 April 2025).
- Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; Allen, J.; Tahirli, R.; Blakemore, R.; Rustomjee, R.; et al. Rapid Molecular Detection of Tuberculosis and Rifampin Resistance. N. Engl. J. Med. 2010, 363, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Sakko, Y.; Madikenova, M.; Kim, A.; Syssoyev, D.; Mussina, K.; Gusmanov, A.; Zhakhina, G.; Yerdessov, S.; Semenova, Y.; Crape, B.L.; et al. Epidemiology of tuberculosis in Kazakhstan: Data from the Unified National Electronic Healthcare System 2014–2019. BMJ Open 2023, 13, e074208. [Google Scholar] [CrossRef]
- Jing, C.; Zheng, H.; Wang, X.; Wang, Y.; Zhao, Y.; Liu, S.; Zhao, J.; Du, Q. Disease burden of tuberculosis and post-tuberculosis in Inner Mongolia, China, 2016-2018-based on the disease burden of post-TB caused by COPD. BMC Infect. Dis. 2023, 23, 406. [Google Scholar] [CrossRef]
- International Organization for Migration (IOM). Regional Migrant Health Survey on Tuberculosis and HIV and Health Service Response for Migrants in Armenia, Azerbaijan and Georgia; IOM: Tbilisi, Georgia, 2015; Available online: https://reliefweb.int/report/world/regional-migrant-health-survey-tuberculosis-and-hiv-and-health-service-response (accessed on 30 April 2025).
- Terlikbayeva, A.; Hermosilla, S.; Galea, S.; Schluger, N.; Yegeubayeva, S.; Abildayev, T.; Muminov, T.; Akiyanova, F.; Bartkowiak, L.; Zhumadilov, Z.; et al. Tuberculosis in Kazakhstan: Analysis of risk determinants in national surveillance data. BMC Infect. Dis. 2012, 12, 262. [Google Scholar] [CrossRef]
- Karuniawati, A.; Burhan, E.; Koendhori, E.B.; Sari, D.; Haryanto, B.; Nuryastuti, T.; Gayatri, A.A.A.Y.; Bahrun, U.; Kusumawati, R.L.; Sugiyono, R.I.; et al. Performance of Xpert MTB/RIF and sputum microscopy compared to sputum culture for diagnosis of tuberculosis in seven hospitals in Indonesia. Front. Med. 2023, 9, 909198. [Google Scholar] [CrossRef]
- Barmankulova, A.; Higuchi, M.; Bashar Sarker, M.A.; Alim, M.A.; Hamajima, N. Tuberculosis and rifampicin resistance among migrants in Kyrgyzstan: Detection by a new diagnostic test. Nagoya J. Med. Sci. 2015, 77, 41. [Google Scholar] [PubMed]
- Yuldashev, S.; Parpieva, N.; Alimov, S.; Turaev, L.; Safaev, K.; Dumchev, K.; Gadoev, J.; Korotych, O.; Harries, A.D. Scaling Up Molecular Diagnostic Tests for Drug-Resistant Tuberculosis in Uzbekistan from 2012–2019: Are We on the Right Track? Int. J. Environ. Res. Public Health 2021, 18, 4685. [Google Scholar] [CrossRef]
- Selvaraju, S.; Velayutham, B.; Rao, R.; Rade, K.; Thiruvengadam, K.; Asthana, S.; Balachandar, R.; Bangar, S.D.; Bansal, A.K.; Bhat, J.; et al. Prevalence and factors associated with tuberculosis infection in India. J. Infect. Public Health 2023, 16, 2058–2065. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.; Ma, Y.; Gaeddert, M.; Tsacogianis, T.; Marques-Rodrigues, P.; Fregona, G.; Loomans, A.; Jones-López, E.C.; Dietze, R.; Ellner, J.J.; et al. Sex and age differences in Mycobacterium tuberculosis infection in Brazil. Epidemiol. Infect. 2018, 146, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Seifert, M.; Aung, H.T.; Besler, N.; Harris, V.; Mar, T.T.; Colman, R.E.; Rodwell, T.C.; Aung, S.T. Age and sex distribution of Mycobacterium tuberculosis infection and rifampicin resistance in Myanmar as detected by Xpert MTB/RIF. BMC Infect. Dis. 2021, 21, 781. [Google Scholar] [CrossRef]
- Gorvetzian, S.; Pacheco, A.G.; Anderson, E.; Ray, S.M.; Schechter, M.C. Mortality Rates after Tuberculosis Treatment, Georgia, USA, 2008–2019-Volume 30, Number 11—November 2024-Emerging Infectious Diseases journal-CDC. Emerg. Infect. Dis. 2024, 30, 2261–2270. [Google Scholar]
- Lv, H.; Zhang, X.; Zhang, X.; Bai, J.; You, S.; Li, X.; Li, S.; Wang, Y.; Zhang, W.; Xu, Y. Global prevalence and burden of multidrug-resistant tuberculosis from 1990 to 2019. BMC Infect. Dis. 2024, 24, 243. [Google Scholar] [CrossRef]
- Min, J.; Park, J.S.; Kim, H.W.; Ko, Y.; Oh, J.Y.; Jeong, Y.-J.; Na, J.O.; Kwon, S.-J.; Choe, K.H.; Lee, W.-Y.; et al. Differential effects of sex on tuberculosis location and severity across the lifespan. Sci. Rep. 2023, 13, 6023. [Google Scholar] [CrossRef]
- Wang, X.; Yin, S.; Li, Y.; Wang, W.; Du, M.; Guo, W.; Xue, M.; Wu, J.; Liang, D.; Wang, R.; et al. Spatiotemporal epidemiology of, and factors associated with, the tuberculosis prevalence in northern China, 2010–2014. BMC Infect. Dis. 2019, 19, 365. [Google Scholar] [CrossRef]
- Wulan Sumekar Rengganis Wardani, D.; Prasetyo Wahono, E. Spatial Analysis of Childhood Tuberculosis and Social Determinants in Bandar Lampung. E3S Web Conf. 2020, 202, 1–6. [Google Scholar] [CrossRef]
- Smith, J.P.; Oeltmann, J.E.; Hill, A.N.; Tobias, J.L.; Boyd, R.; Click, E.S.; Finlay, A.; Mondongo, C.; Zetola, N.M.; Moonan, P.K. Characterizing tuberculosis transmission dynamics in high-burden urban and rural settings. Sci. Rep. 2022, 12, 6780. [Google Scholar] [CrossRef] [PubMed]
- Ulmasova, D.J.; Uzakova, G.; Tillyashayhov, M.N.; Turaev, L.; van Gemert, W.; Hoffmann, H.; Zignol, M.; Kremer, K.; Gombogaram, T.; Gadoev, J.; et al. Multidrug-resistant tuberculosis in Uzbekistan: Results of a nationwide survey, 2010 to 2011. Eurosurveillance 2013, 18, 20609. [Google Scholar] [CrossRef]
- Ayé, R.; Wyss, K.; Abdualimova, H.; Saidaliev, S. Illness costs to households are a key barrier to access diagnostic and treatment services for tuberculosis in Tajikistan. BMC Res. Notes 2010, 3, 340. [Google Scholar] [CrossRef]
- Exploring Catastrophic Household Costs for Tuberculosis Treatment. Available online: https://tdr.who.int/newsroom/news/item/29-06-2023-exploring-catastrophic-household-costs-for-tuberculosis-treatment (accessed on 30 April 2025).
- Tanimura, T.; Jaramillo, E.; Weil, D.; Raviglione, M.; Lönnroth, K. Financial burden for tuberculosis patients in low- and middle-income countries: A systematic review. Eur. Respir. J. 2014, 43, 1763. [Google Scholar] [CrossRef]
- Eliminating Tuberculosis (TB) in Central Asia|Abt Global. Available online: https://www.abtglobal.com/projects/eliminating-tuberculosis-tb-in-central-asia (accessed on 15 June 2025).
- Ayé, R.; Wyss, K.; Abdualimova, H.; Saidaliev, S. Patient’s site of first access to health system influences length of delay for tuberculosis treatment in Tajikistan. BMC Health Serv. Res. 2010, 10, 10. [Google Scholar] [CrossRef]
- Glushkova, N.; Semenova, Y.; Sarria-Santamera, A. Editorial: Public health challenges in post-Soviet countries during and beyond COVID-19. Front. Public Health 2023, 11, 1290910. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Tao, N.-N.; Zhang, Q.-Y.; Song, W.-M.; An, Q.-Q.; Liu, S.-Q.; Li, Y.-F.; Long, F.; Li, H.-C. Association between diagnostic delay and prognosis of pulmonary tuberculosis in Shandong, China: A retrospective study. BMC Pulm. Med. 2022, 22, 309. [Google Scholar] [CrossRef]
- Otero, L.; Medicina, I.d.M.T.A.v.H.F.d.; Boldoo, T.; Purevdagva, A.; Borgil, U.; Enebish, T.; Erdenee, O.; Islam, T.; Morishita, F. Delays in health seeking, diagnosis and treatment for tuberculosis patients in Mongolia: An analysis of surveillance data, 2018–2021. West. Pac. Surveill. Response J. 2024, 15, 1. [Google Scholar] [CrossRef]
- Mongolia’s Looming Tuberculosis Crisis–The Diplomat. Available online: https://thediplomat.com/2023/11/mongolias-looming-tuberculosis-crisis/ (accessed on 15 June 2025).
- Teo, A.K.J.; Ork, C.; Eng, S.; Sok, N.; Tuot, S.; Hsu, L.Y.; Yi, S. Determinants of delayed diagnosis and treatment of tuberculosis in Cambodia: A mixed-methods study. Infect. Dis. Poverty 2020, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Altymysheva, N.A. The impact of COVID-19 on tuberculosis. Zdravookhranenie Kyrgyzstana. Sci. Pract. J. 2023, 2, 44–48. [Google Scholar] [CrossRef]
- Ryckman, T.; Robsky, K.; Cilloni, L.; Zawedde-Muyanja, S.; Ananthakrishnan, R.; Kendall, E.A.; Shrestha, S.; Turyahabwe, S.; Katamba, A.; Dowdy, D.W. Ending tuberculosis in a post-COVID-19 world: A person-centred, equity-oriented approach. Lancet Infect. Dis. 2023, 23, e59–e66. [Google Scholar] [CrossRef]
- World Health Organization. 1.1 TB Incidence. Global Tuberculosis Report 2023 [Internet]; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023/tb-disease-burden/1-1-tb-incidence (accessed on 15 June 2025).
- Dara, M.; Kuchukhidze, G.; Yedilbayev, A.; Perehinets, I.; Schmidt, T.; Van Grinsven, W.L.; Boeree, M.J. Early COVID-19 pandemic’s toll on tuberculosis services, WHO European Region, January to June 2020. Eurosurveillance 2021, 26, 2100231. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. 1. COVID-19 and TB. Global Tuberculosis Report 2021 [Internet]; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/digital/global-tuberculosis-report-2021/covid-19 (accessed on 15 June 2025).
- Gabdullina, M.; Maes, E.F.; Horth, R.Z.; Dzhazybekova, P.; Amanova, G.N.; Zikriyarova, S.; Nabirova, D.A. COVID-19 pandemic and other factors associated with unfavorable tuberculosis treatment outcomes—Almaty, Kazakhstan, 2018–2021. Front. Public Health 2023, 11, 1247661. [Google Scholar] [CrossRef] [PubMed]
- United States Agency for International Development (USAID). Tajikistan TB Recovery Plan to Mitigate the Impact of COVID-19; USAID: Dushanbe, Tajikistan, 2021. [Google Scholar]
- World Health Organization. Increase in Tuberculosis Deaths and Disease during the COVID-19 Pandemic [Internet]; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/news/item/27-10-2022-tuberculosis-deaths-and-disease-increase-during-the-covid-19-pandemic (accessed on 27 October 2022).
- Silva, S.; Arinaminpathy, N.; Atun, R.; Goosby, E.; Reid, M.J. Economic Impact of TB Mortality in 120 Countries and What It Will Cost If We Don’t Achieve the End TB Targets: A Full-Income Analysis. SSRN Electron. J. 2020, 9, e1372–e1379. [Google Scholar] [CrossRef]
Article (First Author, Year) | Selection (Max 5 *) | Comparability (Max: 2 *) | Outcome (Max. 3 *) | Total (Max: 10 *) |
---|---|---|---|---|
Zanaa A, 2022 | *** | ** | *** | 8 * |
Alikhanova N, 2014 | *** | ** | *** | 8 * |
Gadoev J, 2021 | *** | * | ** | 6 * |
Bastard M, 2018 | ** | * | * | 6 * |
Matthias Arnold, 2016 | ** | ** | * | 5 * |
Sadykova L., 2019 | ** | * | ** | 5 * |
Jenkins HE, 2014 | ** | ** | * | 5 * |
Boldoo T, 2023 | ** | * | * | 4 * |
Trubnikov A., 2021 | ** | * | * | 4 * |
Inclusion Criteria | Exclusion Criteria |
---|---|
1. Original articles describing TB indicators 2. Articles published before April 2023. 3. Case-control studies, randomized control trials, prospective and retrospective cohort studies, and series were eligible for inclusion. | 1. Studies related to extrapulmonary TB cases 2. Studies describing a specialized population (prisoners) 3. Abstracts, published articles not related to the review topic, and systematic reviews/meta-analyses 4. TB research up to 2013 5. Case reports and case studies |
Article (First Author, Year) | Study Design | Sample Size | Country /Region | Type of TB | TB Prevalence/Incidence |
---|---|---|---|---|---|
Zanaa, A., 2022 [28] | Retrospective descriptive study | 4242 cases of TB | Mongolia | (1) clinically active TB, (2) not clinically active TB, (3) bacteriologically confirmed TB, (4) presumptive TB, (5) no TB exposure | TB was higher among children aged 5–14 years (68.5% of total childhood TB cases between 2014 and 2020), the number of cases of multidrug-resistant TB was 14.1 (±5.0). MDR-TB was 3.1% of all childhood TB cases |
Boldoo, T., 2023 [31] | Retrospective descriptive study | - | Mongolia | Bacteriologically confirmed TB, extrapulmonary TB, clinically diagnosed TB, and other previously treated TB. | TB cases were registered as 133 per 100,000, MDR-TB cases 211 per 100,000, XDR-TB cases 7 per 100,000 |
Matthias Arnold, 5 April 2016 [30] | Cross-sectional data | 139 patients with TB | Kyrgyzstan, Bishkek | TB general | In 2013, TB prevalence was 190 per 100,000 |
Gadoev, J., December 2021 [32] | 16-year cohort study | All patients with TB—35,122 | Republic of Karakalpakstan, Uzbekistan | TB (pulmonary TB) 29,130 (83) EPTB (extrapulmonary TB) 5992 (17) TB treatment category I (2(3)HRZE(S)/4 H3R3) a 27,465 (79) category II (2HRZES/1(2)HRZE/5 H3R3E3) b 7497 (21) category III (2HRZ/4 H3R3) c 160 (<1) | 69 cases per 100,000 population |
Bastard, M., 8 March 2018 [34] | Retrospective cohort study | 1369 | 7 countries: Abkhazia, Armenia, Colombia, Kenya, Kyrgyzstan, Swaziland, and Uzbekistan. | DR-TB | MDR-TB among new TB cases ranged from 11.0% in Armenia to 32.0% in Kyrgyzstan, and, among previously treated TB cases, ranged from 33.0% in Georgia to 63.0% in Uzbekistan. |
Sadykova, L., June 2019 [29] | Retrospective cohort study with continuous sampling. | 36,926 TB cases | Kazakhstan | _ | 67 cases per 100,000 population, and the incidence of MDR-TB or rifampicin-resistant TB was 39 cases per 100,000 population |
Trubnikov, A., 13 April 2021 [33] | A cohort study involving secondary analysis of routinely collected data. | 95 patients with laboratory-confirmed MDR-TB. | Uzbekistan | RR/MDR TB | Based on routine surveillance data in 2018, out of 2238 registered MDR-TB patients, 137 (6.1%) were enrolled in short treatment regimens (STRs). In 2019, out of 2060 MDR-TB cases, 157 (7.6%) received STR treatment |
Alikhanova, N., 21 October 2014 [27] | A cross-sectional study | 789 patients (549 new and 240 previously treated) | the Republic of Azerbaijan | DR-TB | Among all new and previously treated cases, respectively 231 (42%) and 146 (61%) were resistant to any anti-tuberculosis drug, and 72 (13%) and 66 (28%) had MDR-TB. |
Jenkins, H.E., 20 March 2014 [35] | An observational epidemiological study | 1795 | Georgia | MDR TB | Average annual MDR-TB notified incidence was 16.2 per 100,000 (3.2 new MDR-TB cases per 100,000 and 12.8 previously treated MDR-TB cases per 100,000). |
Article (First Author, Year) | Male (%) | Female (%) | Age Group (%) |
---|---|---|---|
Zanaa A, 2022 [28] | n = 2111 (49.8%) | n = 2131 (50,2%) | (1) 0–1 years (n = 170; 4) 2–7 years (n = 586; 13.8%), 8–14 years (n = 668; 15.7%). (2) 0–4 years (n = 886; 31.4%). 5–14 years (n = 1932; 68.6%); |
Boldoo T, 2023 [31] | New cases 57.2%—a mean age of 33 (±17.3) years. relapse cases a mean age of 40 (±13.9) years. | New RR/MDR-TB cases, 40.4%, similar to the proportion seen in all TB notifications. | A mean (±standard deviation (SD)) age of 33 (±17.3) years, whereas 66.9% of relapse cases were male, with a mean age of 40 (±13.9) years. In 2019, 9.1% (n = 415) of TB notifications were aged under 15 years and 2.7% (n = 121) were aged under 5 years |
Matthias Arnold, [30] 5 April 2016 | Male—49.64% | Female—50.36% | A mean age of 30.28 (28.14:32.43) |
Gadoev J, 5 December 2021 [32] | 18,032 (51%) | 17,090 (49%) | Children (0–14)—2339 (7%) Teenagers (15–18 years)—2038 (6%) Adults (19–55 years)—24,394 (69%) Seniors (over 55 years)—6351 (18%) |
Bastard M, 8 March 2018 [34] | HIV-negative total n = 951 n(%)—683 (71.8) HIV-positive n = 418 n(%)—195 (46.6) Total n = 1369 n(%)—878 (64.1) | HIV-negative total n = 951—n(%)—268 (28.2) HIV-positive total n = 418—n(%)—223 (54.4) Total n = 1369 n(%)—491 (35.9) | <35 n = 681 (50.1), HIV(+) = 236 (57.3) HIV(-) = 445 (47.0) ≥35 n = 677 (49.9), HIV(+) = 176 (42.7) HIV(-) = 501 (53.0) |
Sadykova L. June 2019 [29] | n = 22,648 (61.3) | n = 14,278 (38.7) | 18–24 n = 5770 (15.6) 25–29 n = 5197 (14.1) 30–39 n = 8582 (23.2) 40–49 n = 6725 (18.2) 50–59 n = 5613 (15.2) 60 < n = 5039 (13.6) |
Trubnikov A. 13 April 2021 [33] | Total male n = 67 (70.5%), new cases—46 (48.4%) | Total female n = 28 (29.5) | <40 n = 33 (34.7) ≥40 n = 62 (65.3) |
Alikhanova N, 21 October 2014 [27] | Total male n = 338 (71%), | Total female n = 138(29%) | 15–24 n = 122 (26%) 25–34 n = 117 (25%) 35–44 n = 102 (21%) 45–54 n = 68 (14%) 55–64 n = 45 (9%) 65≤ n = 22 (5%) |
Jenkins HE, 20 March 2014 [35] | Male 28.1 per 100,000 population | Female 5.5 per 100,000 population | 0–4—1.7 per 100,000 5–9—1.5 per 100,000 15–24—17.1 per 100,000 25–34—33.9 per 100,000 35–44—27.8 per 100,000 45–54—18 per 100,000 55–64—12 per 100,000 65≤—4.5 per 100,000 |
Article (First Author, Year) | Risk Groups/Factors | |
---|---|---|
Zanaa A, 2022 [28] | Difference in the city and village Central region—2020 53.3 per 100,000 children Other regions—2020 11.7 per 100,000 children | |
Matthias Arnold, [30] 5 April 2016 | Socioeconomic factors as the main causes of TB infections | |
Education (%) No schooling—0.72 Primary—2.88 Secondary—64.75 Tertiary—30.22 | Employment (%) Unemployed—24.46 Informal—35.97 Formal—23.74 Retired—5.76 | |
Gadoev J, 5 December 2021 [32] | Place of residence Urban—9289 (26) Rural—19,774 (56) Missing data—6059 (17) Social characteristics Worker—1605 (5) Employee—1440 (4) Student—2572 (7) Disabled—819 (2) Retiree—3577 (10) Unemployed—15,409 (44) Missing data—8904 (25) | HIV status HIV positive—19 (<1) HIV negative—26,373 (75) Missing data—8730 (24) Former prisoner No—2582 (7) Yes—9 (<1) Missing data—32,531 (92) Contact with a patient with tuberculosis Yes—23,417 (67) No—1915 (5) Missing data—9790 (28) |
Bastard M., 8 March 2018 [34] | HIV status Negative: n = 951 Positive: n = 418 Former prisoner No—1214 (88.7) Yes—155 (11.3) Contact with MDR-TB case No—1241 (90.7) Yes—127 (9.3) | None—1 Diabetes—70 (5.7) BMI <18.5—347 (34.4) ≥18.5–663 (65.6) None—359 |
Sadykova L. June 2019 [29] | 1. Drug dependence n = 104 (0.28) 2. Contact with TB patients n = 559 (1.51) 3. Diabetes n = 988 (2.68) 4. Alcoholism n = 1742 (4.72) 5. Pregnancy and postpartum period n = 964 (2.61) | 6. Being in prison in the last 2 years n = 383 (1.03) 7. HIV n = 490 (1.32) 8. Two risk factors n = 204 (0.55) 9. More than 2 risk factors n = 24 (0.06) 10. No data n = 31,468 (85.22) |
Trubnikov A. 13 April 2021 [33] | HIV status HIV positive—84 (88.4%) HIV negative—11 (11.6%) BMI <18.5–58 (74.4) ≥18.5–21 (26.9) Absent—16 | Any concomitant pathology—56 (58.9) Diabetes—18 (28.1) Hepatitis—19 (29.7) Anemia—33 (51.6) |
AlikhanovaN, 21 October 2014 [27] | Social status Unemployed—374 (79) Working—41 (9) Retired—40 (8) Disabled—8 (2) Student—13 (3) Living conditions Owner—435 (91) Renting—29 (6) Hostel—5 (1) Homeless—7 (2) Financial status Low income—248 (52) Middle income—218 (46) High income—2 Unknown—8 (1) | Smoking status No—243 (51) Yes—233 (49) Alcohol use No—333 (70) Yes—143 (30) Drug use No—471 (99) Yes—0 Unknown—5 (1) Prison history * No—465 (98) Yes—10 (2) Unknown—1 HIV status Negative—397 (84) Positive—1 Unknown—78 (16) |
Article (First Author, Year) | Study Design | Sample Size | Country /Region | Characteristics of the Population (Age, Gender) | Type of TB | Economic Impact Data |
---|---|---|---|---|---|---|
Matthias Arnold, [30] 5 April 2016 | Cross-sectional data | 139 | Kyrgyzstan, Bishkek | 30 years (p < 0.001). Female—50.36 Male—49.64 | TB general | Equivalence income is highest in TB patients with KGS 4704 (USD 106) |
Susan van den Hof, 2016 [36] | Structured interview | 148 | Kazakhstan | A total of 54 patients with TB and 94 patients with MDR-TB in Kazakhstan | TB general; MDR-TB | For diagnostics and the current episode of treatment of patients with TB, the cost was USD 929; for patients with MDR-TB, it was USD 3125 |
Stefan Kohler, 2021 [22] | - | - | Uzbekistan, Karakalpakstan | Treatment plans (4-, 6-, 9-, and 20-month programs) | (1) DS-TB (2) MDR-TB | A 6-month course of treatment for TB and a 20-month course of treatment for MDR-TB was USD 1401 ± 274 thousand per year, to which was added the import of drugs in the amount of USD 34 ± 6.4 thousand per year. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idayat, M.; von der Lippe, E.; Kozhekenova, N.; Amartsengel, O.; Akhmetova, K.; Oshibayeva, A.; Nurgaliyeva, Z.; Glushkova, N. Prevalence of Tuberculosis in Central Asia and Southern Caucasus: A Systematic Literature Review. Diagnostics 2025, 15, 2314. https://doi.org/10.3390/diagnostics15182314
Idayat M, von der Lippe E, Kozhekenova N, Amartsengel O, Akhmetova K, Oshibayeva A, Nurgaliyeva Z, Glushkova N. Prevalence of Tuberculosis in Central Asia and Southern Caucasus: A Systematic Literature Review. Diagnostics. 2025; 15(18):2314. https://doi.org/10.3390/diagnostics15182314
Chicago/Turabian StyleIdayat, Malika, Elena von der Lippe, Nailya Kozhekenova, Oyunzul Amartsengel, Kamila Akhmetova, Ainash Oshibayeva, Zhansaya Nurgaliyeva, and Natalya Glushkova. 2025. "Prevalence of Tuberculosis in Central Asia and Southern Caucasus: A Systematic Literature Review" Diagnostics 15, no. 18: 2314. https://doi.org/10.3390/diagnostics15182314
APA StyleIdayat, M., von der Lippe, E., Kozhekenova, N., Amartsengel, O., Akhmetova, K., Oshibayeva, A., Nurgaliyeva, Z., & Glushkova, N. (2025). Prevalence of Tuberculosis in Central Asia and Southern Caucasus: A Systematic Literature Review. Diagnostics, 15(18), 2314. https://doi.org/10.3390/diagnostics15182314