An Update of Immunohistochemistry in Hepatocellular Carcinoma
Abstract
1. Introduction
2. Diagnostic Markers
2.1. Classical HCC Markers
2.1.1. Hepatocyte Paraffin 1 (HepPar1)
2.1.2. Arginase-1 (Arg-1)
2.1.3. Glypican-3 (GPC3)
2.1.4. Polyclonal Carcinoembryonic Antigen (pCEA)
2.1.5. CD10
2.1.6. Cytokeratin 8 and 18
2.1.7. CK19
2.2. Novel Diagnostic Markers
2.2.1. Glutamine Synthetase (GS)
2.2.2. Heat Shock Protein 70 (HSP70)
2.2.3. CD34
2.2.4. Albumin mRNA In Situ Hybridization (ISH)
3. Prognostic Markers
3.1. Cell Cycle Regulators
3.1.1. p53
3.1.2. Ki-67
3.2. Angiogenesis-Related Markers: Vascular Endothelial Growth Factor (VEGF) and CD31
3.2.1. Vascular Endothelial Growth Factor (VEGF)
3.2.2. CD31
4. Predictive Markers for Targeted Therapies
4.1. Programmed Cell Death Protein 1/Programmed Cell Death Ligand 1 (PD-1/PD-L1)
4.2. CTLA-4
4.3. Microsatellite Instability-High (MSI-H)/Deficient Mismatch Repair (dMMR)
| Marker | Expression Pattern | Prognostic Significance | Therapeutic Implications | Limitations |
|---|---|---|---|---|
| p53 [105,106] | Nuclear accumulation in tumor cells Null pattern | Associates with aggressive tumor behavior; -Predicts early recurrence | Potential target for p53 pathway modulators (Amentoflavone). May enhance response to Donafenib. | Nonspecific staining in cirrhotic liver. Requires combination with molecular testing. |
| Ki-67 [41,109] | Nuclear staining in proliferating cells | LI > 10% predicts reduced 5-year survival. Correlates with vascular invasion. | Dual-energy CT shows promise for preoperative assessment. Guides adjuvant therapy selection. | Variable cutoff values (5–50%) cross studies. Affected by underlying liver pathology. |
| VEGF [113,116] | Cytoplasmic in tumor vessels | High expression: 48% 1-year recurrence. Serum levels > 500 pg/mL predict mVI. | Predicts response to bevacizumab/atezolizumab. Guides TACE–lenvatinib combinations. | Strong expression in cirrhotic hepatocytes. Semiquantitative scoring variability. |
| CD31 [110,122] | Endothelial cell membrane | Higher MVD correlates with shorter RFS (26.5 vs. 56.6 months). Associates with VETC pattern. | Potential biomarker for anti-angiogenic therapies. Helps identify vascular subtypes. | Lacks tumor specificity. Cross-reacts with platelets/macrophages. |
| PD-L1 [126,132,133] | Tumor cell membrane/immune cells | tumor cell+ (25.4%) correlates with reduced OS (HR = 1.57). immune cell+ (53.7%) correlates with resistance. | Guides pembrolizumab use. Combination with VEGF inhibitors shows synergy. | Spatial heterogeneity. Requires dual tumor/immune cell assessment. |
| CTLA-4 [139,144] | TILs and tumor cells | Stromal Treg infiltration correlates with poor CD8+ activity. Tumor cell expression correlates with multifocality. | STRIDE regimen shows durable responses. May benefit salvage nivolumab/ipilimumab. | Toxicity. Prognostic value varies by cellular localization. |
| MSI-H/dMMR [146,147,151] | Loss of MMR protein nuclear staining | 2% prevalence in advanced HCC. High TMB despite PD-L1 negativity. | Pembrolizumab shows activity in case reports. Potential for neoantigen-directed therapies. | Low prevalence. Temporal and spatial heterogeneity. |
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Choi, J.H.; Thung, S.N. Advances in Histological and Molecular Classification of Hepatocellular Carcinoma. Biomedicines 2023, 11, 2582. [Google Scholar] [CrossRef] [PubMed]
- Toh, M.R.; Wong, E.Y.T.; Wong, S.H.; Ng, A.W.T.; Loo, L.-H.; Chow, P.K.-H.; Ngeow, J. Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology 2023, 164, 766–782. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Motta, B.M.; Masarone, M.; Torre, P.; Persico, M. From Non-Alcoholic Steatohepatitis (NASH) to Hepatocellular Carcinoma (HCC): Epidemiology, Incidence, Predictions, Risk Factors, and Prevention. Cancers 2023, 15, 5458. [Google Scholar] [CrossRef]
- Kale, S.R.; Karande, G.; Gudur, A.; Garud, A.; Patil, M.S.; Patil, S. Recent Trends in Liver Cancer: Epidemiology, Risk Factors, and Diagnostic Techniques. Cureus 2024, 16, e72239. [Google Scholar] [CrossRef]
- Bittaye, S.O.; Njie, R.; Tekanyi, M.; Kambi, A.; Tamba, S.; Fatty, G.; Bah, Y.; Jatta, A.; Sanneh, L.; Sisawo, M.M. Abstract 2346: Clinical manifestation, staging and prognosis of hepatocellular carcinoma in Gambian patients. Cancer Res. 2020, 80, 2346. [Google Scholar] [CrossRef]
- Prasad, D.; Nguyen, M.H. Epidemiology, pathogenesis, diagnosis, surveillance, and management of hepatocellular carcinoma associated with vascular liver disease. Kaohsiung J. Med. Sci. 2021, 37, 355–360. [Google Scholar] [CrossRef]
- Wazir, H.; Abid, M.; Essani, B.; Saeed, H.; Ahmad Khan, M.; Nasrullah, F.; Qadeer, U.; Khalid, A.; Varrassi, G.; Muzammil, M.A.; et al. Diagnosis and Treatment of Liver Disease: Current Trends and Future Directions. Cureus 2023, 15, e49920. [Google Scholar] [CrossRef]
- Mocan, L.P.; Rusu, I.; Melincovici, C.S.; Boșca, B.A.; Mocan, T.; Crăciun, R.; Spârchez, Z.; Iacobescu, M.; Mihu, C.M. The Role of Immunohistochemistry in the Differential Diagnosis between Intrahepatic Cholangiocarcinoma, Hepatocellular Carcinoma and Liver Metastasis, as Well as Its Prognostic Value. Diagnostics 2023, 13, 1542. [Google Scholar] [CrossRef]
- Kmeid, M.; Park, Y.N.; Chung, T.; Pacheco, R.R.; Arslan, M.E.; Lee, H. SEPT9 Expression in Hepatic Nodules: An Immunohistochemical Study of Hepatocellular Neoplasm and Metastasis. Appl. Immunohistochem. Mol. Morphol. 2023, 31, 278–287. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, G.; Zheng, B.; Lu, G.; Shao, X.; Tao, C.; Xu, X.; Wang, J.; Pan, C.; Zhang, Z. Decreased expression of iron regulatory protein-1 in hepatocellular carcinoma associates with poor prognosis. Int. J. Clin. Exp. Pathol. 2016, 9, 11727–11735. [Google Scholar]
- Dai, Z.; Wang, Y.; Sun, N.; Zhang, C. Characterizing ligand-receptor interactions and unveiling the pro-tumorigenic role of CCL16-CCR1 axis in the microenvironment of hepatocellular carcinoma. Front. Immunol. 2024, 14, 1299953. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.C.; Gong, C.; Song, J.; Krausz, T.; Tretiakova, M.; Hyjek, E.; Al-Ahmadie, H.; Alves, V.; Xiao, S.-Y.; Anders, R.A.; et al. Arginase-1: A new immunohistochemical marker of hepatocytes and hepatocellular neoplasms. Am. J. Surg. Pathol. 2010, 34, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Radwan, N.A.; Ahmed, N.S. The diagnostic value of arginase-1 immunostaining in differentiating hepatocellular carcinoma from metastatic carcinoma and cholangiocarcinoma as compared to HepPar-1. Diagn. Pathol. 2012, 7, 149. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Kwok, S.; Yano, H.; Pai, R.K. Arginase-1 is a more sensitive marker of hepatic differentiation than HepPar-1 and glypican-3 in fine-needle aspiration biopsies. Cancer Cytopathol. 2012, 120, 230–237. [Google Scholar] [CrossRef]
- McKnight, R.; Nassar, A.; Cohen, C.; Siddiqui, M.T. Arginase-1: A novel immunohistochemical marker of hepatocellular differentiation in fine needle aspiration cytology. Cancer Cytopathol. 2012, 120, 223–229. [Google Scholar] [CrossRef]
- Larson, B.K.; Dhall, D.; Guindi, M. Arginase-1 is More Specific Than Hepatocyte Paraffin 1 for Differentiating Hepatocellular Carcinomas with Cytoplasmic Clearing from Nonhepatocellular Clear Cell Tumors in Liver Biopsies. Appl. Immunohistochem. Mol. Morphol. 2024, 32, 37. [Google Scholar] [CrossRef]
- Wang, C.; Shao, X.; Zhang, X.; Xie, C.; Yu, J.; Xu, X.; Yang, J.; Li, Y.; Xu, W. Diagnostic value of glypican-3, arginase-1 and hepatocyte paraffin antigen-1 in differentiating hepatocellular carcinoma from intrahepatic cholangiocarcinoma. Transl. Cancer Res. 2020, 9, 128–136. [Google Scholar] [CrossRef]
- Obiorah, I.E.; Chahine, J.; Park, B.U.; Ko, K.; de Guzman, J.; Kallakury, B. Well differentiated arginase-1 negative hepatocellular carcinoma. Transl. Gastroenterol. Hepatol. 2019, 4, 66. [Google Scholar] [CrossRef]
- Shahid, M.; Mubeen, A.; Tse, J.; Kakar, S.; Bateman, A.; Borger, D.; Rivera, M.; Ting, D.T.; Deshpande, V. Branched chain in situ hybridization for albumin as a marker of hepatocellular differentiation: Evaluation of manual and automated in situ hybridization platforms. Am. J. Surg. Pathol. 2015, 39, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Ferrone, C.R.; Ting, D.T.; Shahid, M.; Konstantinidis, I.T.; Sabbatino, F.; Goyal, L.; Rice-Stitt, T.; Mubeen, A.; Arora, K.; Bardeesey, N.; et al. The Ability to Diagnose Intrahepatic Cholangiocarcinoma Definitively Using Novel Branched DNA-Enhanced Albumin RNA In Situ Hybridization Technology. Ann. Surg. Oncol. 2016, 23, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.; Lehrke, H.D.; Mounajjed, T.; Said, S.; Zhang, L.; Yasir, S.; Shah, S.S.; Chandan, V.S.; Smyrk, T.C.; Moreira, R.K.; et al. Albumin In Situ Hybridization Can Be Positive in Adenocarcinomas and Other Tumors From Diverse Sites. Am. J. Clin. Pathol. 2019, 152, 190–199. [Google Scholar] [CrossRef]
- Yan, J.; Yang, A.; Tu, S. The relationship between keratin 18 and epithelial-derived tumors: As a diagnostic marker, prognostic marker, and its role in tumorigenesis. Front. Oncol. 2024, 14, 1445978. [Google Scholar] [CrossRef]
- Ceausu, M.; Socea, B.; Serban, D.; Smarandache, C.G.; Predescu, D.; Bacalbaşa, N.; Slavu, I.; Tulin, A.; Alecu, L.; Ceauşu, Z. Heterogeneity of antigenic constellation in human hepatocellular carcinoma. Exp. Ther. Med. 2021, 21, 270. [Google Scholar] [CrossRef]
- Lin, F.; Abdallah, H.; Meschter, S. Diagnostic utility of CD10 in differentiating hepatocellular carcinoma from metastatic carcinoma in fine-needle aspiration biopsy (FNAB) of the liver. Diagn. Cytopathol. 2004, 30, 92–97. [Google Scholar] [CrossRef]
- Wen, C.; Huang, C.; Chen, S.; Liu, X.; Yin, W.; Tao, L. Membranous Staining of CD10 Is Related to Steatosis Changes in Hepatocellular Carcinoma: An Investigation of CD10 Stainning in Hepatocellular Carcinoma, Focal Nodular Hyperplasia, and Intrahepatic Cholangiocarcinoma. Appl. Immunohistochem. Mol. Morphol. 2025, 33, 180–185. [Google Scholar] [CrossRef]
- Wang, L.; Vuolo, M.; Suhrland, M.J.; Schlesinger, K. HepPar1, MOC-31, pCEA, mCEA and CD10 for distinguishing hepatocellular carcinoma vs. metastatic adenocarcinoma in liver fine needle aspirates. Acta Cytol. 2006, 50, 257–262. [Google Scholar] [CrossRef]
- El-Rebey, H.; Kandil, M.; El-Azab, D.; Abd-Elhamed, S.; Hemida, A. Bile salt export pump, arginase 1, and hepatocyte paraffin 1 expression in differential diagnosis of hepatocellular carcinoma from nonhepatocellular carcinoma. Egypt. J. Pathol. 2019, 39, 386. [Google Scholar] [CrossRef]
- Shafizadeh, N.; Ferrell, L.D.; Kakar, S. Utility and limitations of glypican-3 expression for the diagnosis of hepatocellular carcinoma at both ends of the differentiation spectrum. Mod. Pathol. 2008, 21, 1011–1018. [Google Scholar] [CrossRef]
- Kaseb, A.O.; Hassan, M.; Lacin, S.; Abdel-Wahab, R.; Amin, H.M.; Shalaby, A.; Wolff, R.A.; Yao, J.; Rashid, A.; Vennapusa, B.; et al. Evaluating clinical and prognostic implications of Glypican-3 in hepatocellular carcinoma. Oncotarget 2016, 7, 69916–69926. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, H.; Zheng, J.; Liu, Y. Glypican-3: A New Target for Diagnosis and Treatment of Hepatocellular Carcinoma. J. Cancer 2020, 11, 2008–2021. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.; Prakash, S.; Geller, S.A.; Alsabeh, R. Comparative immunohistochemical profile of hepatocellular carcinoma, cholangiocarcinoma, and metastatic adenocarcinoma. Hum. Pathol. 2002, 33, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Ulbright, T.M. Pitfalls in the interpretation of specimens from patients with testicular tumours, with an emphasis on variant morphologies. Pathology 2018, 50, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Yu, B.; Wang, H.; Yi, F. Glutamine metabolic reprogramming in hepatocellular carcinoma. Front. Mol. Biosci. 2023, 10, 1242059. [Google Scholar] [CrossRef]
- Lagana, S.M.; Salomao, M.; Bao, F.; Moreira, R.K.; Lefkowitch, J.H.; Remotti, H.E. Utility of an immunohistochemical panel consisting of glypican-3, heat-shock protein-70, and glutamine synthetase in the distinction of low-grade hepatocellular carcinoma from hepatocellular adenoma. Appl. Immunohistochem. Mol. Morphol. 2013, 21, 170–176. [Google Scholar] [CrossRef]
- Shao, M.; Tao, Q.; Xu, Y.; Xu, Q.; Shu, Y.; Chen, Y.; Shen, J.; Zhou, Y.; Wu, Z.; Chen, M.; et al. Glutamine synthetase-negative hepatocellular carcinoma has better prognosis and response to sorafenib treatment after hepatectomy. Chin. Med. J. 2023, 136, 2066–2076. [Google Scholar] [CrossRef]
- Tremosini, S.; Forner, A.; Boix, L.; Vilana, R.; Bianchi, L.; Reig, M.; Rimola, J.; Rodríguez-Lope, C.; Ayuso, C.; Solé, M.; et al. Prospective validation of an immunohistochemical panel (glypican 3, heat shock protein 70 and glutamine synthetase) in liver biopsies for diagnosis of very early hepatocellular carcinoma. Gut 2012, 61, 1481–1487. [Google Scholar] [CrossRef]
- Joo, M.; Chi, J.G.; Lee, H. Expressions of HSP70 and HSP27 in Hepatocellular Carcinoma. J. Korean Med. Sci. 2005, 20, 829–834. [Google Scholar] [CrossRef]
- King, K.L.; Hwang, J.J.; Chau, G.Y.; Tsay, S.H.; Chi, C.W.; Lee, T.G.; Wu, L.H.; Wu, C.W.; Lui, W.Y. Ki-67 expression as a prognostic marker in patients with hepatocellular carcinoma. J. Gastroenterol. Hepatol. 1998, 13, 273–279. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, J.; Chen, H.; Sheng, Y.; Zhang, X.; Liu, Z.; Zhang, C. Diagnostic value of immunohistochemical staining of GP73, GPC3, DCP, CD34, CD31, and reticulin staining in hepatocellular carcinoma. J. Histochem. Cytochem. 2013, 61, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Hano, H.; Sakata, A.; Harada, T.; Liu, T.; Takai, S.; Ushigome, S. Enhanced CD34 expression of sinusoid-like vascular endothelial cells in hepatocellular carcinoma. Pathol. Int. 1996, 46, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Feng, L.; Liu, H.; Xu, M.; Qu, Y.; Wan, X.; Gao, C.; Lu, L. Cytokeratin19 positive hepatocellular carcinoma is associated with increased peritumoral ductular reaction. Ann. Hepatol. 2016, 15, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, J.; Zhang, Y.; Lin, Z.; Wang, M.; Huang, L.; Huang, M.; Tang, M.; Zhou, X.; Peng, Z.; et al. Preoperative Prediction of Cytokeratin 19 Expression for Hepatocellular Carcinoma with Deep Learning Radiomics Based on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging. J. Hepatocell. Carcinoma 2021, 8, 795–808. [Google Scholar] [CrossRef]
- Villari, D.; Caruso, R.; Grosso, M.; Vitarelli, E.; Righi, M.; Barresi, G. Hep Par 1 in gastric and bowel carcinomas: An immunohistochemical study. Pathology 2002, 34, 423–426. [Google Scholar] [CrossRef]
- Mattiolo, P.; Scarpa, A.; Luchini, C. Hepatoid tumors of the gastrointestinal/pancreatobiliary district: Morphology, immunohistochemistry, and molecular profiles. Hum. Pathol. 2023, 132, 169–175. [Google Scholar] [CrossRef]
- Thamboo, T.P.; Wee, A. Hep Par 1 expression in carcinoma of the cervix: Implications for diagnosis and prognosis. J. Clin. Pathol. 2004, 57, 48–53. [Google Scholar] [CrossRef]
- Bao, S.; Gu, J.; Gan, K.; Fang, Y.; Wang, T.; Lin, J.; Zeng, Z.; Huang, H. Glypican-3 and hepatocyte paraffin-1 combined with alpha-fetoprotein as a novel risk scoring model for predicting early recurrence of hepatocellular carcinoma after curative resection. Eur. J. Gastroenterol. Hepatol. 2021, 33, e603–e609. [Google Scholar] [CrossRef]
- Yussif, S.M.; Elzeftawy, D.H.; Elshawaf, I.M.; Elkashef, W.F. Role of arginase 1 immunohistochemical marker in differentiating hepatocellular carcinoma from other primary and secondary carcinomas of the liver, a tissue microarray study. Indian J. Pathol. Oncol. 2022, 9, 322–327. [Google Scholar] [CrossRef]
- Bin-shen, W. Effects of arginase-1 in identifying primary hepatocellular carcinoma and hepatic metastasis. Carcinog. Mutagen. 2014. [Google Scholar] [CrossRef]
- Chandan, V.S.; Shah, S.S.; Torbenson, M.S.; Wu, T.-T. Arginase-1 is frequently positive in hepatoid adenocarcinomas. Hum. Pathol. 2016, 55, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.-K.; Qi, C.-Y.; Chen, D.; Li, S.-Q.; Fu, S.-J.; Peng, B.-G.; Liang, L.-J. Prognostic significance of glypican-3 in hepatocellular carcinoma: A meta-analysis. BMC Cancer 2014, 14, 104. [Google Scholar] [CrossRef] [PubMed]
- Moudi, B.; Heidari, Z.; Mahmoudzadeh-Sagheb, H. Meta-analysis and systematic review of prognostic significance of Glypican-3 in patients with hepatitis B-related hepatocellular carcinoma. Virusdisease 2019, 30, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-P.; Ariizumi, S.; Nakano, M.; Yamamoto, M. Positive glypican-3 expression in early hepatocellular carcinoma predicts recurrence after hepatectomy. J. Gastroenterol. 2014, 49, 117–125. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, X.; Lei, Y.; Wang, G.; Liu, M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 824208. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Yen, C.-J.; Okusaka, T.; Ikeda, M.; Hsu, C.-H.; Wu, S.-Y.; Morizane, C.; Hashimoto, Y.; Ueshima, K.; Ohtomo, T.; et al. A phase I, open-label, multi-center, dose-escalation study of codrituzumab, an anti-glypican-3 monoclonal antibody, in combination with atezolizumab in patients with locally advanced or metastatic hepatocellular carcinoma. Ann. Oncol. 2018, 29, viii234–viii235. [Google Scholar] [CrossRef]
- Ho, M.; Kim, H. Glypican-3: A new target for cancer immunotherapy. Eur. J. Cancer Oxf. Engl. 2011, 47, 333–338. [Google Scholar] [CrossRef]
- Baumhoer, D.; Tornillo, L.; Stadlmann, S.; Roncalli, M.; Diamantis, E.K.; Terracciano, L.M. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: A tissue microarray analysis of 4387 tissue samples. Am. J. Clin. Pathol. 2008, 129, 899–906. [Google Scholar] [CrossRef]
- Ibrahim, T.R.; Abdel-Raouf, S.M. Immunohistochemical Study of Glypican-3 and HepPar-1 in Differentiating Hepatocellular Carcinoma from Metastatic Carcinomas in FNA of the Liver. Pathol. Oncol. Res. 2015, 21, 379–387. [Google Scholar] [CrossRef]
- Man, X.-B.; Tang, L.; Zhang, B.-H.; Li, S.-J.; Qiu, X.-H.; Wu, M.-C.; Wang, H.-Y. Upregulation of Glypican-3 expression in hepatocellular carcinoma but downregulation in cholangiocarcinoma indicates its differential diagnosis value in primary liver cancers. Liver Int. 2005, 25, 962–966. [Google Scholar] [CrossRef]
- Geramizadeh, B.; Seirfar, N. Diagnostic Value of Arginase-1 and Glypican-3 in Differential Diagnosis of Hepatocellular Carcinoma, Cholangiocarcinoma and Metastatic Carcinoma of Liver. Hepat. Mon. 2015, 15, e30336. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wei, L. Significance of arginase-1, glypican-3, hepatocyte paraffin antigen 1 and alpha-fetoprotein in diagnosis and differential diagnosis of liver tumors. Chin. J. Pathol. 2014, 43, 246–250. [Google Scholar]
- Wee, A. Diagnostic utility of immunohistochemistry in hepatocellular carcinoma, its variants and their mimics. Appl. Immunohistochem. Mol. Morphol. 2006, 14, 266–272. [Google Scholar] [CrossRef]
- Kakar, S.; Gown, A.M.; Goodman, Z.D.; Ferrell, L.D. Best Practices in Diagnostic Immunohistochemistry: Hepatocellular Carcinoma Versus Metastatic Neoplasms. Arch. Pathol. Lab. Med. 2007, 131, 1648–1654. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Dungubat, E.; Kusano, H.; Ganbat, D.; Tomita, Y.; Odgerel, S.; Fukusato, T. Application of Immunohistochemistry in the Pathological Diagnosis of Liver Tumors. Int. J. Mol. Sci. 2021, 22, 5780. [Google Scholar] [CrossRef]
- Morrison, C.; Marsh, W.; Frankel, W.L. A Comparison of CD10 to pCEA, MOC-31, and Hepatocyte for the Distinction of Malignant Tumors in the Liver. Mod. Pathol. 2002, 15, 1279–1287. [Google Scholar] [CrossRef]
- Nguyen, T.; Phillips, D.; Jain, D.; Torbenson, M.; Wu, T.-T.; Yeh, M.M.; Kakar, S. Comparison of 5 Immunohistochemical Markers of Hepatocellular Differentiation for the Diagnosis of Hepatocellular Carcinoma. Arch. Pathol. Lab. Med. 2015, 139, 1028–1034. [Google Scholar] [CrossRef]
- Dilek, O.N.; Kahraman, D.İ.A.; Kahraman, G. Carcinoembryonic antigen in the diagnosis, treatment, and follow-up of focal liver lesions. World J. Gastrointest. Surg. 2024, 16, 999–1007. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, Y.; An, X.; Luo, L.; Gong, K.; Yu, D. A comprehensive review of the literature on CD10: Its function, clinical application, and prospects. Front. Pharmacol. 2024, 15, 1336310. [Google Scholar] [CrossRef]
- Ahuja, A.; Gupta, N.; Kalra, N.; Srinivasan, R.; Chawla, Y.; Rajwanshi, A. Role of CD10 immunochemistry in differentiating hepatocellular carcinoma from metastatic carcinoma of the liver. Cytopathology 2008, 19, 229–235. [Google Scholar] [CrossRef]
- Kakehashi, A.; Inoue, M.; Wei, M.; Fukushima, S.; Wanibuchi, H. Cytokeratin 8/18 overexpression and complex formation as an indicator of GST-P positive foci transformation into hepatocellular carcinomas. Toxicol. Appl. Pharmacol. 2009, 238, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.A.; Saadany, S.E.; Ziada, D.H.; Zakaria, S.S.; Mayah, W.W.; Elashry, H.; Arafa, M.; Elmashad, N. Cytokeratin-18 in Diagnosis of HCC in Patients with Liver Cirrhosis. Asian Pac. J. Cancer Prev. 2017, 18, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, A.; Iwasa, M.; Tamai, Y.; Yamada, M.; Okuno, K.; Shigefuku, R.; Yoshikawa, K.; Tempaku, M.; Sakaguchi, K.; Tanaka, H.; et al. The prognostic potential of fragmented CK18 serum levels in HCC patients reflecting disease progression and overall hepatocyte damage. Front. Oncol. 2022, 12, 993705. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Han, C.; He, Y.; Liang, T.; Mo, S.; Yang, C.; Liao, X.; Zhu, G.; Ye, X.; Peng, T. Molecular mechanism of CK19 involved in the regulation of postoperative recurrence of HBV-associated primary hepatocellular carcinoma in Guangxi. Ann. Transl. Med. 2021, 9, 1780. [Google Scholar] [CrossRef]
- Zhuo, J.; Lu, D.; Lin, Z.; Yang, X.; Yang, M.; Wang, J.; Tao, Y.; Wen, X.; Li, H.; Lian, Z.; et al. The distinct responsiveness of cytokeratin 19-positive hepatocellular carcinoma to regorafenib. Cell Death Dis. 2021, 12, 1084. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, X.; Chen, J.; Tan, H.; Huang, H.; Luo, P.; Liang, Y.; Jiang, X. Preoperative prediction of cytokeratin-19 expression for hepatocellular carcinoma using T1 mapping on gadoxetic acid-enhanced MRI combined with diffusion-weighted imaging and clinical indicators. Front. Oncol. 2023, 12, 1068231. [Google Scholar] [CrossRef]
- Di Tommaso, L.; Roncalli, M. Tissue Biomarkers in Hepatocellular Tumors: Which, When, and How. Front. Med. 2017, 4, 10. [Google Scholar] [CrossRef]
- Long, J.; Wang, H.; Lang, Z.; Wang, T.; Long, M.; Wang, B. Expression level of glutamine synthetase is increased in hepatocellular carcinoma and liver tissue with cirrhosis and chronic hepatitis B. Hepatol. Int. 2010, 5, 698–706. [Google Scholar] [CrossRef]
- Moudi, B.; Heidari, Z.; Mahmoudzadeh-Sagheb, H.; Alavian, S.-M.; Lankarani, K.B.; Farrokh, P.; Nyengaard, J.R. Concomitant use of heat-shock protein 70, glutamine synthetase and glypican-3 is useful in diagnosis of HBV-related hepatocellular carcinoma with higher specificity and sensitivity. Eur. J. Histochem. 2018, 62, 2859. [Google Scholar] [CrossRef]
- Di Tommaso, L.; Destro, A.; Seok, J.Y.; Balladore, E.; Terracciano, L.; Sangiovanni, A.; Iavarone, M.; Colombo, M.; Jang, J.J.; Yu, E.; et al. The application of markers (HSP70 GPC3 and GS) in liver biopsies is useful for detection of hepatocellular carcinoma. J. Hepatol. 2009, 50, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Y.; Guo, K.; Wang, N.; Jin, H.; Liu, Y.; Qin, W. Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential. Int. J. Cancer 2016, 138, 1824–1834. [Google Scholar] [CrossRef]
- Cho, W.; Jin, X.; Pang, J.; Wang, Y.; Mivechi, N.F.; Moskophidis, D. The Molecular Chaperone Heat Shock Protein 70 Controls Liver Cancer Initiation and Progression by Regulating Adaptive DNA Damage and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Signaling Pathways. Mol. Cell. Biol. 2019, 39, e00391-18. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Shreya, S.; Pandey, S.; Shriya, S.; Abou Hammoud, A.; Grosset, C.F.; Prakash Jain, B. Functions and Therapeutic Use of Heat Shock Proteins in Hepatocellular Carcinoma. Livers 2024, 4, 142–163. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Tealeb, A.-S.M.I. The role of heat shock protein 70 and glypican 3 expression in early diagnosis of hepatocellular carcinoma. Egypt. J. Pathol. 2022, 42, 112. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Roncalli, M.; Di Tommaso, L.; Kakar, S. Combined use of heat-shock protein 70 and glutamine synthetase is useful in the distinction of typical hepatocellular adenoma from atypical hepatocellular neoplasms and well-differentiated hepatocellular carcinoma. Mod. Pathol. 2016, 29, 283–292. [Google Scholar] [CrossRef]
- Di Tommaso, L.; Franchi, G.; Park, Y.N.; Fiamengo, B.; Destro, A.; Morenghi, E.; Montorsi, M.; Torzilli, G.; Tommasini, M.; Terracciano, L.; et al. Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology 2007, 45, 725–734. [Google Scholar] [CrossRef]
- Choi, J.H.; Thung, S.N. Pathology and diagnostic approaches to well-differentiated hepatocellular lesions: A narrative review. J. Yeungnam Med. Sci. 2024, 42, 5. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, X.; Zhou, K.; Hou, Y.; Chen, F.; Zhang, X.; Ji, Y.; Qiu, S.; Fan, J.; Zhou, J.; et al. Long-term outcomes and prognosis for patients with sarcomatoid hepatocellular carcinoma. Ann. Transl. Med. 2022, 10, 394. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Jiang, Z.-M.; Gu, M.; Feng, B.; Xie, Z.-Q.; Huang, M.-Y.; Chen, Z.; Tang, M.-L. C-type Lectin Domain Family 4 Member G (CLEC4G) Is a Negative Marker for CD34 in the Evolution of Liver Pathogenesis. Ann. Clin. Lab. Sci. 2023, 53, 516–528. [Google Scholar]
- Di Carlo, I.; Fraggetta, F.; Lombardo, R.; Azzarello, G.; Vasquez, E.; Puleo, S. CD 34 expression in chronic and neoplastic liver diseases. Panminerva Med. 2002, 44, 365–367. [Google Scholar]
- Kalyani, P.; Sarma, A.; Gupta, S.; Ahmed, S.; Kakoti, L. Role of CD34, SMA & Ki-67 Immunohistochemistry– An Important Diagnostic Tool in Differentiating Early Well Differentiated Hepatocellular Carcinoma from Benign Hepatic Mimickers: A Retrospective Study from North East India. Sch. J. Appl. Med. Sci. 2024, 12, 1397–1404. [Google Scholar] [CrossRef]
- Fu, X.; Yang, Y.; Zhang, D. Molecular mechanism of albumin in suppressing invasion and metastasis of hepatocellular carcinoma. Liver Int. 2022, 42, 696–709. [Google Scholar] [CrossRef] [PubMed]
- Handbook of Practical Immunohistochemistry: Frequently Asked Questions; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-83327-5.
- Krings, G.; Ramachandran, R.; Jain, D.; Wu, T.-T.; Yeh, M.M.; Torbenson, M.; Kakar, S. Immunohistochemical pitfalls and the importance of glypican 3 and arginase in the diagnosis of scirrhous hepatocellular carcinoma. Mod. Pathol. 2013, 26, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.C.; Huang, J.; Tickoo, S.K.; Thung, S.N.; Ladanyi, M.; Klimstra, D.S. Fibrolamellar carcinoma of the liver exhibits immunohistochemical evidence of both hepatocyte and bile duct differentiation. Mod. Pathol. 2010, 23, 1180–1190. [Google Scholar] [CrossRef]
- Murakata, L.A.; Ishak, K.G.; Nzeako, U.C. Clear Cell Carcinoma of the Liver: A Comparative Immunohistochemical Study with Renal Clear Cell Carcinoma. Mod. Pathol. 2000, 13, 874–881. [Google Scholar] [CrossRef]
- Numbere, N.; Zhang, D.; Agostini-Vulaj, D. A rare histologic subtype of hepatocellular carcinoma, sarcomatoid hepatocellular carcinoma: Report of a case. Hepatic Oncol. 2021, 8, HEP33. [Google Scholar] [CrossRef]
- Luo, C.; Xin, H.; Yin, D.; Zhao, T.; Hu, Z.; Zhou, Z.; Sun, R.; Yao, N.; Sun, Q.; Fan, J.; et al. Characterization of immune infiltration in sarcomatoid hepatocellular carcinoma. Aging 2021, 13, 15126–15138. [Google Scholar] [CrossRef]
- Paslaru, L.; Bindea, G.; Nastase, A.; Sorop, A.; Zimbru, C.; Herlea, V.; Hrehoret, D.; Brasoveanu, V.; Zamfir, R.; Dima, S.; et al. Comparative RNA-Sequencing Analysis Reveals High Complexity and Heterogeneity of Transcriptomic and Immune Profiles in Hepatocellular Carcinoma Tumors of Viral (HBV, HCV) and Non-Viral Etiology. Medicina 2022, 58, 1803. [Google Scholar] [CrossRef]
- Jean, K.; Tawheed, A.; Nguyen, L.B.L.; Heikal, T.; Eldaly, U.; Elhadidy, N.G.; Elghaieb, A.; Aboudonia, A.; Tondeur, L.; Dublineau, A.; et al. A Comparison of Presentation, Treatment, and Survival After Hepatocellular Carcinoma of Viral and Non-Viral Etiology in Damietta, Egypt, 2007–2019. J. Hepatocell. Carcinoma 2024, 11, 997–1004. [Google Scholar] [CrossRef]
- Cai, M.; Hurwitz, K.; Hendrickson, K.; Jackman, L.; Yu, Y.; Ng, J.; Henkel, A.; Ferlini, C. Incidence of viral and non-viral etiologies of hepatocellular carcinoma (HCC) in the US over time by race and ethnicity. J. Clin. Oncol. 2025, 43, 10551. [Google Scholar] [CrossRef]
- Jernigan, P.L.; Wima, K.; Hanseman, D.J.; Hoehn, R.S.; Ahmad, S.A.; Shah, S.A.; Abbott, D.E. Natural history and treatment trends in hepatocellular carcinoma subtypes: Insights from a national cancer registry. J. Surg. Oncol. 2015, 112, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.S.; Ramos, H.; Inga, A.; Sousa, E.; Saraiva, L. Structural and Drug Targeting Insights on Mutant p53. Cancers 2021, 13, 3344. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yan, B.; Xiao, X.; Yuan, Q.; Dong, X.; Du, Q.; Zhang, J.; Shan, L.; Ding, Z.; Zhou, L.; et al. Green Tea-Derived Theabrownin Induces Cellular Senescence and Apoptosis of Hepatocellular Carcinoma via P53 Signaling-Mediated Mechanism Bypassed by JNK Regulation. Res. Sq. 2021; in press. [Google Scholar] [CrossRef]
- Rahadiani, N.; Stephanie, M.; Perkasa, A.G.; Handjari, D.R.; Krisnuhoni, E. p53 expression is associated with tumor stage, grade and subtype in patients with hepatocellular carcinoma. Mol. Clin. Oncol. 2023, 19, 54. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Wang, L.; Chen, M. The expression of Ki-67 and Glypican-3 in hepatocellular carcinoma was evaluated by comparing DWI and 18F-FDG PET/CT. Front. Oncol. 2023, 13, 1026245. [Google Scholar] [CrossRef]
- Luo, Y.; Ren, F.; Liu, Y.; Shi, Z.; Tan, Z.; Xiong, H.; Dang, Y.; Chen, G. Clinicopathological and prognostic significance of high Ki-67 labeling index in hepatocellular carcinoma patients: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 10235–10247. [Google Scholar]
- Karabulut, E.; Akbulut, S.; Samdanci, E.T.; Akatli, A.N.; Elsarawy, A.; Kucukakcali, Z.; Ogut, Z.; Tuncer, A.; Ince, V.; Yilmaz, S. Are Ki-67 and Procalcitonin Expression Levels Useful in Predicting the Biological Behavior of Hepatocellular Carcinoma After Liver Transplantation? J. Clin. Med. 2025, 14, 144. [Google Scholar] [CrossRef]
- Ramos-Santillan, V.; Oshi, M.; Nelson, E.; Endo, I.; Takabe, K. High Ki67 Gene Expression Is Associated with Aggressive Phenotype in Hepatocellular Carcinoma. World J. Oncol. 2024, 15, 257–267. [Google Scholar] [CrossRef]
- Lei, H.-J.; Wang, S.-Y.; Chau, I.Y.; Li, A.F.-Y.; Chau, Y.-P.; Hsia, C.-Y.; Chou, S.-C.; Kao, Y.-C.; Chau, G.-Y. Hepatoma upregulated protein and Ki-67 expression in resectable hepatocellular carcinoma. J. Chin. Med. Assoc. 2021, 84, 623. [Google Scholar] [CrossRef]
- Yasir, S.; Chen, Z.E.; Said, S.; Wu, T.-T.; Torbenson, M. Biopsies of Hepatocellular Carcinoma with no Reticulin Loss: An Important Diagnostic Pitfall. Hum. Pathol. 2021, 107, 20–28. [Google Scholar] [CrossRef]
- Poon, R.T.-P.; Ng, I.O.-L.; Lau, C.; Zhu, L.-X.; Yu, W.-C.; Lo, C.-M.; Fan, S.-T.; Wong, J. Serum Vascular Endothelial Growth Factor Predicts Venous Invasion in Hepatocellular Carcinoma : A Prospective Study. Ann. Surg. 2001, 233, 227–235. [Google Scholar] [CrossRef]
- Pocino, K.; Napodano, C.; Marino, M.; Di Santo, R.; Miele, L.; De Matthaeis, N.; Gulli, F.; Saporito, R.; Rapaccini, G.L.; Ciasca, G.; et al. A Comparative Study of Serum Angiogenic Biomarkers in Cirrhosis and Hepatocellular Carcinoma. Cancers 2021, 14, 11. [Google Scholar] [CrossRef]
- von Marschall, Z.; Cramer, T.; Höcker, M.; Finkenzeller, G.; Wiedenmann, B.; Rosewicz, S. Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut 2001, 48, 87–96. [Google Scholar] [CrossRef]
- Deli, G.; Jin, C.-H.; Mu, R.; Yang, S.; Liang, Y.; Chen, D.; Makuuchi, M. Immunohistochemical assessment of angiogenesis in hepatocellular carcinoma and surrounding cirrhotic liver tissues. World J. Gastroenterol. 2005, 11, 960–963. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.B.; Han, H.J.; Kim, W.B.; Song, T.J.; Choi, S.Y. VEGF overexpression predicts poor survival in hepatocellular carcinoma. Open Med. 2017, 12, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Li, D.; Liu, S.; Cheng, C.; Xu, L.; Zhao, P. Efficacy and safety of transarterial chemoembolization plus lenvatinib in the treatment of advanced hepatocellular carcinoma: A meta-analysis. Medicine 2023, 102, e34811. [Google Scholar] [CrossRef]
- Qian, H.; Yang, L.; Zhao, W.; Chen, H.; He, S. A comparison of CD105 and CD31 expression in tumor vessels of hepatocellular carcinoma by tissue microarray and flow cytometry. Exp. Ther. Med. 2018, 16, 2881–2888. [Google Scholar] [CrossRef]
- Mohamed, A.; Caltharp, S.A.; Wang, J.; Cohen, C.; Farris, A.B. Hepatocellular Carcinoma Microvessel Density Quantitation with Image Analysis: Correlation with Prognosis. J. Anal. Oncol. 2013, 2, 135–141. [Google Scholar] [CrossRef]
- Huang, C.-W.; Lin, S.-E.; Huang, S.-F.; Yu, M.-C.; Tang, J.-H.; Tsai, C.-N.; Hsu, H.-Y. The Vessels That Encapsulate Tumor Clusters (VETC) Pattern Is a Poor Prognosis Factor in Patients with Hepatocellular Carcinoma: An Analysis of Microvessel Density. Cancers 2022, 14, 5428. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Hepatocellular Carcinoma. Version 1.2025. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1460 (accessed on 12 July 2025).
- Vogel, A.; Chan, S.L.; Dawson, L.A.; Kelley, R.K.; Llovet, J.M.; Meyer, T.; Ricke, J.; Rimassa, L.; Sapisochin, G.; Vilgrain, V.; et al. Hepatocellular carcinoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up☆. Ann. Oncol. 2025, 36, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar] [PubMed]
- Li, Q.; Han, J.; Yang, Y.; Chen, Y. PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy. Front. Immunol. 2022, 13, 1070961. [Google Scholar] [CrossRef]
- Hao, L.; Li, S.; Deng, J.; Li, N.; Yu, F.; Jiang, Z.; Zhang, J.; Shi, X.; Hu, X. The current status and future of PD-L1 in liver cancer. Front. Immunol. 2023, 14, 1323581. [Google Scholar] [CrossRef]
- Grywalska, E.; Pasiarski, M.; Góźdź, S.; Roliński, J. Immune-checkpoint inhibitors for combating T-cell dysfunction in cancer. Onco Targets Ther. 2018, 11, 6505–6524. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Pauken, K.E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 2018, 18, 153–167. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Lu, L.-C.; Lee, Y.-H.; Liu, T.; Shao, Y.-Y.; Cheng, A.-L.; Hsu, C.-H. Abstract 1526: The distinct tumor microenvironment of advanced hepatocellular carcinoma with high PVR or high PD-L1 expression. Cancer Res. 2024, 84, 1526. [Google Scholar] [CrossRef]
- Li, J.-H.; Ma, W.-J.; Wang, G.-G.; Jiang, X.; Chen, X.; Wu, L.; Liu, Z.-S.; Zeng, X.-T.; Zhou, F.-L.; Yuan, Y.-F. Clinicopathologic Significance and Prognostic Value of Programmed Cell Death Ligand 1 (PD-L1) in Patients with Hepatocellular Carcinoma: A Meta-Analysis. Front. Immunol. 2018, 9, 2077. [Google Scholar] [CrossRef]
- Sideras, K.; de Man, R.A.; Harrington, S.M.; Polak, W.G.; Zhou, G.; Schutz, H.M.; Pedroza-Gonzalez, A.; Biermann, K.; Mancham, S.; Hansen, B.E.; et al. Circulating levels of PD-L1 and Galectin-9 are associated with patient survival in surgically treated Hepatocellular Carcinoma independent of their intra-tumoral expression levels. Sci. Rep. 2019, 9, 10677. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yu, W. Advances in Immune Checkpoint Therapy in Hepatocellular Carcinoma. Br. J. Hosp. Med. 2024, 85, 9. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Yang, B.; Liao, Z.-Y. Current progress and prospect of immune checkpoint inhibitors in hepatocellular carcinoma (Review). Oncol. Lett. 2020, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef]
- Pinato, D.J.; Guerra, N.; Fessas, P.; Murphy, R.; Mineo, T.; Mauri, F.A.; Mukherjee, S.K.; Thursz, M.; Wong, C.N.; Sharma, R.; et al. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020, 39, 3620–3637. [Google Scholar] [CrossRef]
- El-Rebey, H.S.; Abdou, A.G.; Sultan, M.M.; Ibrahim, S.H.; Holah, N.S. The Profile and Role of Tumor-infiltrating Lymphocytes in Hepatocellular Carcinoma: An Immunohistochemical Study. Appl. Immunohistochem. Mol. Morphol. 2021, 29, 188–200. [Google Scholar] [CrossRef]
- Wei, H.; Dong, C.; Li, X. Treatment Options for Hepatocellular Carcinoma Using Immunotherapy: Present and Future. J. Clin. Transl. Hepatol. 2024, 12, 389–405. [Google Scholar] [CrossRef]
- Liu, H.-T.; Jiang, M.-J.; Deng, Z.-J.; Li, L.; Huang, J.-L.; Liu, Z.-X.; Li, L.-Q.; Zhong, J.-H. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: Current Progresses and Challenges. Front. Oncol. 2021, 11, 737497. [Google Scholar] [CrossRef]
- Chan, L.L.; Kwong, T.T.; Yau, J.C.W.; Chan, S.L. Treatment for hepatocellular carcinoma after immunotherapy. Ann. Hepatol. 2025, 8, 101781. [Google Scholar] [CrossRef]
- Alden, S.L.; Lim, M.; Kao, C.; Shu, D.; Singal, A.G.; Noonan, A.; Griffith, P.; Baretti, M.; Ho, W.J.; Kamel, I.; et al. Salvage Ipilimumab plus Nivolumab after Anti-PD-1/PD-L1 Therapy in Advanced Hepatocellular Carcinoma. Cancer Res. Commun. 2023, 3, 1312–1317. [Google Scholar] [CrossRef]
- Han, S.; Chok, A.Y.; Peh, D.Y.Y.; Ho, J.Z.-M.; Tan, E.K.W.; Koo, S.-L.; Tan, I.B.-H.; Ong, J.C.-A. The distinct clinical trajectory, metastatic sites, and immunobiology of microsatellite-instability-high cancers. Front. Genet. 2022, 13, 933475. [Google Scholar] [CrossRef] [PubMed]
- Mukai, S.; Kanzaki, H.; Ogasawara, S.; Ishino, T.; Ogawa, K.; Nakagawa, M.; Fujiwara, K.; Unozawa, H.; Iwanaga, T.; Sakuma, T.; et al. Exploring microsatellite instability in patients with advanced hepatocellular carcinoma and its tumor microenvironment. JGH Open 2021, 5, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Mulet-Margalef, N.; Linares, J.; Badia-Ramentol, J.; Jimeno, M.; Sanz Monte, C.; Manzano Mozo, J.L.; Calon, A. Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers 2023, 15, 1022. [Google Scholar] [CrossRef]
- Taherifard, E.; Tran, K.; Saeed, A.; Yasin, J.A.; Saeed, A. Biomarkers for Immunotherapy Efficacy in Advanced Hepatocellular Carcinoma: A Comprehensive Review. Diagnostics 2024, 14, 2054. [Google Scholar] [CrossRef] [PubMed]
- Eso, Y.; Shimizu, T.; Takeda, H.; Takai, A.; Marusawa, H. Microsatellite instability and immune checkpoint inhibitors: Toward precision medicine against gastrointestinal and hepatobiliary cancers. J. Gastroenterol. 2020, 55, 15–26. [Google Scholar] [CrossRef]
- Lou, E.; Baca, Y.; Walker, P.; Shields, A.F.; Prakash, A.; Weinberg, B.A.; Saeed, A.; Goel, S.; Nabhan, C.; Korn, W.M.; et al. Beyond CPS for PD-L1 scoring: Genetic alterations that impact efficacy of immunotherapy in hepatocellular carcinoma (HCC). J. Clin. Oncol. 2023, 41, 592. [Google Scholar] [CrossRef]
- Rüschoff, J.; Schildhaus, H.-U.; Rüschoff, J.H.; Jöhrens, K.; Bocker Edmonston, T.; Dietmaier, W.; Bläker, H.; Baretton, G.; Horst, D.; Dietel, M.; et al. Testing for deficient mismatch repair and microsatellite instability. Pathologie 2023, 44, 61–70. [Google Scholar] [CrossRef]
- Ntellas, P.; Chau, I. Updates on Systemic Therapy for Hepatocellular Carcinoma. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e430028. [Google Scholar] [CrossRef]
- Liu, W.-R.; Tian, M.-X.; Tang, Z.; Fang, Y.; Zhou, Y.-F.; Song, S.-S.; Jiang, X.-F.; Wang, H.; Tao, C.-Y.; Zhou, P.-Y.; et al. Nine-factor-based immunohistochemistry classifier predicts recurrence for early-stage hepatocellular carcinoma after curative resection. Br. J. Cancer 2020, 123, 92–100. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, D.; Liu, Y.; Xie, K.; Zhao, Y.; Liu, F. Crispr-Cas9-based long non-coding RNA interference and activation identified that the aberrant expression of Myc-regulated ST8SIA6 antisense RNA 1 promotes tumorigenesis and metastasis in hepatocellular carcinoma. Cytojournal 2024, 21, 53. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, X.; Zhang, C.; Wang, Y.; Zhang, J.; Wang, Y.; Sui, Y. Deciphering the synergistic role of tyrosyl-tRNA synthetase 1 and yes-associated protein 1: Catalysts of malignant progression in hepatocellular carcinoma. CytoJournal 2024, 21, 66. [Google Scholar] [CrossRef]
- Bai, Y.; Cui, G.; Sun, X.; Wei, M.; Liu, Y.; Guo, J.; Yang, Y. Effect of Deletion of ANGPTL4 Gene on Viability, Migration and Invasion Ability and Apoptosis of Hepatocellular Carcinoma Cells. Discov. Med. 2024, 36, 173–181. [Google Scholar] [CrossRef]
- Hoda, R.S.; Brogi, E.; D’Alfonso, T.M.; Grabenstetter, A.; Giri, D.; Hanna, M.G.; Kuba, M.G.; Murray, M.P.; Vallejo, C.E.; Zhang, H.; et al. Interobserver Variation of PD-L1 SP142 Immunohistochemistry Interpretation in Breast Carcinoma: A Study of 79 Cases Using Whole Slide Imaging. Arch. Pathol. Lab. Med. 2021, 145, 1132–1137. [Google Scholar] [CrossRef]
- KITAYA, K.; YASUO, T. Inter-observer and intra-observer variability in immunohistochemical detection of endometrial stromal plasmacytes in chronic endometritis. Exp. Ther. Med. 2013, 5, 485–488. [Google Scholar] [CrossRef]
- Goldstein, N.S.; Hewitt, S.M.; Taylor, C.R.; Yaziji, H.; Hicks, D.G.; MD Members of Ad-Hoc Committee on Immunohistochemistry Standardization. Recommendations for Improved Standardization of Immunohistochemistry. Appl. Immunohistochem. Mol. Morphol. 2007, 15, 124. [Google Scholar] [CrossRef]
- Patel, K.; Strother, R.M.; Ndiangui, F.; Chumba, D.; Jacobson, W.; Dodson, C.; Resnic, M.B.; Strate, R.W.; Smith, J.W. Development of immunohistochemistry services for cancer care in western Kenya: Implications for low- and middle-income countries. Afr. J. Lab. Med. 2016, 5, 187. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Portillo, S.; Zarka, M.A.; Snedden, D.; Pyle, D.; Goodman, H.; Hayes, D.F. Improving Oncology-Pathology Collaboration in Resource-Limited Settings: An American Society of Clinical Oncology/College of American Pathologists Initiative. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, 199–220. [Google Scholar] [CrossRef] [PubMed]
- McGenity, C.; Clarke, E.L.; Jennings, C.; Matthews, G.; Cartlidge, C.; Freduah-Agyemang, H.; Stocken, D.D.; Treanor, D. Artificial intelligence in digital pathology: A systematic review and meta-analysis of diagnostic test accuracy. Npj Digit. Med. 2024, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Ercan, C.; Renne, S.L.; Di Tommaso, L.; Ng, C.K.Y.; Piscuoglio, S.; Terracciano, L.M. Hepatocellular Carcinoma Immune Microenvironment Analysis: A Comprehensive Assessment with Computational and Classical Pathology. Clin. Cancer Res. 2024, 30, 5105–5115. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, G.; Mahmoud, H.; Abd El-Hafeez, T.; E.ElAraby, M. The power of deep learning in simplifying feature selection for hepatocellular carcinoma: A review. BMC Med. Inform. Decis. Mak. 2024, 24, 287. [Google Scholar] [CrossRef]
- Li, J.; Dong, J.; Huang, S.; Li, X.; Jiang, J.; Fan, X.; Zhang, Y. Virtual Immunohistochemistry Staining for Histological Images Assisted by Weakly-supervised Learning. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 17–21 June 2024; pp. 11259–11268. [Google Scholar]
- Blom, S.; Paavolainen, L.; Bychkov, D.; Turkki, R.; Mäki-Teeri, P.; Hemmes, A.; Välimäki, K.; Lundin, J.; Kallioniemi, O.; Pellinen, T. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci. Rep. 2017, 7, 15580. [Google Scholar] [CrossRef]
- Harms, P.W.; Frankel, T.L.; Moutafi, M.; Rao, A.; Rimm, D.L.; Taube, J.M.; Thomas, D.; Chan, M.P.; Pantanowitz, L. Multiplex Immunohistochemistry and Immunofluorescence: A Practical Update for Pathologists. Mod. Pathol. 2023, 36, 100197. [Google Scholar] [CrossRef]


| Markers | Target/Antigen | Sensitivity (%) | Specificity (%) | Staining Pattern | Note | |
|---|---|---|---|---|---|---|
| Hepatocellular lineage | HepPar1 [15,16,17,18,19] | CPS1 (mitochondrial) | 70–87 | 71–97 | Granular cytoplasmic | Stains non-hepatocellular tumors (e.g., gastrointestinal/hepatoid tumors) |
| Arg-1 [15,20,21] | Urea cycle enzyme | 76.6–96.0 | 97.5 | Cytoplasmic | Rare negativity in well-differentiated HCC; occasional positivity in ICC and liver metastasis | |
| Albumin ISH [22,23,24] | Albumin mRNA | 99 | 100 ‡ | Cytoplasmic mRNA dots | Positivity in small-duct type ICC (31.6%) and hepatoid carcinomas | |
| CK8/18 [25,26] | Cytokeratins | 54.5–83.3 | Variable | Cytoplasmic and membrane | Hepatocellular cytokeratins but are not specific for hepatocellular lesions. Positive in most cancers and some sarcomas. | |
| Liver architecture | CD10 [27,28] | Metalloproteinase | 61–86 | 84–87 | Canalicular/membranous | Expressed in focal nodular hyperplasia (FNH, 100%) and ICC (31.6%) |
| pCEA [29,30] | Biliary glycoprotein | 60–90 | 95–100 * | Canalicular | Declining sensitivity in poorly diff HCC; technical variability | |
| Malignant hepatocyte | GPC3 [31,32,33,34,35] | Cell-surface proteoglycan | 63–92 | 94–100 | Cytoplasmic/membranous (heterogeneous) | Reduced sensitivity in well-differentiated HCC; positivity in ICC (14–21%) |
| GS [36,37,38] | β-catenin pathway | 43.9–100 | 90–94.3 | Diffuse cytoplasmic | Increased expression in cirrhosis and chronic hepatitis B virus-infected liver; focal positivity in dysplastic nodules | |
| HSP70 [37,39,40] | Stress response protein | 57.5–78.2 | 85–100 | Nuclear/cytoplasmic | Positivity in liver metastatic adenocarcinoma and ICC; heterogeneity in poorly differentiated HCCs | |
| AFP [34,35] | Oncoprotein | 30% (2–62%) | 90% | Cytoplasmic | Positive in yolk sac tumor, hepatoblastoma, hepatoid tumor, gastric carcinoma, pancreatic adenocarcinoma, infantile hemangioendothelioma, cirrhosis, chronic hepatitis B, and other liver diseases. | |
| Others | Ki-67 [41] | Cell proliferation | N/A | N/A | Nuclear | Higher in malignant cells than in background hepatocytes |
| CD34 [42,43] | Sinusoidal endothelium | 92.8 | 85–90 | Diffuse sinusoidal capillarization | Patchy staining in well-differentiated HCC and cirrhosis | |
| CK19 [44,45] | Biliary/progenitor cells | 15 | 95.6 † | Cytoplasmic and membrane | Indicates aggressive subtypes; not HCC-specific | |
| Markers or Antibodies | GML Data %(N) |
|---|---|
| Hep Par1 | 94% (18) |
| Arginase-1 | 98% (17/18) |
| Glypican-3 | 72% (13/18) |
| pCEA | 94% (17/18) |
| CD10 | 61% (11/18) |
| CK19 | 6% (1/18) |
| CD34 | 100% (18/18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Huang, L.; Huang, J.; Li, J. An Update of Immunohistochemistry in Hepatocellular Carcinoma. Diagnostics 2025, 15, 2144. https://doi.org/10.3390/diagnostics15172144
Li B, Huang L, Huang J, Li J. An Update of Immunohistochemistry in Hepatocellular Carcinoma. Diagnostics. 2025; 15(17):2144. https://doi.org/10.3390/diagnostics15172144
Chicago/Turabian StyleLi, Bingyu, Larry Huang, Jialing Huang, and Jianhong Li. 2025. "An Update of Immunohistochemistry in Hepatocellular Carcinoma" Diagnostics 15, no. 17: 2144. https://doi.org/10.3390/diagnostics15172144
APA StyleLi, B., Huang, L., Huang, J., & Li, J. (2025). An Update of Immunohistochemistry in Hepatocellular Carcinoma. Diagnostics, 15(17), 2144. https://doi.org/10.3390/diagnostics15172144

