Diagnostics, Efficacy, and Safety of Immunomodulatory and Anti-Fibrotic Treatment for Interstitial Lung Disease Associated with Systemic Scleroderma (SSc-ILD)
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Diagnostic and Prognostic Tools
3.2. Drugs Used in Interstitial Lung Disease Associated with Systemic Scleroderma
3.2.1. Nintedanib
3.2.2. Cyclophosphamide
3.2.3. Mycophenolate Mofetil
3.2.4. Tocilizumab
3.2.5. Rituximab
3.2.6. Pirfenidone
3.2.7. Riociguat
4. Discussion
5. Conclusions
6. Limitations of This Review
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SSc | Systemic Scleroderma |
ILD | Interstitial Lung Disease |
PAH | Pulmonary Arterial Hypertension |
ATA | Anti-Topoisomerase Antibodies |
FVC | Forced Vital Capacity |
CYC | Cyclophosphamide |
MMF | Mycophenolate Mocofetil |
mRSS | Modified Rodnan Scale |
HCRT | High-Resolution Computer Tomography |
SGRQ | St. George’s Respiratory Questionnaire |
CRP | C-Reactive Protein |
CRPM | C-Reactive Protein Metabolite (CRPM) |
IL-6 | Interleukin 6 |
DMARDs | Disease-Modifying Antirheumatic Drugs |
PFTs | Pulmonary Function Tests |
DLCO | Diffusing Capacity of the Lung for Carbon Monoxide |
NSIP | Nonspecific Interstitial Pneumonia |
UIP | Usual Interstitial Pneumonia |
CII | Computer-Integrated Index |
MLA | Mean Lung Attenuation |
SP-D | Surfactant Protein D |
CCL18 | C Motif Chemokine Ligand 18 |
COMP | Cartilage Oligomeric Matrix Protein |
Pro-C3 | Propeptide of Type III Collagen |
ATA | Anti-Topoisomerase I Antibody |
ACA | Anti-Centromere Antibody |
anti-RNAP III | Anti–RNA Polymerase III Antibody |
U3-RNP | U3 Ribonucleoprotein Antibody |
RTX | Rituximab |
References
- Adigun, R.; Goyal, A.; Hariz, A. Systemic Sclerosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Odonwodo, A.; Badri, T.; Hariz, A. Scleroderma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Meier, C.; Freiburghaus, K.; Bovet, C.; Schniering, J.; Allanore, Y.; Distler, O.; Nakas, C.; Maurer, B. Serum metabolites as biomarkers in systemic sclerosis-associated interstitial lung disease. Sci. Rep. 2020, 10, 21912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khanna, D.; Caldron, P.; Martin, R.W.; Kafaja, S.; Spiera, R.; Shahouri, S.; Shah, A.; Hsu, V.; Ervin, J.; Simms, R.; et al. Adipose-Derived Regenerative Cell Transplantation for the Treatment of Hand Dysfunction in Systemic Sclerosis: A Randomized Clinical Trial. Arthritis Rheumatol. 2022, 74, 1399–1408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yakut, T.; Balcan, B.; Karakurt, S.; Direskeneli, H.; Yalcinkaya, Y.; Peker, Y. Impact of concomitant obstructive sleep apnea on pulmonary involvement and main pulmonary artery diameter in adults with scleroderma. Sleep Breath. 2021, 25, 135–143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lui, J.K.; Bosch, N.A.; Gillmeyer, K.R.; Reardon, C.C. Novel Therapeutic Approaches for Pulmonary Manifestations of Systemic Sclerosis. Am. J. Respir. Crit. Care Med. 2020, 202, 878–880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roofeh, D.; Lin, C.J.F.; Goldin, J.; Kim, G.H.; Furst, D.E.; Denton, C.P.; Huang, S.; Khanna, D.; The focuSSced Investigators. Tocilizumab Prevents Progression of Early Systemic Sclerosis-Associated Interstitial Lung Disease. Arthritis Rheumatol. 2021, 73, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheng, X.R.; Gao, X.; Schiffman, C.; Jiang, J.; Ramalingam, T.R.; Lin, C.J.F.; Khanna, D.; Neighbors, M. Biomarkers of fibrosis, inflammation, and extracellular matrix in the phase 3 trial of tocilizumab in systemic sclerosis. Clin. Immunol. 2023, 254, 109695. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, E.R.; Kreuter, M.; Hoffmann-Vold, A.M.; Wijsenbeek, M.; Smith, V.; Khanna, D.; Denton, C.P.; Wuyts, W.A.; Miede, C.; Alves, M.; et al. Dyspnoea and cough in patients with systemic sclerosis-associated interstitial lung disease in the SENSCIS trial. Rheumatology 2022, 61, 4397–4408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Distler, O.; Highland, K.B.; Gahlemann, M.; Azuma, A.; Fischer, A.; Mayes, M.D.; Raghu, G.; Sauter, W.; Girard, M.; Alves, M.; et al. Nintedanib for Systemic Sclerosis-Associated Interstitial Lung Disease. N. Engl. J. Med. 2019, 380, 2518–2528. [Google Scholar] [CrossRef] [PubMed]
- Seibold, J.R.; Maher, T.M.; Highland, K.B.; Assassi, S.; Azuma, A.; Hummers, L.K.; Costabel, U.; von Wangenheim, U.; Kohlbrenner, V.; Gahlemann, M.; et al. Safety and tolerability of nintedanib in patients with systemic sclerosis-associated interstitial lung disease: Data from the SENSCIS trial. Ann. Rheum. Dis. 2020, 79, 1478–1484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khanna, D.; Maher, T.M.; Volkmann, E.R.; Allanore, Y.; Smith, V.; Assassi, S.; Kreuter, M.; Hoffmann-Vold, A.M.; Kuwana, M.; Stock, C.; et al. Effect of nintedanib in patients with systemic sclerosis-associated interstitial lung disease and risk factors for rapid progression. RMD Open 2023, 9, e002859. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuwana, M.; Allanore, Y.; Denton, C.P.; Distler, J.H.W.; Steen, V.; Khanna, D.; Matucci-Cerinic, M.; Mayes, M.D.; Volkmann, E.R.; Miede, C.; et al. Nintedanib in Patients With Systemic Sclerosis-Associated Interstitial Lung Disease: Subgroup Analyses by Autoantibody Status and Modified Rodnan Skin Thickness Score. Arthritis Rheumatol. 2022, 74, 518–526. [Google Scholar] [CrossRef]
- Azuma, A.; Chung, L.; Behera, D.; Chung, M.; Kondoh, Y.; Ogura, T.; Okamoto, M.; Swarnakar, R.; Zeng, X.; Zou, H.; et al. Efficacy and safety of nintedanib in Asian patients with systemic sclerosis-associated interstitial lung disease: Subgroup analysis of the SENSCIS trial. Respir. Investig. 2021, 59, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Denton, C.P.; Goh, N.S.; Humphries, S.M.; Maher, T.M.; Spiera, R.; Devaraj, A.; Ho, L.; Stock, C.; Erhardt, E.; Alves, M.; et al. Extent of fibrosis and lung function decline in patients with systemic sclerosis and interstitial lung disease: Data from the SENSCIS trial. Rheumatology 2023, 62, 1870–1876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maher, T.M.; Mayes, M.D.; Kreuter, M.; Volkmann, E.R.; Aringer, M.; Castellvi, I.; Cutolo, M.; Stock, C.; Schoof, N.; Alves, M.; et al. Effect of Nintedanib on Lung Function in Patients With Systemic Sclerosis-Associated Interstitial Lung Disease: Further Analyses of a Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol. 2021, 73, 671–676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Highland, K.B.; Distler, O.; Kuwana, M.; Allanore, Y.; Assassi, S.; Azuma, A.; Bourdin, A.; Denton, C.P.; Distler, J.H.W.; Hoffmann-Vold, A.M.; et al. Efficacy and safety of nintedanib in patients with systemic sclerosis-associated interstitial lung disease treated with mycophenolate: A subgroup analysis of the SENSCIS trial. Lancet Respir. Med. 2021, 9, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Sampaio-Barros, P.D.; Medeiros-Ribeiro, A.C.; Luppino-Assad, A.P.; Miossi, R.; da Silva, H.C.; Yuki, E.F.V.N.; Pasoto, S.G.; Saad, C.G.S.; Silva, C.A.; Kupa, L.V.K.; et al. SARS-CoV-2 vaccine in patients with systemic sclerosis: Impact of disease subtype and therapy. Rheumatology 2022, 61, SI169–SI174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bocchino, M.; Bruzzese, D.; D’Alto, M.; Argiento, P.; Borgia, A.; Capaccio, A.; Romeo, E.; Russo, B.; Sanduzzi, A.; Valente, T.; et al. Performance of a new quantitative computed tomography index for interstitial lung disease assessment in systemic sclerosis. Sci. Rep. 2019, 9, 9468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Volkmann, E.R.; Tashkin, D.P.; Sim, M.; Li, N.; Khanna, D.; Roth, M.D.; Clements, P.J.; Hoffmann-Vold, A.M.; Furst, D.E.; Kim, G.; et al. Cyclophosphamide for Systemic Sclerosis-related Interstitial Lung Disease: A Comparison of Scleroderma Lung Study I and II. J. Rheumatol. 2019, 46, 1316–1325. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoa, S.; Bernatsky, S.; Steele, R.J.; Baron, M.; Hudson, M.; Canadian Scleroderma Research Group. Association between immunosuppressive therapy and course of mild interstitial lung disease in systemic sclerosis. Rheumatology 2020, 59, 1108–1117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wielosz, E.; Dryglewska, M.; Górak, A.; Łyś, E.; Majdan, M. Arterial hypertension in systemic sclerosis. Postepy Dermatol. Alergol. 2022, 39, 865–871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nihtyanova, S.I.; Sari, A.; Harvey, J.C.; Leslie, A.; Derrett-Smith, E.C.; Fonseca, C.; Ong, V.H.; Denton, C.P. Using Autoantibodies and Cutaneous Subset to Develop Outcome-Based Disease Classification in Systemic Sclerosis. Arthritis Rheumatol. 2020, 72, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Ghuman, A.; Khanna, D.; Lin, C.J.F.; Furst, D.E.; Raghu, G.; Martinez, F.J.; Zucchetto, M.; Huang, S.; Jennings, A.; Nihtyanova, S.I.; et al. Prognostic and predictive markers of systemic sclerosis-associated interstitial lung disease in a clinical trial and long-term observational cohort. Rheumatology 2024, 63, 472–481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bruni, C.; Tashkin, D.P.; Steen, V.; Allanore, Y.; Distler, O.; Grotts, J.; Matucci-Cerinic, M.; Furst, D.E.; EUSTAR, SLS I & SLS II Centres Collaborators. Intravenous versus oral cyclophosphamide for lung and/or skin fibrosis in systemic sclerosis: An indirect comparison from EUSTAR and randomised controlled trials. Clin. Exp. Rheumatol. 2020, 38 (Suppl. S125), 161–168. [Google Scholar] [PubMed]
- Khanna, D.; Allanore, Y.; Denton, C.P.; Kuwana, M.; Matucci-Cerinic, M.; Pope, J.E.; Atsumi, T.; Bečvář, R.; Czirják, L.; Hachulla, E.; et al. Riociguat in patients with early diffuse cutaneous systemic sclerosis (RISE-SSc): Randomised, double-blind, placebo-controlled multicentre trial. Ann. Rheum. Dis. 2020, 79, 618–625. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matteson, E.L.; Aringer, M.; Burmester, G.R.; Mueller, H.; Moros, L.; Kolb, M. Effect of nintedanib in patients with progressive pulmonary fibrosis associated with rheumatoid arthritis: Data from the INBUILD trial. Clin. Rheumatol. 2023, 42, 2311–2319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maher, T.M.; Bourdin, A.; Volkmann, E.R.; Vettori, S.; Distler, J.H.W.; Alves, M.; Stock, C.; Distler, O. Decline in forced vital capacity in subjects with systemic sclerosis-associated interstitial lung disease in the SENSCIS trial compared with healthy reference subjects. Respir. Res. 2022, 23, 178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roofeh, D.; Lescoat, A.; Khanna, D. Treatment for systemic sclerosis-associated interstitial lung disease. Curr. Opin. Rheumatol. 2021, 33, 240–248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Volkmann, E.R.; Varga, J. Emerging targets of disease-modifying therapy for systemic sclerosis. Nat. Rev. Rheumatol. 2019, 15, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Handa, R. Management of Connective Tissue Disease-related Interstitial Lung Disease. Curr. Pulmonol. Rep. 2022, 11, 86–98. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perelas, A.; Silver, R.M.; Arrossi, A.V.; Highland, K.B. Systemic sclerosis-associated interstitial lung disease. Lancet Respir. Med. 2020, 8, 304–320. [Google Scholar] [CrossRef] [PubMed]
- Mankikian, J.; Caille, A.; Reynaud-Gaubert, M.; Agier, M.S.; Bermudez, J.; Bonniaud, P.; Borie, R.; Brillet, P.Y.; Cadranel, J.; Court-Fortune, I.; et al. Rituximab and mycophenolate mofetil combination in patients with interstitial lung disease (EVER-ILD): A double-blind, randomised, placebo-controlled trial. Eur. Respir. J. 2023, 61, 2202071. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, M.; Takehara, K.; Tanaka, Y.; Yamashita, K.; Katsumata, K.; Takata, M.; Shima, Y. Efficacy and safety of tocilizumab in Japanese patients with systemic sclerosis and associated interstitial lung disease: A subgroup analysis of a global, randomised, controlled Phase 3 trial. Mod. Rheumatol. 2024, 34, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Denton, C.P.; Lin, C.J.F.; van Laar, J.M.; Frech, T.M.; Anderson, M.E.; Baron, M.; Chung, L.; Fierlbeck, G.; Lakshminarayanan, S.; et al. Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: Results from the open-label period of a phase II randomised controlled trial (faSScinate). Ann. Rheum. Dis. 2018, 77, 212–220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klinger, J.R.; Chakinala, M.M.; Langleben, D.; Rosenkranz, S.; Sitbon, O. Riociguat: Clinical research and evolving role in therapy. Br. J. Clin. Pharmacol. 2021, 87, 2645–2662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O’Reilly, S. Emerging therapeutic targets in systemic sclerosis. J. Mol. Med. 2024, 102, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Matteson, E.L.; Kelly, C.; Distler, J.H.W.; Hoffmann-Vold, A.M.; Seibold, J.R.; Mittoo, S.; Dellaripa, P.F.; Aringer, M.; Pope, J.; Distler, O.; et al. Nintedanib in Patients with Autoimmune Disease-Related Progressive Fibrosing Interstitial Lung Diseases: Subgroup Analysis of the INBUILD Trial. Arthritis Rheumatol. 2022, 74, 1039–1047. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cottin, V.; Martinez, F.J.; Jenkins, R.G.; Belperio, J.A.; Kitamura, H.; Molina-Molina, M.; Tschoepe, I.; Coeck, C.; Lievens, D.; Costabel, U. Safety and tolerability of nintedanib in patients with progressive fibrosing interstitial lung diseases: Data from the randomized controlled INBUILD trial. Respir. Res. 2022, 23, 85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cottin, V.; Richeldi, L.; Rosas, I.; Otaola, M.; Song, J.W.; Tomassetti, S.; Wijsenbeek, M.; Schmitz, M.; Coeck, C.; Stowasser, S.; et al. Nintedanib and immunomodulatory therapies in progressive fibrosing interstitial lung diseases. Respir. Res. 2021, 22, 84. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoffmann-Vold, A.M.; Fretheim, H.; Halse, A.K.; Seip, M.; Bitter, H.; Wallenius, M.; Garen, T.; Salberg, A.; Brunborg, C.; Midtvedt, Ø.; et al. Tracking Impact of Interstitial Lung Disease in Systemic Sclerosis in a Complete Nationwide Cohort. Am. J. Respir. Crit. Care Med. 2019, 200, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.P.; Ray, A.; Chatterjee, M.; Mukherjee, A.; Sircar, G.; Ghosh, P. Rituximab in the treatment of systemic sclerosis-related interstitial lung disease: A systematic review and meta-analysis. Rheumatology 2021, 60, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Maher, T.M.; Tudor, V.A.; Saunders, P.; Gibbons, M.A.; Fletcher, S.V.; Denton, C.P.; Hoyles, R.K.; Parfrey, H.; Renzoni, E.A.; Kokosi, M.; et al. Rituximab versus intravenous cyclophosphamide in patients with connective tissue disease-associated interstitial lung disease in the UK (RECITAL): A double-blind, double-dummy, randomised, controlled, phase 2b trial. Lancet Respir. Med. 2023, 11, 45–54. [Google Scholar] [CrossRef]
- Ebata, S.; Yoshizaki, A.; Oba, K.; Kashiwabara, K.; Ueda, K.; Uemura, Y.; Watadani, T.; Fukasawa, T.; Miura, S.; Yoshizaki-Ogawa, A.; et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): Open-label extension of a double-blind, investigators-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. 2022, 4, e546–e555. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.R.; Bernstein, E.J.; Bolster, M.B.; Chung, J.H.; Danoff, S.K.; George, M.D.; Khanna, D.; Guyatt, G.; Mirza, R.D.; Aggarwal, R.; et al. 2023 American College of Rheumatology (ACR)/American College of Chest Physicians (CHEST) Guideline for the Treatment of Interstitial Lung Disease in People with Systemic Autoimmune Rheumatic Diseases. Arthritis Care Res. 2024, 76, 1051–1069. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Tseng, C.H.; Farmani, N.; Steen, V.; Furst, D.E.; Clements, P.J.; Roth, M.D.; Goldin, J.; Elashoff, R.; Seibold, J.R.; et al. Clinical course of lung physiology in patients with scleroderma and interstitial lung disease: Analysis of the Scleroderma Lung Study Placebo Group. Arthritis Rheum. 2011, 63, 3078–3085. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roth, M.D.; Tseng, C.H.; Clements, P.J.; Furst, D.E.; Tashkin, D.P.; Goldin, J.G.; Khanna, D.; Kleerup, E.C.; Li, N.; Elashoff, D.; et al. Predicting treatment outcomes and responder subsets in scleroderma-related interstitial lung disease. Arthritis Rheum. 2011, 63, 2797–2808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wind, S.; Schmid, U.; Freiwald, M.; Marzin, K.; Lotz, R.; Ebner, T.; Stopfer, P.; Dallinger, C. Clinical Pharmacokinetics and Pharmacodynamics of Nintedanib. Clin. Pharmacokinet. 2019, 58, 1131–1147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuwana, M.; Azuma, A. Nintedanib: New indication for systemic sclerosis-associated interstitial lung disease. Mod. Rheumatol. 2020, 30, 225–231, Erratum in Mod. Rheumatol. 2020, 30, oiii. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.F.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N. Engl. J. Med. 2019, 381, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Wollin, L.; Distler, J.H.; Denton, C.P.; Gahlemann, M. Rationale for the evaluation of nintedanib as a treatment for systemic sclerosis-associated interstitial lung disease. J. Scleroderma Relat. Disord. 2019, 4, 212–218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wells, A.U.; Flaherty, K.R.; Brown, K.K.; Inoue, Y.; Devaraj, A.; Richeldi, L.; Moua, T.; Crestani, B.; Wuyts, W.A.; Stowasser, S.; et al. Nintedanib in patients with progressive fibrosing interstitial lung diseases-subgroup analyses by interstitial lung disease diagnosis in the INBUILD trial: A randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Respir. Med. 2020, 8, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Allanore, Y.; Khanna, D.; Smith, V.; Aringer, M.; Hoffmann-Vold, A.M.; Kuwana, M.; Merkel, P.A.; Stock, C.; Sambevski, S.; Denton, C.P.; et al. Effects of nintedanib in patients with limited cutaneous systemic sclerosis and interstitial lung disease. Rheumatology 2024, 63, 639–647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crestani, B.; Huggins, J.T.; Kaye, M.; Costabel, U.; Glaspole, I.; Ogura, T.; Song, J.W.; Stansen, W.; Quaresma, M.; Stowasser, S.; et al. Long-term safety and tolerability of nintedanib in patients with idiopathic pulmonary fibrosis: Results from the open-label extension study, INPULSIS-ON. Lancet Respir. Med. 2019, 7, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Barnes, H.; Holland, A.E.; Westall, G.P.; Goh, N.S.; Glaspole, I.N. Cyclophosphamide for connective tissue disease-associated interstitial lung disease. Cochrane Database Syst. Rev. 2018, 1, CD010908. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tashkin, D.P.; Roth, M.D.; Clements, P.J.; Furst, D.E.; Khanna, D.; Kleerup, E.C.; Goldin, J.; Arriola, E.; Volkmann, E.R.; Kafaja, S.; et al. Sclerodema Lung Study II Investigators. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): A randomised controlled, double-blind, parallel group trial. Lancet Respir. Med. 2016, 4, 708–719. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, S.R.; Bernstein, E.J.; Bolster, M.B.; Chung, J.H.; Danoff, S.K.; George, M.D.; Khanna, D.; Guyatt, G.; Mirza, R.D.; Aggarwal, R.; et al. 2023 American College of Rheumatology (ACR)/American College of Chest Physicians (CHEST) Guideline for the Screening and Monitoring of Interstitial Lung Disease in People with Systemic Autoimmune Rheumatic Diseases. Arthritis Rheumatol. 2024, 76, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Spino, C.; Bernstein, E.; Goldin, J.; Tashkin, D.; Roth, M.; On Behalf of SLS III Investigators. Combination Therapy of Mycophenolate Mofetil and Pirfenidone vs. Mycophenolate Alone: Results from the Scleroderma Lung Study III [abstract]. Arthritis Rheumatol. 2022, 74 (Suppl. S9). Available online: https://acrabstracts.org/abstract/combination-therapy-of-mycophenolate-mofetil-and-pirfenidone-vs-mycophenolate-alone-results-from-the-scleroderma-lung-study-iii/ (accessed on 25 August 2025).
- Raghu, G.; Montesi, S.B.; Silver, R.M.; Hossain, T.; Macrea, M.; Herman, D.; Barnes, H.; Adegunsoye, A.; Azuma, A.; Chung, L.; et al. Treatment of systemic sclerosis–associated interstitial lung disease: Evidence-based recommendations. An official American Thoracic Society clinical practice guideline. Am. J. Respir. Crit. Care Med. 2024, 209, 423–445. [Google Scholar] [CrossRef]
Therapeutic Group | Type of Drug | Study | Year | n | Brief Description of Methods and Results | Summary of Results |
---|---|---|---|---|---|---|
Tyrosine kinase inhibitor | Nintedanib | Distler et al. [10] Seibold et al. [11] Khanna et al. [12] Kuwana et al. [13] Volkmann et al. [9] Lui et al. [6] Azuma et al. [14] Denton et al. [15] Maher et al. [16] Highland et al. [17] | 2019 2020 2022 2022 2022 2020 2020 2023 2021 2021 | n = 576 n = 576 n = 575 n = 576 n = 575 n = 566 n = 819 n = 576 n = 576 n = 576 | Double-blind, placebo-controlled study with 576 patients (299 with diffuse SSc, 277 on MMF). Nintedanib reduced the decline in FVC (52.4 mL/year vs. 93.3 mL/year in placebo). No significant skin improvements on mRSS. Diarrhea was the most common adverse reaction (75.7%). Focused on safety and tolerability. Found consistent adverse effects across age, sex, race, and weight. Emphasized the importance of dose optimization. Studied effect on patients with rapid progression risk factors. Found greater FVC benefit in high-risk patients, but effects consistent regardless of risk factors. Assessed impact based on ATA status. Greater reduction in FVC decline in ATA-negative patients (57.2 mL/year vs. 29.9 mL/year). Analyzed cough/dyspnea effects. Greater FVC benefit in patients without initial symptoms, though differences were not statistically significant. Smaller decrease in 12-month FVC (40.9 mL/year). No effect on skin involvement. Compared Asian and non-Asian patients. Significant FVC decline reduction in both groups. Asians showed higher adverse event rates. Evaluated HRCT fibrosis severity at baseline vs. FVC after 12 months. Found no correlation between baseline severity and treatment benefit. Assessed HR for absolute FVC reductions > 5% and >10%. HR for >5% was 83%; for >10%, HR was 64%. Combined nintedanib with MMF. Adjusted FVC decline 26.3 mL/year less vs. MMF + placebo. Higher SAE rates but effective in reducing ILD progression. | Slows FVC decline and progression of pulmonary fibrosis. No significant skin benefits. Manageable side effects. Dose adjustment reduces side effects and improves patient adherence. Effective in slowing FVC decline in rapid progression cases and general population. Nintedanib may be more effective in ATA-negative patients. Reduces FVC decline regardless of cough/dyspnea symptoms. Preserves lung function, no impact on skin symptoms. Benefits Asian patients significantly; higher adverse events observed. Benefit independent of initial fibrosis severity. Predictable and substantial preservation of lung function. Effective in combination therapy; additional research needed for long-term effects. |
Biological drugs | Tocilizumab | Sheng XR et al. [8] Roofeh et al. [29] Hoffmann-Vold et al. [41] | 2023 2021 2022 | n = 214 n = 556 n = 575 | Investigated serum biomarkers. Tocilizumab inhibited macrophage activity but did not affect TGF-β pathways. Biomarkers such as CRP and IL-6 showed prognostic tendencies. Evaluated HRCT and FVC after 48 weeks. Tocilizumab reduced pulmonary fibrosis progression and preserved lung function. Highlighted early diagnosis of ILD for treatment initiation. | Potentially useful for early-stage immunoinflammatory fibrosis. Further multicenter studies needed. Effective in early-stage dc-SSc with lung involvement. Early detection and treatment crucial for better outcomes. |
Rituximab | Goswami RP et al. [42] Maher et al. [43] Ebata S et al. [44] Volkmann et al. [30] Ahmed et al. [31] | 2021 2023 2021 2018 2022 | n = 575 n = 145 n = 80 n = 148 n = 145 | A meta-analysis of 20 studies (575 patients) showed that rituximab improved FVC and DLCO at 6 and 12 months, with a lower risk of infections compared to other immunosuppressive therapies. The RECITAL trial showed that rituximab was as effective as cyclophosphamide in improving FVC in CTD-ILD, but with fewer adverse events and lower steroid use. Favorable safety profile and no reported fatalities during the study period. Two-year study on oral CYC. FVC improved in the first year but plateaued in the second. Observed SAEs like hematuria, anemia, and leukopenia. Individualized treatment based on disease progression. | Rituximab improves lung function and skin thickness in SSc-ILD with low adverse effects, while pirfenidone, alone or with mycophenolate, quickly enhances lung function and quality of life; both appear promising for progressive disease. | |
Riocyguat | Dinesh Khanna [26] | 2020 | n = 121 | Assessed FVC in 121 patients after 52 weeks. FVC decline less in riociguat group (2.7%) vs. placebo (7.6%). High incidence of adverse effects. | Promising results for ILD; further studies needed for broader use. | |
Immunosuppressive drugs | Mycophenolate mofetil | Lui et al. [6] Highland et al. [17] Sampaio-Barros et al. [18] | 2020 2021 2022 | n = 576 n = 819 n = 204 | Moderate-stage SSc-ILD patients saw FVC improvements after one year. Early implementation suggested greatest benefits. Combination with nintedanib showed less FVC decline vs. nintedanib or MMF alone. Common side effects included diarrhea and nausea. Assessed seroconversion rates after COVID-19 vaccination. MMF associated with reduced antibody response. | Effective in moderate SSc-ILD; early treatment recommended. Safe and effective combination therapy. Further research on long-term outcomes needed MMF decreases vaccine efficacy; further studies needed to optimize vaccination strategies. |
Cyclophosphamide | Bosch et al. [6] Bruni et al. [25] Volkmann et al. [20] | 2020 2020 2019 | n = 576 n = 302 n = 148 | Compared FVC improvement across SSc-ILD stages. Mild cases benefitted most. Compared IV and PO administration. Found no major efficacy differences but higher side effects in oral group. Two-year study on oral CYC. FVC improved in the first year but plateaued in the second. Observed SAEs like hematuria, anemia, and leukopenia. | Effective in early-stage disease; moderate benefit in advanced stages. IV administration preferred due to lower side effects. Short-term efficacy observed; long-term benefit unclear. | |
Rituximab | Roofeh et al. [29] Goswami R.P. et al. [42] | 2021 2021 | n = 556 n = 556 | Evaluated HRCT and FVC after 48 weeks. Ritixumab reduced pulmonary fibrosis progression and preserved lung function. | Rrituximab treatment led to a significant improvement in FVC and mRSS compared to the control group over a 12-month period | |
Antifibrotic drugs | Pirfenidone | Dinesh Khanna [45] | 2022 | n = 51 | The Scleroderma Lung Study III enrolled 51 patients to compare mycophenolate mofetil (MMF) alone versus MMF combined with pirfenidone in SSc-ILD. | Scleroderma Lung Study III with 51 patients showed faster FVC improvement during the first 6 months with MMF + pirfenidone therapy, with good treatment tolerability. |
Tool/Marker Type | Method | Application | Examples/Indicators | Reference |
---|---|---|---|---|
Diagnostic tools | HRCT (High-Resolution Computed Tomography) | Gold standard for structural lung assessment | Reticulation, honeycombing, NSIP vs. UIP patterns, fibrosis extent | Elizabeth R Volkmann [9] Christopher P Denton [15] Marialuisa Bocchino [19] Kristin B Highland [17] Anna-Maria Hoffmann-Vold [41] Khanna D [46] Roth MD [47] |
Pulmonary Function Tests (PFTs) | Functional evaluation of lung capacity and gas exchange | ↓ FVC (restrictive pattern), ↓ DLCO (diffusion impairment) | X Rebecca Sheng [9] Christopher P Denton [15] Abeer Ghuman [24] | |
Markers supporting the assessment of disease activity and prognosis | Metabolomics | Identification of early biomarkers of ILD presence and progression | L-leucine, isoleucine, xanthosine, AMP | Chantal Florence Meier [3] |
CII (Computer-Integrated Index) | Quantitative assessment of HRCT findings, even without clinical symptoms | Based on MLA, skewness, and kurtosis; correlates with DLCO and inflammation markers | Marialuisa Bocchino [19] | |
Inflammatory and Immunological Biomarkers | Evaluation of disease activity and fibrotic/inflammatory profile | IL-6, CRP, CRPM, SP-D, CCL18, periostin, COMP, Pro-C3 | X Rebecca Sheng [8] Abeer Ghuman [24] | |
Autoantibody Profiling | Phenotype stratification and prognosis | ATA, ACA, anti-RNAP III, U3-RNP—associated with ILD risk and organ complications | Svetlana I Nihtyanova [23] Abeer Ghuman [24] |
Drug | Mechanism/Characteristics | Studies/Authors | Key Treatment Outcomes | Side Effects and Notes | References |
---|---|---|---|---|---|
Nintedanib | Tyrosine kinase inhibitor, inhibits processes leading to lung fibrosis and inflammation, affects fibroblast proliferation and ECM deposition | Distler et al. (SENSCIS), Khanna et al., Seibold JR, Kuwana M., Volkmann ER, Lui JK, Azuma A., Denton CP, Maher TM, Highland KB | Significantly slows FVC decline (e.g., 41 mL/year in SENSCIS); more effective in patients with rapid progression; can be safely combined with MMF | Most common side effect: diarrhea (75.7%); higher serious adverse events vs. placebo (16.6% vs. 8.7%) | [6,9,10,11,12,13,14,15,16,17,48,49,50,51,52,53,54] |
Cyclophosphamide (CYC) | Immunomodulatory drug used in SSc with lung involvement, available IV and oral, inhibits inflammation and disease progression | Lui JK, Roth et al., Khanna et al., Bruni et al., Volkmann ER, Tashkin et al. | Beneficial effect on FVC%, especially in severe disease; no significant difference between IV and oral forms; benefits mainly within first year | Frequent side effects: leukopenia, anemia, hematuria; serious adverse events including deaths (11%) linked to age and comorbiditie | [6,20,25,46,47,55,56] |
Mycophenolate mofetil (MMF) | Immunosuppressant that slows disease progression and improves lung function, often used combined with nintedanib | Lui JK, Highland KB, Sampaio-Barros PD et al. | Positive impact on FVC, especially in early/moderate stages; combination with nintedanib is safe; reduces vaccine responses (e.g., COVID-19 vaccines) | Side effects: diarrhea, nausea, skin ulcers; serious adverse events less common | [6,17,18] |
Tocilizumab | Monoclonal antibody blocking IL-6 receptor, immunomodulatory, may slow early lung fibrosis progression | Sheng XR et al., Roofeh D. et al., Hoffmann-Vold AM | Slows FVC decline (e.g., −0.6% vs −4.0% placebo); potentially beneficial in early disease stage | Good safety profile, further studies needed, no effect on TGF-β and some inflammatory pathways | [7,8,41] |
Rituximab (RTX) | Anti-CD20 monoclonal antibody; selective depletion of B lymphocytes, minimal effect on T cells | Goswami RP et al.; Maher et al.; Ebata S et al.; Roofeh D. et al.; Volkmann et al.; Ahmed et al. | Meta-analysis: FVC +4.5% (6 mo), +7.0% (12 mo); DLCO +3.5% and +4.1%; reduction in mRSS. RECITAL: similar FVC improvement as CYC at 24 weeks, no superiority of RTX. DESIRES: sustained mRSS improvement after additional 24 weeks; both early RTX and delayed RTX (after placebo) groups showed significant skin score reduction. Roofeh: improvement in FVC and mRSS vs control (12 mo). Volkmann: stabilization of lung function (2 yrs). Ahmed: skin thickness reduction and lung function stabilization in early diffuse SSc. | Better tolerated than CYC; lower incidence of adverse events (esp. infections); most common were infusion reactions; serious infections rare; in DESIRES, no deaths occurred. Larger multicenter studies still needed. | [29,30,31,33,43,44,58] |
Pirfenidone | Antifibrotic agent; targets fibrotic pathways to slow disease progression | Tashkin DP et al. | Combination (Pirfenidone + MMF) accelerated FVC improvement within 6 months; improved quality of life. After 18 months, differences vs. MMF alone were less pronounced. | Higher rate of adverse events, mostly gastrointestinal (mild to moderate). Long-term safety and efficacy still under investigation. | [45] |
Riociguat | Soluble guanylate cyclase stimulator with hypotensive, anti-inflammatory, and antifibrotic effects (animal studies) | Khanna D et al. | Slows FVC decline (2.7% vs. 7.6% placebo); potential use in ILD patients | Common side effects: nausea, diarrhea, headaches, peripheral edema; further clinical research needed | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piecuch, D.; Hanczyk, E.; Zemsta, K.; Zwoliński, M.; Kopciał, S.; Jońska, J. Diagnostics, Efficacy, and Safety of Immunomodulatory and Anti-Fibrotic Treatment for Interstitial Lung Disease Associated with Systemic Scleroderma (SSc-ILD). Diagnostics 2025, 15, 2243. https://doi.org/10.3390/diagnostics15172243
Piecuch D, Hanczyk E, Zemsta K, Zwoliński M, Kopciał S, Jońska J. Diagnostics, Efficacy, and Safety of Immunomodulatory and Anti-Fibrotic Treatment for Interstitial Lung Disease Associated with Systemic Scleroderma (SSc-ILD). Diagnostics. 2025; 15(17):2243. https://doi.org/10.3390/diagnostics15172243
Chicago/Turabian StylePiecuch, Dawid, Edyta Hanczyk, Katarzyna Zemsta, Michał Zwoliński, Szymon Kopciał, and Joanna Jońska. 2025. "Diagnostics, Efficacy, and Safety of Immunomodulatory and Anti-Fibrotic Treatment for Interstitial Lung Disease Associated with Systemic Scleroderma (SSc-ILD)" Diagnostics 15, no. 17: 2243. https://doi.org/10.3390/diagnostics15172243
APA StylePiecuch, D., Hanczyk, E., Zemsta, K., Zwoliński, M., Kopciał, S., & Jońska, J. (2025). Diagnostics, Efficacy, and Safety of Immunomodulatory and Anti-Fibrotic Treatment for Interstitial Lung Disease Associated with Systemic Scleroderma (SSc-ILD). Diagnostics, 15(17), 2243. https://doi.org/10.3390/diagnostics15172243