Fetal Cardiovascular Profile Score (CVPs) in Fetal Anemia, Using Fetal Hemoglobin Bart’s Disease at Mid-Pregnancy as a Study Model
Abstract
1. Introduction
2. Patients and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chui, D.H. Alpha-thalassaemia and population health in Southeast Asia. Ann. Hum. Biol. 2005, 32, 123–130. [Google Scholar] [CrossRef]
- Flint, J.; Hill, A.V.; Bowden, D.K.; Oppenheimer, S.J.; Sill, P.R.; Serjeantson, S.W.; Bana-Koiri, J.; Bhatia, K.; Alpers, M.P.; Boyce, A.J.; et al. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature 1986, 321, 744–750. [Google Scholar] [CrossRef]
- Hockham, C.; Ekwattanakit, S.; Bhatt, S.; Penman, B.S.; Gupta, S.; Viprakasit, V.; Piel, F.B. Estimating the burden of α-thalassaemia in Thailand using a comprehensive prevalence database for Southeast Asia. eLife 2019, 8, e40580. [Google Scholar] [CrossRef]
- Chainarong, N.; Muangpaisarn, W.; Suwanrath, C. Etiology and outcome of non-immune hydrops fetalis in relation to gestational age at diagnosis and intrauterine treatment. J. Perinatol. 2021, 41, 2544–2548. [Google Scholar] [CrossRef]
- Wanapirak, C.; Muninthorn, W.; Sanguansermsri, T.; Dhananjayanonda, P.; Tongsong, T. Prevalence of thalassemia in pregnant women at Maharaj Nakorn Chiang Mai Hospital. J. Med. Assoc. Thai. 2004, 87, 1415–1418. [Google Scholar] [PubMed]
- Jatavan, P.; Chattipakorn, N.; Tongsong, T. Fetal hemoglobin Bart’s hydrops fetalis: Pathophysiology, prenatal diagnosis and possibility of intrauterine treatment. J. Matern. Fetal Neonatal Med. 2018, 31, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Harn-a-morn, P.; Wanapirak, C.; Sirichotiyakul, S.; Srisupundit, K.; Tongprasert, F.; Luewan, S.; Tongsong, T. Effectiveness of ultrasound algorithm in prenatal diagnosis of hemoglobin Bart’s disease among pregnancies at risk. Int. J. Gynaecol. Obstet. 2022, 159, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.Y.; Cheong, K.B.; Lee, C.P.; Chan, V.; Lam, Y.H.; Tang, M. Ultrasonographic prediction of homozygous alpha0-thalassemia using placental thickness, fetal cardiothoracic ratio and middle cerebral artery Doppler: Alone or in combination? Ultrasound Obstet. Gynecol. 2010, 35, 149–154. [Google Scholar] [CrossRef]
- Leung, K.Y.; Liao, C.; Li, Q.M.; Ma, S.Y.; Tang, M.H.; Lee, C.P.; Chan, V.; Lam, Y.H. A new strategy for prenatal diagnosis of homozygous alpha(0)-thalassemia. Ultrasound Obstet. Gynecol. 2006, 28, 173–177. [Google Scholar] [CrossRef]
- Tongsong, T.; Tatiyapornkul, T. Cardiothoracic ratio in the first half of pregnancy. J. Clin. Ultrasound 2004, 32, 186–189. [Google Scholar] [CrossRef]
- Huhta, J.C. Right ventricular function in the human fetus. J. Perinat. Med. 2001, 29, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Hofstaetter, C.; Hansmann, M.; Eik-Nes, S.H.; Huhta, J.C.; Luther, S.L. A cardiovascular profile score in the surveillance of fetal hydrops. J. Matern. Fetal Neonatal Med. 2006, 19, 407–413. [Google Scholar] [CrossRef]
- Mäkikallio, K.; Räsänen, J.; Mäkikallio, T.; Vuolteenaho, O.; Huhta, J.C. Human fetal cardiovascular profile score and neonatal outcome in intrauterine growth restriction. Ultrasound Obstet. Gynecol. 2008, 31, 48–54. [Google Scholar] [CrossRef]
- Miyoshi, T.; Katsuragi, S.; Neki, R.; Kurosaki, K.I.; Shiraishi, I.; Nakai, M.; Nishimura, K.; Yoshimatsu, J.; Ikeda, T. Cardiovascular profile and biophysical profile scores predict short-term prognosis in infants with congenital heart defect. J. Obstet. Gynaecol. Res. 2019, 45, 1268–1276. [Google Scholar] [CrossRef]
- Wieczorek, A.; Hernandez-Robles, J.; Ewing, L.; Leshko, J.; Luther, S.; Huhta, J. Prediction of outcome of fetal congenital heart disease using a cardiovascular profile score. Ultrasound Obstet. Gynecol. 2008, 31, 284–288. [Google Scholar] [CrossRef]
- Thammavong, K.; Luewan, S.; Jatavan, P.; Tongsong, T. Foetal haemodynamic response to anaemia. ESC Heart Fail. 2020, 7, 3473–3482. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Katsuragi, S.; Neki, R.; Kurosaki, K.I.; Shiraishi, I.; Nakai, M.; Nishimura, K.; Yoshimatsu, J.; Ikeda, T. Cardiovascular profile score as a predictor of acute intrapartum non-reassuring fetal status in infants with congenital heart defects. J. Matern. Fetal Neonatal Med. 2017, 30, 2831–2837. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Schmitz, R.; Kiesel, L.; Steinhard, J. Fetal myocardial peak systolic strain before and after intrauterine red blood cell transfusion--a tissue Doppler imaging study. J. Perinat. Med. 2012, 40, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Nicolaides, K.H.; Arduini, D.; Campbell, S. Effects of intravascular fetal blood transfusion on fetal intracardiac Doppler velocity waveforms. Am. J. Obstet. Gynecol. 1990, 163, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Nassar, R.; Reedy, M.C.; Anderson, P.A. Developmental changes in the ultrastructure and sarcomere shortening of the isolated rabbit ventricular myocyte. Circ. Res. 1987, 61, 465–483. [Google Scholar] [CrossRef]
- Metivier, F.; Marchais, S.J.; Guerin, A.P.; Pannier, B.; London, G.M. Pathophysiology of anaemia: Focus on the heart and blood vessels. Nephrol. Dial. Transplant. 2000, 15 (Suppl. 3), 14–18. [Google Scholar] [CrossRef]
- Mehta, P.A.; Dubrey, S.W. High output heart failure. Qjm 2009, 102, 235–241. [Google Scholar] [CrossRef]
- Teixeira, R.S.; Terse-Ramos, R.; Ferreira, T.A.; Machado, V.R.; Perdiz, M.I.; Lyra, I.M.; Nascimento, V.L.; Boa-Sorte, N.; Andrade, B.B.; Ladeia, A.M. Associations between endothelial dysfunction and clinical and laboratory parameters in children and adolescents with sickle cell anemia. PLoS ONE 2017, 12, e0184076. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qiu, X.; Huang, H.; Zhao, Y.; Li, X.; Li, M.; Tian, X. Fetal heart size measurements as new predictors of homozygous α-thalassemia-1 in mid-pregnancy. Congenit. Heart Dis. 2018, 13, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Thammavong, K.; Luewan, S.; Wanapirak, C.; Tongsong, T. Ultrasound Features of Fetal Anemia Lessons From Hemoglobin Bart Disease. J. Ultrasound Med. 2021, 40, 659–674. [Google Scholar] [CrossRef] [PubMed]
- Tongsong, T.; Wanapirak, C.; Sirichotiyakul, S.; Chanprapaph, P. Sonographic markers of hemoglobin Bart disease at midpregnancy. J. Ultrasound Med. 2004, 23, 49–55. [Google Scholar] [CrossRef]
Category | Score 2 | Score 1 | Score 0 |
---|---|---|---|
Fetal hydrops | None | Ascites or pleural effusion or pericardial effusion | Skin edema |
Heart size; cardiomegaly (cardio-thoracic area ratio: CTAR *) | >0.20 and <0.35 | 0.35–0.50 | >0.50 or <0.20 |
Cardiac function | Normal TV and MV, RV/LV SF > 0.28, biphasic diastolic filling | Holosystolic TR or RV/LV SF < 0.28 | Holosystolic MR or monophasic diastolic filling |
Arterial umbilical Doppler | Positive EDV | UA AEDV | UA REDV |
Venous Doppler UV and DV | Non-pulsatile UV and normal DV | Non-pulsatile UV and negative A-wave in DV | Pulsatile UV |
Baseline Characteristics | Affected Fetuses (n = 76) | Unaffected Fetuses (n = 302) | p-Value |
---|---|---|---|
Maternal age (year) | 27.9 ± 6.3 | 28.9 ± 5.9 | 0.180 # |
Gestational age at ultrasound examination (weeks) | 18.8 ± 1.8 | 18.9 ± 1.4 | 0.426 # |
Biparietal diameter (cm) | 4.17 ± 0.46 | 4.25 ± 0.38 | 0.157 # |
Parity (missing data in 32 cases) | 0.523 ## | ||
| 39 | 142 | |
| 31 | 134 | |
Hemoglobin levels (g/dL) | 5.8 ± 1.7 | 10.4 ± 1.4 | <0.001 * |
Cardiac Parameters | Affected Fetuses (n = 76) | Unaffected Fetuses (n = 302) | p-Value |
---|---|---|---|
CVP score: median (IQR) | 8 (2) | 10 (1) | <0.001 * |
Cardiac–thoracic diameter ratio (CTR) | 0.61 ± 0.07 | 0.49 ± 0.05 | <0.001 # * |
Cardiac–thoracic area ratio (CTAR) | 0.40 ± 0.06 | 0.28 ± 0.04 | <0.001 # * |
Global sphericity index (GSI) | 1.14 ± 0.27 | 1.26 ± 0.08 | <0.001 # * |
Left Tei index | 0.56 ± 0.10 | 0.49 ± 0.09 | <0.001 # * |
Right Tei index | 0.57 ± 0.12 | 0.51 ± 0.09 | <0.001 # * |
Left ventricular shortening fraction | 40.02 ± 12.07 | 42.49 ± 12.76 | 0.129 # |
Right ventricular shortening fraction | 35.91 ± 9.66 | 39.91 ± 9.06 | 0.001 # * |
Umbilical artery pulsatility index median (IQR) | 1.38 (0.44) | 1.29 (0.27) | 0.054 ## |
The CVP Score: Cutoff Points | Affected (n = 76) | Unaffected (n = 302) | Sensitivity, % (95% CI) | Specificity, % (95% CI) | PPV, % (95% CI) | NPV, % (95% CI) |
---|---|---|---|---|---|---|
CVP ≤ 9 | 70 | 8 | 92.1 (86–98.2) | 97.4 (95.5–99.2) | 89.7 (83.0–96.5) | 98.0 (94.9–100) |
CVP ≤ 8 | 40 | 0 | 52.6 (41.4–63.9) | 100 (100–100) | 100 (100–100) | 89.3 (79.8–98.9) |
CVP ≤ 7 | 24 | 0 | 31.6 (21.1–42) | 100 (100–100) | 100 (100–100) | 85.3 (71.1–99.5) |
CVP ≤ 6 | 6 | 0 | 7.9 (1.8–14) | 100 (100–100) | 100 (100–100) | 81.2 (49.9–100) |
Abnormal Parameters of CVP Score (Score 0 or 1) | Affected (n = 76) | Unaffected (n = 302) | Sensitivity, % (95% CI) | Specificity, % (95% CI) | PPV, % (95% CI) | NPV, % (95% CI) |
---|---|---|---|---|---|---|
Fetal hydrops | 26 | 0 | 34.2 (23.5–44.9) | 100 (100–100) | 100 (100–100) | 85.8 (72.4–99.2) |
Cardiomegaly | 68 | 6 | 89.5 (82.6–96.4) | 98.0 (96.4–99.6) | 91.9 (85.7–98.1) | 97.4 (93.7–100) |
Cardiac function | 18 | 2 | 23.7 (14.1–33.2) | 99.3 (98.4–100) | 90 (76.9–100) | 83.8 (67.7–99.9) |
Arterial umbilical Doppler | 4 | 0 | 5.3 (0.2–10.3) | 100 (100–100) | 100 (100–100) | 80.7 (42.1–100) |
Venous Doppler UV and DV | 4 | 0 | 5.3 (0.2–10.3) | 100 (100–100) | 100 (100–100) | 80.7 (42.1–100) |
Combined hydrops and cardiomegaly | 70 | 6 | 92.1 (86.0–98.2) | 98.0 (96.4–99.6) | 92.1 (86.0–98.2) | 98 (94.9–100) |
CVP Component | Fetal Hydrops | p-Value | |
---|---|---|---|
Presence (n: 26) | Absence (n: 50) | ||
Cardiac–thoracic area ratio (CTAR) (mean ±SD) | 0.41 ± 0.07 | 0.40 ± 0.06 | 0.375 * |
Abnormal cardiac function | 8 (30.8%) | 10 (20.0%) | 0.295 ** |
Abnormal arterial umbilical Doppler | 3 (11.5%) | 1 (2.0%) | 0.113 # |
Abnormal venous Doppler | 2 (7.7%) | 2 (4.0%) | 0.603 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hantrakun, P.; Srisupundit, K.; Tongsong, T. Fetal Cardiovascular Profile Score (CVPs) in Fetal Anemia, Using Fetal Hemoglobin Bart’s Disease at Mid-Pregnancy as a Study Model. Diagnostics 2025, 15, 2303. https://doi.org/10.3390/diagnostics15182303
Hantrakun P, Srisupundit K, Tongsong T. Fetal Cardiovascular Profile Score (CVPs) in Fetal Anemia, Using Fetal Hemoglobin Bart’s Disease at Mid-Pregnancy as a Study Model. Diagnostics. 2025; 15(18):2303. https://doi.org/10.3390/diagnostics15182303
Chicago/Turabian StyleHantrakun, Panisa, Kasemsri Srisupundit, and Theera Tongsong. 2025. "Fetal Cardiovascular Profile Score (CVPs) in Fetal Anemia, Using Fetal Hemoglobin Bart’s Disease at Mid-Pregnancy as a Study Model" Diagnostics 15, no. 18: 2303. https://doi.org/10.3390/diagnostics15182303
APA StyleHantrakun, P., Srisupundit, K., & Tongsong, T. (2025). Fetal Cardiovascular Profile Score (CVPs) in Fetal Anemia, Using Fetal Hemoglobin Bart’s Disease at Mid-Pregnancy as a Study Model. Diagnostics, 15(18), 2303. https://doi.org/10.3390/diagnostics15182303