Long-Term Retrospective Analysis of Parvovirus B19 Infections in Blood Donors (2012–2024): Significant Increase in Prevalence Following the SARS-CoV-2 Pandemic
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Sample Collection, Study Design and Cohort Characteristics
2.3. Nucleic Acid Testing Based on Real-Time Polymerase Chain Reaction (qPCR)
2.4. Serological Screening for SARS-CoV-2 Total Anti-N Antibodies
2.5. Statistical Analysis
3. Results
3.1. Epidemiologic Dynamics of Parvovirus B19 Between 2012 and 2024
3.2. Significantly Increased B19V Viral Titers After the SARS-CoV-2 Pandemic
3.3. B19V Viremia Is Independent of Sex and ABO Blood Group, but Dependent on Age
3.4. After 2 Years 39% of B19V-Positive Tested Blood Donors Are Still B19V-Positive
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease 2019 |
Ct | Cycle threshold |
DNA | Deoxyribonucleic Acid |
EDTA | Ethylenediaminetetraacetic acid |
HAV | Hepatitis-A Virus |
HBV | Hepatitis-B Virus |
HCV | Hepatitis-C Virus |
HIV | Human Immunodeficiency Virus |
JPAC | Joint UK Blood Transfusion Services Professional Advisory Committee |
NAT | Nucleic Acid Amplification Technology |
B19V | Parvovirus B19 |
(q)PCR | (quantitative) polymerase chain reaction |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
WHO | World Health Organization |
WNV | West Nile Virus |
References
- Reno, M.; Cox, C.R.; Powell, E.A. Parvovirus B19: A Clinical and Diagnostic Review. Clin. Microbiol. Newsl. 2022, 44, 12. [Google Scholar] [CrossRef]
- Slavov, S.N.; Kashima, S.; Pinto, A.C.; Covas, D.T. Human parvovirus B19: General considerations and impact on patients with sickle-cell disease and thalassemia and on blood transfusions. FEMS Immunol. Med. Microbiol. 2011, 62, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Juhl, D.; Hennig, H. Parvovirus B19: What Is the Relevance in Transfusion Medicine? Front. Med. 2018, 5, 4. [Google Scholar] [CrossRef]
- Heegaard, E.D.; Brown, K.E. Human parvovirus B19. Clin. Microbiol. Rev. 2002, 15, 485–505. [Google Scholar] [CrossRef]
- Florea, A.V.; Ionescu, D.N.; Melhem, M.F. Parvovirus B19 infection in the immunocompromised host. Arch. Pathol. Lab. Med. 2007, 131, 799–804. [Google Scholar] [CrossRef]
- Enders, M.; Weidner, A.; Zoellner, I.; Searle, K.; Enders, G. Fetal morbidity and mortality after acute human parvovirus B19 infection in pregnancy: Prospective evaluation of 1018 cases. Prenat. Diagn. 2004, 24, 513–518. [Google Scholar] [CrossRef]
- Dittmer, F.P.; Guimaraes, C.M.; Peixoto, A.B.; Pontes, K.F.M.; Bonasoni, M.P.; Tonni, G.; Araujo Junior, E. Parvovirus B19 Infection and Pregnancy: Review of the Current Knowledge. J. Pers. Med. 2024, 14, 139. [Google Scholar] [CrossRef]
- Norja, P.; Hokynar, K.; Aaltonen, L.-M.; Chen, R.; Ranki, A.; Partio, E.K.; Kiviluoto, O.; Davidkin, I.; Leivo, T.; Eis-Hübinger, A.M.; et al. Bioportfolio: Lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc. Natl. Acad. Sci. USA 2006, 103, 7450–7453. [Google Scholar] [CrossRef]
- Adamo, M.P.; Blanco, S.; Viale, F.; Rivadera, S.; Rodríguez-Lombardi, G.; Pedranti, M.; Carrizo, H.; Gallego, S. Human parvovirus B19 frequency among blood donors after an epidemic outbreak: Relevance of the epidemiological scenario for transfusion medicine. Heliyon 2020, 6, e03869. [Google Scholar] [CrossRef] [PubMed]
- Santonja, C.; Santos-Briz, A.; Palmedo, G.; Kutzner, H.; Requena, L. Detection of human parvovirus B19 DNA in 22% of 1815 cutaneous biopsies of a wide variety of dermatological conditions suggests viral persistence after primary infection and casts doubts on its pathogenic significance. Br. J. Dermatol. 2017, 177, 1060–1065. [Google Scholar] [CrossRef]
- Mendes-De-Almeida, D.P.; Bokel, J.P.B.; Alves, A.D.R.; Vizzoni, A.G.; Tavares, I.C.F.; Silva, M.S.T.; Netto, J.d.S.B.; Grinsztejn, B.G.J.; Leon, L.A.A. Clinical Presentation of Parvovirus B19 Infection in Adults Living with HIV/AIDS: A Case Series. Viruses 2023, 15, 1124. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, M.; Ma, Y.; Zhang, J. Human parvovirus B19 research concerning the safety of blood and plasma derivatives in China. Ann. Blood 2019, 4, 2. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Nucleic Acid Testing to Reduce the Possible Risk of Parvovirus B19 Transmission by Plasma-Derived Products; US Food and Drug Administration: Silver Spring, MD, USA, 2009.
- Schmidt, M.; Themann, A.; Drexler, C.; Bayer, M.; Lanzer, G.; Menichetti, E.; Lechner, S.; Wessin, D.; Prokoph, B.; Allain, J.; et al. Blood donor screening for parvovirus B19 in Germany and Austria. Transfusion 2007, 47, 1775–1782. [Google Scholar] [CrossRef]
- Guillet, M.; Bas, A.; Lacoste, M.; Ricard, C.; Visse, C.; Barlet, V.; Malard, L.; Le Cam, S.; Morel, P.; de Lamballerie, X.; et al. New atypical epidemiological profile of parvovirus B19 revealed by molecular screening of blood donations, France, winter 2023/24. Euro Surveill. 2024, 29, 2400253. [Google Scholar] [CrossRef]
- Sakata, H.; Matsubayashi, K.; Ihara, H.; Sato, S.; Kato, T.; Wakisaka, A.; Tadokoro, K.; Yu, M.W.; Baylis, S.A.; Ikeda, H.; et al. Impact of chemiluminescent enzyme immunoassay screening for human parvovirus B19 antigen in Japanese blood donors. Transfusion 2013, 53 Pt 2, 2556–2566. [Google Scholar] [CrossRef]
- Guide to the Preparation, Use and Quality Assurance of Blood Components; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2023.
- Rechtsvorschrift für Blutspenderverordnung; Bundesministerin für Arbeit, Gesundheit und Soziales: Vienna, Austria, 1999.
- Guide to the Preparation, Use and Quality Assurance of Blood Components; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2020.
- Nunhofer, V.; Weidner, L.; Hoeggerl, A.D.; Zimmermann, G.; Badstuber, N.; Grabmer, C.; Jungbauer, C.; Lindlbauer, N.; Held, N.; Pascariuc, M.; et al. Persistence of Naturally Acquired and Functional SARS-CoV-2 Antibodies in Blood Donors One Year after Infection. Viruses 2022, 14, 637. [Google Scholar] [CrossRef]
- Hoeggerl, A.D.; Nunhofer, V.; Lauth, W.; Badstuber, N.; Held, N.; Zimmermann, G.; Grabmer, C.; Weidner, L.; Jungbauer, C.; Lindlbauer, N.; et al. Epstein-Barr virus reactivation is not causative for post-COVID-19-syndrome in individuals with asymptomatic or mild SARS-CoV-2 disease course. BMC Infect. Dis. 2023, 23, 800. [Google Scholar] [CrossRef]
- Hoeggerl, A.D.; Nunhofer, V.; Weidner, L.; Lauth, W.; Zimmermann, G.; Badstuber, N.; Grabmer, C.; Kartal, O.; Jungbauer, C.; Neureiter, H.; et al. Dissecting the dynamics of SARS-CoV-2 reinfections in blood donors with pauci- or asymptomatic COVID-19 disease course at initial infection. Infect. Dis. 2024, 56, 954–964. [Google Scholar] [CrossRef]
- R-Core-Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 17 June 2025).
- European Centre for Disease Prevention and Control (ECDC). Risks Posed by Reported Increased Circulation of Human Parvovirus B19 in the EU/EEA; European Centre for Disease Prevention and Control: Solna, Sweden, 2024; Available online: https://www.ecdc.europa.eu/en/publications-data/risks-posed-reported-increased-circulation-human-parvovirus-b19-eueea (accessed on 17 June 2025).
- Centers for Disease Control (CDC). Increase in Human Parvovirus B19 Activity in the United States; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2024. Available online: https://www.cdc.gov/han/2024/han00514.html (accessed on 17 June 2025).
- Antwi-Baffour, S.T.M.B.; Awuni Kintampo, L.; Naa Okailey Armah, D.; Annison, L. Human Parvovirus B19 Infections among Blood Donors in Selected Blood Centers in Ghana. J. Biotechnol. Biomed. 2024, 7, 306–313. [Google Scholar] [CrossRef]
- Kumari, S.; Kuruvilla Thomas, R.; Sruthi, S.; Barani, R.; Sangvi, S.; Krishnamoorthy, R.; Srikanth, P. Increased parvovirus B19 seropositivity in healthy blood donors in India. Sci. Rep. 2024, 14, 20497. [Google Scholar] [CrossRef] [PubMed]
- Plumers, R.; Dreier, J.; Knabbe, C.; Vollmer, T. Unexpected high incidence of parvovirus B19 nucleic acid detection in German blood donors in the winter/spring season 2023/2024. J. Med. Virol. 2024, 96, e29878. [Google Scholar] [CrossRef]
- Haberl, C.; Schirwani-Hartl, N.; Palmrich, P.; Oblin, V.; Heinzl, F.; Perkmann-Nagele, N.; Binder, J. Impact of the COVID-19 pandemic on parvovirus B19 infection rates in pregnancy: Is there a post-pandemic epidemic? BMC Pregnancy Childbirth 2025, 25, 512. [Google Scholar] [CrossRef]
- Mor, O.; Wax, M.; Arami, S.S.; Yitzhaki, M.; Kriger, O.; Erster, O.; Zuckerman, N.S. Parvovirus B19 Outbreak in Israel: Retrospective Molecular Analysis from 2010 to 2023. Viruses 2024, 16, 480. [Google Scholar] [CrossRef]
- Ang, H.J.; Menegale, F.; Preziosi, G.; Pariani, E.; Migliari, M.; Pellegrinelli, L.; Sechi, G.M.; Buoro, S.; Merler, S.; Cereda, D.; et al. Reconstructing the impact of COVID-19 on the immunity gap and transmission of respiratory syncytial virus in Lombardy, Italy. EBioMedicine 2023, 95, 104745. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.; Wu, V.; Wu, K.H.; Wu, K.C.; Huang, J.Y. Immunity Debt Regarding the Aspect of Influenza in the Post-COVID-19 Era in Taiwan. Viruses 2024, 16, 1468. [Google Scholar] [CrossRef] [PubMed]
- Terliesner, N.; Unterwalder, N.; Edelmann, A.; Corman, V.; Knaust, A.; Rosenfeld, L.; Gratopp, A.; Ringe, H.; Martin, L.; von Bernuth, H.; et al. Viral infections in hospitalized children in Germany during the COVID-19 pandemic: Association with non-pharmaceutical interventions. Front. Pediatr. 2022, 10, 935483. [Google Scholar] [CrossRef] [PubMed]
- Hatter, L.; Eathorne, A.; Hills, T.; Bruce, P.; Beasley, R. Respiratory syncytial virus: Paying the immunity debt with interest. Lancet Child Adolesc. Health 2021, 5, e44–e45. [Google Scholar] [CrossRef]
- Yang, M.C.; Su, Y.T.; Chen, P.H.; Tsai, C.C.; Lin, T.I.; Wu, J.R. Changing patterns of infectious diseases in children during the COVID-19 pandemic. Front. Cell Infect. Microbiol. 2023, 13, 1200617. [Google Scholar] [CrossRef]
- Leung, C.; Konya, L.; Su, L. Postpandemic immunity debt of influenza in the USA and England: An interrupted time series study. Public Health 2024, 227, 239–242. [Google Scholar] [CrossRef]
- Feinmann, J. Analysis reveals global post-covid surge in infectious diseases. BMJ 2024, 385, q1348. [Google Scholar] [CrossRef]
- Katsafanas, G.C.; Schirmer, E.C.; Wyatt, L.S.; Frenkel, N. In vitro activation of human herpesviruses 6 and 7 from latency. Proc. Natl. Acad. Sci. USA 1996, 93, 9788–9792. [Google Scholar] [CrossRef]
- Drago, F.; Rebora, A. Viral reactivation and skin eruptions. Dermatology 2003, 207, 1–2. [Google Scholar] [CrossRef]
- Horvat, R.T.; Wood, C.; Josephs, S.F.; Balachandran, N. Transactivation of the human immunodeficiency virus promoter by human herpesvirus 6 (HHV-6) strains GS and Z-29 in primary human T lymphocytes and identification of transactivating HHV-6(GS) gene fragments. J. Virol. 1991, 65, 2895–2902. [Google Scholar] [CrossRef]
- Chen, M.; Popescu, N.; Woodworth, C.; Berneman, Z.; Corbellino, M.; Lusso, P.; Ablashi, D.V.; A DiPaolo, J. Human herpesvirus 6 infects cervical epithelial cells and transactivates human papillomavirus gene expression. J. Virol. 1994, 68, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Flamand, L.; Stefanescu, I.; Ablashi, D.V.; Menezes, J. Activation of the Epstein-Barr virus replicative cycle by human herpesvirus 6. J. Virol. 1993, 67, 6768–6777. [Google Scholar] [CrossRef] [PubMed]
- Ciccarese, G.; Parodi, A.; Drago, F. SARS-CoV-2 as possible inducer of viral reactivations. Dermatol. Ther. 2020, 33, e13878. [Google Scholar] [CrossRef]
- Drago, F.; Ciccarese, G.; Rebora, A.; Parodi, A. Human herpesvirus-6, -7, and Epstein-Barr virus reactivation in pityriasis rosea during COVID-19. J. Med. Virol. 2021, 93, 1850–1851. [Google Scholar] [CrossRef] [PubMed]
- Mattei, A.; Schiavoni, L.; Riva, E.; Ciccozzi, M.; Veralli, R.; Urselli, A.; Citriniti, V.; Nenna, A.; Pascarella, G.; Costa, F.; et al. Epstein-Barr virus, Cytomegalovirus, and Herpes Simplex-1/2 reactivations in critically ill patients with COVID-19. Intensive Care Med. Exp. 2024, 12, 40. [Google Scholar] [CrossRef]
- Lai, P.Y.; Vu, A.; Sarva, S.T.; Jayaraman, G.; Kesavan, R. Parvovirus Reactivation in COVID-19. Cureus 2021, 13, e17796. [Google Scholar] [CrossRef]
- Marano, G.; Vaglio, S.; Pupella, S.; Facco, G.; Calizzani, G.; Candura, F.; Liumbruno, G.M.; Grazzini, G. Human Parvovirus B19 and blood product safety: A tale of twenty years of improvements. Blood Transfus. 2015, 13, 184–196. [Google Scholar]
- Arbeitskreis, B. Parvovirus B19–Revised *. Transfus. Med. Hemother. 2010, 37, 339–350. [Google Scholar]
- Farcet, M.R.; Karbiener, M.; Aberham, C.; Powers, N.; Aue, D.; Kreil, T.R. Parvovirus B19 rebound outbreak 2024 and implications for blood- and plasma-product safety. Transfusion 2024, 64, 2218–2221. [Google Scholar] [CrossRef] [PubMed]
- WHO. Blood Donor Selection: Guidelines on Assessing Donor Suitability for Blood Donation; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Candura, F.; Pati, I.; De Fulvio, L.; Massari, M.S.; Piccinini, V.; Pupella, S.; Silvioli, G.; Bolcato, M.; Schepisi, M.S.; La Raja, M.; et al. Comprehensive analysis of parvovirus B19 infection in blood donors: Epidemiological trend and implications for transfusion safety and management strategies in Italy. Blood Transfus. 2025, 23, 168–175. [Google Scholar] [PubMed]
- Katz, L.M.D.R.Y.; Saa, P.; Gorlin, J.B.; Palmer, K.; Hollinger, F.B.; Stramer, S.L. Infectious disease agents and their potential threat to transfusion safety (an update to the 2009 Transfusion supplement)-Viral agents (2nd section). Transfusion 2024, 64, 19–207. [Google Scholar] [CrossRef]
Blood Donations 2012–2024 | Pre-Pandemic 2017–2019 | Pandemic 2020–2022 | Post-Pandemic 2023–2024 | |
Total number of donations | 441,084 | 100,936 | 101,037 | 65,822 |
Sex (in %) | ||||
Male | 59.93 | 59.50 | 56.95 | 57.74 |
Female | 40.07 | 40.50 | 43.05 | 42.26 |
ABO blood group (in %) | ||||
A | 38.52 | 38.92 | 38.16 | 38.11 |
B | 10.68 | 10.53 | 10.67 | 10.76 |
AB | 4.32 | 4.35 | 4.26 | 4.33 |
0 | 46.48 | 46.20 | 46.91 | 46.80 |
Age groups (age at the time of donation in years, given in %) | ||||
18–25 | 18.21 | 19.38 | 17.72 | 15.13 |
26–35 | 18.05 | 17.53 | 18.99 | 18.15 |
36–45 | 18.53 | 17.85 | 18.09 | 19.52 |
46–55 | 24.12 | 25.42 | 23.17 | 21.46 |
56–70 | 21.08 | 19.83 | 22.03 | 25.75 |
Blood Donations 2017–2024 | B19V-Positive Blood Donations 2017–2024 | |
Total number of donations | 267,795 | 674 |
Sex (in %) | ||
Male | 58.06 | 53.45 |
Female | 41.94 | 46.55 |
ABO blood groups (in %) | ||
A | 38.40 | 47.14 |
B | 10.65 | 7.41 |
AB | 4.31 | 2.13 |
0 | 46.64 | 43.32 |
Age groups (age at the time of donation in years, given in %) | ||
18–25 | 17.41 | 25.19 |
26–35 | 18.22 | 19.88 |
36–45 | 18.48 | 26.97 |
46–55 | 23.35 | 19.09 |
56–70 | 22.54 | 8.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oeller, M.; Kartal, O.; Trifonova, I.; Held, N.; Hoeggerl, A.D.; Neureiter, H.; Lauth, W.; Grabmer, C.; Rohde, E.; Laner-Plamberger, S. Long-Term Retrospective Analysis of Parvovirus B19 Infections in Blood Donors (2012–2024): Significant Increase in Prevalence Following the SARS-CoV-2 Pandemic. Diagnostics 2025, 15, 2313. https://doi.org/10.3390/diagnostics15182313
Oeller M, Kartal O, Trifonova I, Held N, Hoeggerl AD, Neureiter H, Lauth W, Grabmer C, Rohde E, Laner-Plamberger S. Long-Term Retrospective Analysis of Parvovirus B19 Infections in Blood Donors (2012–2024): Significant Increase in Prevalence Following the SARS-CoV-2 Pandemic. Diagnostics. 2025; 15(18):2313. https://doi.org/10.3390/diagnostics15182313
Chicago/Turabian StyleOeller, Michaela, Orkan Kartal, Iuliia Trifonova, Nina Held, Alexandra Domnica Hoeggerl, Heidrun Neureiter, Wanda Lauth, Christoph Grabmer, Eva Rohde, and Sandra Laner-Plamberger. 2025. "Long-Term Retrospective Analysis of Parvovirus B19 Infections in Blood Donors (2012–2024): Significant Increase in Prevalence Following the SARS-CoV-2 Pandemic" Diagnostics 15, no. 18: 2313. https://doi.org/10.3390/diagnostics15182313
APA StyleOeller, M., Kartal, O., Trifonova, I., Held, N., Hoeggerl, A. D., Neureiter, H., Lauth, W., Grabmer, C., Rohde, E., & Laner-Plamberger, S. (2025). Long-Term Retrospective Analysis of Parvovirus B19 Infections in Blood Donors (2012–2024): Significant Increase in Prevalence Following the SARS-CoV-2 Pandemic. Diagnostics, 15(18), 2313. https://doi.org/10.3390/diagnostics15182313