Interpreting Venous and Arterial Ulcer Images Through the Grad-CAM Lens: Insights and Implications in CNN-Based Wound Image Classification
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Preprocessing
2.3. Models
2.4. Performance Evaluation
3. Results
3.1. Performance Metrics
3.2. Deep Learning Interpretability with Gradient-Weighted Class Activation Mapping (Grad-CAM), Precision Venous (%) and Precision Arterial (%) Refer to the Accuracy of the Model in Identifying Venous or Arterial Wounds Among All Its Predictions for Each Category
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CNN | Convolutional neural networks |
DCNN | Deep convolutional neural networks |
Grad-CAM | Gradient-weighted Class Activation Mapping |
PAD | Peripheral artery disease |
CVI | Chronic venous insufficiency |
References
- O’Brien, J.F.; Grace, P.A.; Perry, I.J.; Burke, P.E. Prevalence and aetiology of leg ulcers in Ireland. Ir. J. Med. Sci. 2000, 169, 110–112. [Google Scholar] [CrossRef]
- Wong, M.; Daly, S.; Katanas, J.; Shea, H.; Upton, L.; Puyk, K.; Thayaparan, A.; Kern, J.S.; Gibbs, H.; Aung, A.K. Putting skin in the game: A descriptive study of lower extremity ulcers in general medical inpatients. Intern. Med. J. 2024, 54, 2067–2071. [Google Scholar] [CrossRef] [PubMed]
- Star, A. Differentiating Lower Extremity Wounds: Arterial, Venous, Neurotrophic. Semin. Interv. Radiol 2018, 35, 399–405. [Google Scholar] [CrossRef]
- Grey, J.E.; Harding, K.G.; Enoch, S. Venous and arterial leg ulcers. BMJ 2006, 332, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Pannier, F.; Eberhard, R. Differential diagnosis of leg ulcers. Phlebology 2013, 28, 55–60. [Google Scholar] [CrossRef]
- Lazarides, M.K.; Athanasios, D.G. The role of hemodynamic measurements in the management of venous and ischemic ulcers. Int. J. Low. Extrem. Wounds 2007, 6, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Liu, F.; Jang, H.; Kijowski, R.; Bradshaw, T.; McMillan, A.B. Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging. Radiology 2018, 286, 676–684. [Google Scholar] [CrossRef]
- Lakhani, P.; Sundaram, B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 2017, 284, 574–582. [Google Scholar] [CrossRef]
- Schaffter, T.; Buist, D.S.M.; Lee, C.I.; Nikulin, Y.; Ribli, D.; Guan, Y.; Lotter, W.; Jie, Z.; Du, H.; Wang, S.; et al. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Netw. Open 2020, 3, e200265. [Google Scholar] [CrossRef]
- Uçan, M.; Kaya, B.; Kaya, M. Generating Medical Reports With a Novel Deep Learning Architecture. Int. J. Imaging Syst. Technol. 2025, 35, e70062. [Google Scholar] [CrossRef]
- Tanno, R.; Barrett, D.G.T.; Sellergren, A.; Ghaisas, S.; Dathathri, S.; See, A.; Welbl, J.; Lau, C.; Tu, T.; Azizi, S.; et al. Collaboration between clinicians and vision-language models in radiology report generation. Nat. Med. 2025, 31, 599–608. [Google Scholar] [CrossRef]
- Wang, X.; Figueredo, G.; Li, R.; Zhang, W.E.; Chen, W.; Chen, X. A survey of deep-learning-based radiology report generation using multimodal inputs. Med. Image Anal. 2025, 103, 103627. [Google Scholar] [CrossRef]
- Lo, Z.J.; Mak, M.H.W.; Liang, S.; Chan, Y.M.; Goh, C.C.; Lai, T.; Tan, A.; Thng, P.; Rodriguez, J.; Weyde, T.; et al. Development of an explainable artificial intelligence model for Asian vascular wound images. Int. Wound J. 2023, 21, e14565. [Google Scholar] [CrossRef] [PubMed]
- Anisuzzaman, D.M.; Patel, Y.; Rostami, B.; Niezgoda, J.; Gopalakrishnan, S.; Yu, Z. Multi-modal wound classification using wound image and location by dee p neural network. Sci. Rep. 2022, 12, 20057. [Google Scholar] [CrossRef] [PubMed]
- Sarp, S.; Kuzlu, M.; Wilson, E.; Cali, U.; Guler, O. The Enlightening Role of Explainable Artificial Intelligence in Chronic Wound Classification. Electronics 2021, 10, 1406. [Google Scholar] [CrossRef]
- Srinivasu, P.N.; Sandhya, N.; Jhaveri, R.H.; Raut, R. From Blackbox to Explainable AI in Healthcare: Existing Tools and Case Studies. Mob. Inf. Syst. 2022, 2022, 8167821. [Google Scholar] [CrossRef]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11966–11976. [Google Scholar]
- Mingxing, T.; Quoc, V.L. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Mingxing, T.; Quoc, V.L. EfficientNetV2: Smaller Models and Faster Training. arXiv 2021, arXiv:2104.00298. [Google Scholar]
- Alam, N.-A.; Ahsan, M.; Based, M.A.; Haider, J.; Kowalski, M. COVID-19 Detection from Chest X-ray Images Using Feature Fusion and Deep Learning. Sensors 2021, 21, 1480. [Google Scholar] [CrossRef]
- Zhang, N.; Cai, Y.-X.; Wang, Y.-Y.; Tian, Y.-T.; Wang, X.-L.; Badami, B. Skin cancer diagnosis based on optimized convolutional neural network. Artif. Intell. Med. 2020, 102, 101756. [Google Scholar] [CrossRef]
- Tanwar, S.; Singh, J. ResNext50 based convolution neural network-long short term memory model for plant disease classification. Multimed. Tools Appl. 2023, 82, 29527–29545. [Google Scholar] [CrossRef]
- Liu, J.; Jin, C.; Wang, X.; Pan, K.; Li, Z.; Yi, X.; Shao, Y.; Sun, X.; Yu, X. A comparative analysis of deep learning models for assisting in the diagnosis of periapical lesions in periapical radiographs. BMC Oral Health 2025, 25, 801. [Google Scholar] [CrossRef] [PubMed]
- Cernekova, Z.; Sisik, V.; Jafari, F. Detection of Vascular Leukoencephalopathy in CT Images. In Proceedings of the Artificial Intelligence XLI; Springer: Cham, Switzerland, 2024; pp. 158–172. [Google Scholar]
- Lv, P.; Xu, H.; Zhang, Q.; Shi, L.; Li, H.; Chen, Y.; Zhang, Y.; Cao, D.; Liu, Z.; Liu, Y.; et al. An improved lightweight ConvNeXt for rice classification. Alex. Eng. J. 2025, 112, 84–97. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Rahhal, M.M.A.; Bazi, Y.; Jomaa, R.M.; Zuair, M.; Melgani, F. Contrasting EfficientNet, ViT, and gMLP for COVID-19 Detection in Ultrasound Imagery. J. Pers. Med. 2022, 12, 1707. [Google Scholar] [CrossRef]
- Abd El-Aziz, A.A.; Mahmood, M.A.; Abd El-Ghany, S. A Robust EfficientNetV2-S Classifier for Predicting Acute Lymphoblastic Leukemia Based on Cross Validation. Symmetry 2025, 17, 24. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, X.; Gao, Y.; Wang, L.; Xiao, L.; Liu, S.; Huang, B.; Li, Z. Diagnostic performance of EfficientNetV2-S method for staging liver fibrosis based on multiparametric MRI. Heliyon 2024, 10, e35115. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, P.-H.; Pan, Y.-H.; Luo, Y.-S.; Chen, Y.-F.; Lo, Y.-C.; Chen, T.P.-C.; Perng, C.-K. Development of a deep learning-based tool to assist wound classificati on. J. Plast. Reconstr. Amp Aesthetic Surg. 2023, 79, 89–97. [Google Scholar] [CrossRef]
- Malihi, L.; Hüsers, J.; Richter, M.L.; Moelleken, M.; Przysucha, M.; Busch, D.; Heggemann, J.; Hafer, G.; Wiemeyer, S.; Heidemann, G.; et al. Automatic Wound Type Classification with Convolutional Neural Networks. In Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Dührkoop, E.; Malihi, L.; Erfurt-Berge, C.; Heidemann, G.; Przysucha, M.; Busch, D.; Hübner, U. Automatic Classification of Wound Images Showing Healing Complications: Towards an Optimised Approach for Detecting Maceration. In Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Patel, Y.; Shah, T.; Dhar, M.K.; Zhang, T.; Niezgoda, J.; Gopalakrishnan, S.; Yu, Z. Integrated image and location analysis for wound classification: A dee p learning approach. Sci. Rep. 2024, 14, 7043. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Amin, J.; Sharif, M.; Anjum, M.A.; Khan, H.U.; Malik, M.S.A.; Kadry, S. An Integrated Design for Classification and Localization of Diabetic F oot Ulcer Based on CNN and YOLOv2-DFU Models. IEEE Access 2020, 8, 228586–228597. [Google Scholar] [CrossRef]
- Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput. Methods Programs Biomed. 2022, 214, 106584. [Google Scholar] [CrossRef] [PubMed]
- Rathore, P.S.; Kumar, A.; Nandal, A.; Dhaka, A.; Sharma, A.K. A feature explainability-based deep learning technique for diabetic foot ulcer identification. Sci. Rep. 2025, 15, 6758. [Google Scholar] [CrossRef]
- Rostami, B.; Anisuzzaman, D.M.; Wang, C.; Gopalakrishnan, S.; Niezgoda, J.; Yu, Z. Multiclass wound image classification using an ensemble deep CNN-based classifier. Comput. Biol. Med. 2021, 134, 104536. [Google Scholar] [CrossRef]
- Ucan, S.; Ucan, M.; Kaya, M. Deep Learning Based Approach with EfficientNet and SE Block Attention Mechanism for Multiclass Alzheimer′s Disease Detection. In Proceedings of the 2023 4th International Conference on Data Analytics for Business and Industry (ICDABI), Zallaq, Bahrain, 25–26 October 2023; pp. 285–289. [Google Scholar]
Characteristics | Venous Ulcers | Arterial Ulcers |
---|---|---|
Etiology | Sustained venous hypertension | Arterial insufficiency (ischemia) |
Localization | Medial/lower leg | Toes, feet, lateral ankle, pressure points |
Wound edge | Gently sloping | Punched-out, well-demarcated, deep |
Wound bed | Red, granulating tissue with slough | Pale, dry, necrotic, exposed tendons |
Exudate | Moderate-to-heavy | Minimal |
Wound shape | Irregular | Regular, round |
Pedal pulses | Present and normal | Diminished or absent |
Surrounding skin | Edema, hemosiderin staining, lipodermatosclerosis | Shiny, cool, hair loss, pallor, cyanosis |
Inclusion Criteria | Exclusion Criteria |
---|---|
Patients with a confirmed diagnosis of arterial or purely venous ulcers of the lower extremities | Mixed arterial–venous ulcers. |
Availability of photographic wound documentation under standardized conditions | Ulcers of other etiologies. |
Model | Model Version | Hugging Face Configuration |
---|---|---|
ResNet50 [32] | Vanilla | resnet50.a1_in1k |
ResNeXt50 [18] | Vanilla | resnext50_32x4d.a1h_in1k |
ConvNeXt [19] | Tiny | convnextv2_tiny.fcmae_ft_in1k |
EfficientNetB2 [20] | Vanilla | efficientnet_b2.ra_in1k |
EfficientNetV2 [21] | Small | efficientnetv2_rw_s.ra2_in1 |
Hyper-Parameter | Value |
---|---|
Image Size | 224 × 224 |
Batch Size | 32 |
Learning Rate | 1 × 10−4 |
Epochs | 50 |
CNN Model | Macro-Avg Acc. | Precision (%) | Macro-Avg F1 | ROC-AUC | |
---|---|---|---|---|---|
Venous | Arterial | ||||
ResNet50 | 95.70 | 98.18 | 92.11 | 95.51 | 0.9883 |
ResNeXt50 | 97.85 | 98.25 | 97.22 | 97.73 | 0.9966 |
ConvNeXt (Tiny) | 72.04 | 69.62 | 85.71 | 64.44 | 0.9381 |
EfficientNetB2 | 95.70 | 98.18 | 92.11 | 95.51 | 0.9744 |
EfficientNetV2 | 96.77 | 95.00 | 100.00 | 96.77 | 0.9810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuwieser, H.; Jami, N.V.S.J.; Meier, R.J.; Liebsch, G.; Felthaus, O.; Klein, S.; Schreml, S.; Berneburg, M.; Prantl, L.; Leutheuser, H.; et al. Interpreting Venous and Arterial Ulcer Images Through the Grad-CAM Lens: Insights and Implications in CNN-Based Wound Image Classification. Diagnostics 2025, 15, 2184. https://doi.org/10.3390/diagnostics15172184
Neuwieser H, Jami NVSJ, Meier RJ, Liebsch G, Felthaus O, Klein S, Schreml S, Berneburg M, Prantl L, Leutheuser H, et al. Interpreting Venous and Arterial Ulcer Images Through the Grad-CAM Lens: Insights and Implications in CNN-Based Wound Image Classification. Diagnostics. 2025; 15(17):2184. https://doi.org/10.3390/diagnostics15172184
Chicago/Turabian StyleNeuwieser, Hannah, Naga Venkata Sai Jitin Jami, Robert Johannes Meier, Gregor Liebsch, Oliver Felthaus, Silvan Klein, Stephan Schreml, Mark Berneburg, Lukas Prantl, Heike Leutheuser, and et al. 2025. "Interpreting Venous and Arterial Ulcer Images Through the Grad-CAM Lens: Insights and Implications in CNN-Based Wound Image Classification" Diagnostics 15, no. 17: 2184. https://doi.org/10.3390/diagnostics15172184
APA StyleNeuwieser, H., Jami, N. V. S. J., Meier, R. J., Liebsch, G., Felthaus, O., Klein, S., Schreml, S., Berneburg, M., Prantl, L., Leutheuser, H., & Kempa, S. (2025). Interpreting Venous and Arterial Ulcer Images Through the Grad-CAM Lens: Insights and Implications in CNN-Based Wound Image Classification. Diagnostics, 15(17), 2184. https://doi.org/10.3390/diagnostics15172184