AI Enhances Lung Ultrasound Interpretation Across Clinicians with Varying Expertise Levels
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Selection of Participants
2.3. Inclusion/Exclusion Criteria
2.4. Exo Lung AI Software
2.5. Ground Truthing
2.6. Outcomes
2.7. Analysis
3. Results
3.1. Characteristics of Study Subjects
3.2. Main Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mojoli, F.; Bouhemad, B.; Mongodi, S.; Lichtenstein, D. Lung Ultrasound for Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2019, 199, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.J.; Hayward, S.A.; Innes, S.M.; Miller, A.S.C. Point-of-care lung ultrasound in patients with COVID-19—A narrative review. Anaesthesia 2020, 75, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Zieleskiewicz, L.; Cornesse, A.; Hammad, E.; Haddam, M.; Brun, C.; Vigne, C.; Meyssignac, B.; Remacle, A.; Chaumoitre, K.; Antonini, F.; et al. Implementation of lung ultrasound in polyvalent intensive care unit: Impact on irradiation and medical cost. Anaesth. Crit. Care Pain. Med. 2015, 34, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Marini, T.J.; Rubens, D.J.; Zhao, Y.T.; Weis, J.; O’Connor, T.P.; Novak, W.H.; Kaproth-Joslin, K.A. Lung Ultrasound: The Essentials. Radiol. Cardiothorac. Imaging 2021, 3, e200564. [Google Scholar] [CrossRef]
- Bouhemad, B.; Zhang, M.; Lu, Q.; Rouby, J.J. Clinical review: Bedside lung ultrasound in critical care practice. Crit. Care 2007, 11, 205. [Google Scholar] [CrossRef]
- Zaki, H.A.; Albaroudi, B.; Shaban, E.E.; Shaban, A.; Elgassim, M.; Almarri, N.D.; Basharat, K.; Azad, A.M. Advancement in pleura effusion diagnosis: A systematic review and meta-analysis of point-of-care ultrasound versus radiographic thoracic imaging. Ultrasound J. 2024, 16, 3. [Google Scholar] [CrossRef]
- Alzahrani, S.A.; Al-Salamah, M.A.; Al-Madani, W.H.; Elbarbary, M.A. Systematic review and meta-analysis for the use of ultrasound versus radiology in diagnosing of pneumonia. Crit. Ultrasound J. 2017, 9, 6. [Google Scholar] [CrossRef]
- Maw, A.M.; Hassanin, A.; Ho, P.M.; McInnes, M.D.F.; Moss, A.; Juarez-Colunga, E.; Soni, N.J.; Miglioranza, M.H.; Platz, E.; DeSanto, K.; et al. Diagnostic Accuracy of Point-of-Care Lung Ultrasonography and Chest Radiography in Adults with Symptoms Suggestive of Acute Decompensated Heart Failure: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e190703. [Google Scholar] [CrossRef] [PubMed]
- Balk, D.S.; Lee, C.; Schafer, J.; Welwarth, J.; Hardin, J.; Novack, V.; Yarza, S.; Hoffmann, B. Lung ultrasound compared to chest X-ray for diagnosis of pediatric pneumonia: A meta-analysis. Pediatr. Pulmonol. 2018, 53, 1130–1139. [Google Scholar] [CrossRef]
- Chavez, M.A.; Shams, N.; Ellington, L.E.; Naithani, N.; Gilman, R.H.; Steinhoff, M.C.; Santosham, M.; Black, R.E.; Price, C.; Gross, M.; et al. Lung ultrasound for the diagnosis of pneumonia in adults: A systematic review and meta-analysis. Respir. Res. 2014, 15, 50. [Google Scholar] [CrossRef]
- Lichtenstein, D.A.; Mezière, G.A. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: The BLUE protocol. Chest 2008, 134, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, D.A. BLUE-protocol and FALLS-protocol: Two applications of lung ultrasound in the critically ill. Chest 2015, 147, 1659–1670. [Google Scholar] [CrossRef] [PubMed]
- Brogi, E.; Gargani, L.; Bignami, E.; Barbariol, F.; Marra, A.; Forfori, F.; Vetrugno, L. Thoracic ultrasound for pleural effusion in the intensive care unit: A narrative review from diagnosis to treatment. Crit. Care 2017, 21, 325. [Google Scholar] [CrossRef]
- Lichtenstein, D.; Goldstein, I.; Mourgeon, E.; Cluzel, P.; Grenier, P.; Rouby, J.J. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology 2004, 100, 9–15. [Google Scholar] [CrossRef]
- Benson, R.E.C. Lung Cancer: Atelectasis and Consolidation In Chest Imaging; Oxford University Press: Oxford, UK, 2019; pp. 269–273. [Google Scholar]
- Gargani, L.; Picano, E. The risk of cumulative radiation exposure in chest imaging and the advantage of bedside ultrasound. Crit. Ultrasound J. 2015, 7, 4. [Google Scholar] [CrossRef]
- Hong, D.; Choi, H.; Hong, W.; Kim, Y.; Kim, T.J.; Choi, J.; Ko, S.B.; Park, C.M. Deep-learning model accurately classifies multi-label lung ultrasound findings, enhancing diagnostic accuracy and inter-reader agreement. Sci. Rep. 2024, 14, 22228. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lin, Y.; Cao, P.; Zou, X.; Qin, Q.; Lin, Z.; Liang, F.; Li, Z. Automated detection and segmentation of pleural effusion on ultrasound images using an Attention U-net. J. Appl. Clin. Med. Phys. 2024, 25, e14231. [Google Scholar] [CrossRef] [PubMed]
- Vukovic, D.; Wang, A.; Antico, M.; Steffens, M.; Ruvinov, I.; van Sloun, R.J.; van Sloun, R.J.; Canty, D.; Royse, A.; Royse, C. Automatic deep learning-based pleural effusion segmentation in lung ultrasound images. BMC Med. Inf. Decis. Mak. 2023, 23, 274. [Google Scholar] [CrossRef]
- Baloescu, C.; Bailitz, J.; Cheema, B.; Agarwala, R.; Jankowski, M.; Eke, O.; Liu, R.; Nomura, J.; Stolz, L.; Gargani, L.; et al. Artificial Intelligence-Guided Lung Ultrasound by Nonexperts. JAMA Cardiol. 2025, 10, 245–253. [Google Scholar] [CrossRef]
- Marchi, G.; Mercier, M.; Cefalo, J.; Salerni, C.; Ferioli, M.; Candoli, P.; Gori, L.; Cucchiara, F.; Cenerini, G.; Guglielmi, G.; et al. Advanced imaging techniques and artificial intelligence in pleural diseases: A narrative review. Eur. Respir. Rev. 2025, 34, 240263. [Google Scholar] [CrossRef]
- Arntfield, R.; Wu, D.; Tschirhart, J.; VanBerlo, B.; Ford, A.; Ho, J.; McCauley, J.; Wu, B.; Deglint, J.; Chaudhary, R.; et al. Automation of lung ultrasound interpretation via deep learning for the classification of normal versus abnormal lung parenchyma: A multicenter study. Diagnostics 2021, 11, 2049. [Google Scholar] [CrossRef] [PubMed]
- Erfanian Ebadi, S.; Krishnaswamy, D.; Bolouri, S.E.S.; Zonoobi, D.; Greiner, R.; Meuser-Herr, N.; Jaremko, J.L.; Kapur, J.; Noga, M.; Punithakumar, K. Automated detection of pneumonia in lung ultrasound using deep video classification for COVID-19. Inf. Med. Unlocked 2021, 25, 100687. [Google Scholar] [CrossRef]
- Shang, S.; Huang, C.; Yan, W.; Chen, R.; Cao, J.; Zhang, Y.; Guo, Y.; Du, G. Performance of a computer aided diagnosis system for SARS-CoV-2 pneumonia based on ultrasound images. Eur. J. Radiol. 2022, 146, 110066. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Ho, J.; Smith, D.; Hossain, S.; Hargun, J.; VanBerlo, B.; Murphy, N.; Prager, R.; Rikhraj, K.; Tschirhart, J.; et al. Diagnostic accuracy of an automated classifier for the detection of pleural effusions in patients undergoing lung ultrasound. Am. J. Emerg. Med. 2025, 90, 142–150. [Google Scholar] [CrossRef]
- Shoeibi, A.; Khodatars, M.; Jafari, M.; Ghassemi, N.; Sadeghi, D.; Moridian, P.; Khadem, A.; Alizadehsani, R.; Hussain, S.; Zare, A.; et al. Automated detection and forecasting of COVID-19 using deep learning techniques: A review. Neurocomputing 2024, 577, 127317. [Google Scholar] [CrossRef]
- Mento, F.; Khan, U.; Faita, F.; Smargiassi, A.; Inchingolo, R.; Perrone, T.; Demi, L. State of the art in lung ultrasound, shifting from qualitative to quantitative analyses. Ultrasound Med. Biol. 2022, 48, 2398–2416. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Gallas, B.D.; Hillis, S.L. Generalized Roe and Metz receiver operating characteristic model: Analytic link between simulated decision scores and empirical AUC variances and covariances. J. Med. Imaging 2014, 1, 031006. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 10: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Signorell, A. DescTools: Tools for Descriptive Statistics and Exploratory Data Analysis. Github. Available online: https://github.com/AndriSignorell/DescTools (accessed on 3 June 2025).
- Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. SciPy 2010, 7, 92–96. [Google Scholar] [CrossRef]
- Çallı, E.; Sogancioglu, E.; van Ginneken, B.; van Leeuwen, K.G.; Murphy, K. Deep learning for chest X-ray analysis: A survey. Med. Image Anal. 2021, 72, 102125. [Google Scholar] [CrossRef]
- Baloescu, C.; Toporek, G.; Kim, S.; McNamara, K.; Liu, R.; Shaw, M.M.; McNamara, R.L.; Balasundar, R.; Moore, C.L. Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2312–2320. [Google Scholar] [CrossRef]
- Durrani, N.; Vukovic, D.; van der Burgt, J.; Antico, M.; van Sloun, R.J.G.; Canty, D.; Steffens, M.; Wang, A.; Royse, A.; Royse, C.; et al. Automatic deep learning-based consolidation/collapse classification in lung ultrasound images for COVID-19 induced pneumonia. Sci. Rep. 2022, 12, 17581. [Google Scholar] [CrossRef]
- Bennani, S.; Regnard, N.E.; Ventre, J.; Lassalle, L.; Nguyen, T.; Ducarouge, A.; Dargent, L.; Guillo, E.; Gouhier, E.; Zaimi, S.H.; et al. Using AI to Improve Radiologist Performance in Detection of Abnormalities on Chest Radiographs. Radiology 2023, 309, e230860. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Maranna, S.; Watson, C.; Parange, N. A scoping review on the integration of artificial intelligence in point-of-care ultrasound: Current clinical applications. Am. J. Emerg. Med. 2025, 92, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Nhat, P.T.H.; Van Hao, N.; Tho, P.V.; Kerdegari, H.; Pisani, L.; Thu, L.N.M.; Phuong, L.T.; Duong, H.T.H.; Thuy, D.B.; McBride, A.; et al. Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit. Crit. Care 2023, 27, 257. [Google Scholar] [CrossRef]
- Tsai, C.H.; van der Burgt, J.; Vukovic, D.; Kaur, N.; Demi, L.; Canty, D.; Wang, A.; Royse, A.; Royse, C.; Haji, K.; et al. Automatic deep learning-based pleural effusion classification in lung ultrasound images for respiratory pathology diagnosis. Phys. Med. 2021, 83, 38–45. [Google Scholar] [CrossRef]
- Born, J.; Wiedemann, N.; Cossio, M.; Buhre, C.; Brändle, G.; Leidermann, K.; Goulet, J.; Aujayeb, A.; Moor, M.; Rieck, B.; et al. Accelerating Detection of Lung Pathologies with Explainable Ultrasound Image Analysis. Appl. Sci. 2021, 11, 672. [Google Scholar] [CrossRef]
- Dave, C.; Wu, D.; Tschirhart, J.; Smith, D.; VanBerlo, B.; Deglint, J.; Ali, F.; Chaudhary, R.; VanBerlo, B.B.; Ford, A.B.; et al. Prospective Real-Time Validation of a Lung Ultrasound Deep Learning Model in the ICU. Crit. Care Med. 2023, 51, 301–309. [Google Scholar] [CrossRef]
- Clausdorff Fiedler, H.; Prager, R.; Smith, D.; Wu, D.; Dave, C.; Tschirhart, J.; Wu, B.; Van Berlo, B.; Malthaner, R.; Arntfield, R. Automated Real-Time Detection of Lung Sliding Using Artificial Intelligence: A Prospective Diagnostic Accuracy Study. Chest 2024, 166, 362–370. [Google Scholar] [CrossRef]
- Narang, A.; Bae, R.; Hong, H.; Thomas, Y.; Surette, S.; Cadieu, C.; Chaudhry, A.; Martin, R.P.; McCarthy, P.M.; Rubenson, D.S.; et al. Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use. JAMA Cardiol. 2021, 6, 624–632. [Google Scholar] [CrossRef]
Data Source Subgroup (% Data) | Device Manufacturer Subgroup (% Data) | Male/Female Subgroup (% Data) | ||||||
---|---|---|---|---|---|---|---|---|
The U.S. (52%) | Canada (48%) | Exo (19%) | Sonosite (54%) | Philips (27%) | Male (17%) | Female (15%) | ||
Pleural Effusion | Specificity (95% CI) | 0.94 (0.90–0.98) | 0.83 (0.73–0.93) | 0.93 (0.85–0.99) | 0.85 (0.76–0.93) | 0.95 (0.90–0.99) | 0.92 (0.84–0.99) | 0.92 (0.80–0.99) |
Sensitivity (95% CI) | 0.97 (0.93–0.99) | 0.96 (0.93–0.99) | 0.97 (0.88–0.99) | 0.97 (0.94–0.99) | 0.96 (0.86–0.99) | 0.97 (0.88–0.99) | 0.98 (0.91–0.99) | |
Consolid./Atelec. | Specificity (95% CI) | 0.97 (0.94–0.99) | 0.88 (0.79–0.97) | 0.93 (0.85–0.99) | 0.90 (0.82–0.98) | 0.99 (0.96–0.99) | 0.96 (0.89–0.99) | 0.92 (0.79–0.99) |
Sensitivity (95% CI) | 0.95 (0.90–0.99) | 0.98 (0.95–0.99) | 0.94 (0.83–0.99) | 0.98 (0.95–0.99) | 0.94 (0.83–0.99) | 0.94 (0.84–0.99) | 0.95 (0.88–0.99) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyed Bolouri, S.E.; Dehghan, M.; Nekoui, M.; Buchanan, B.; Jaremko, J.L.; Zonoobi, D.; Nagdev, A.; Kapur, J. AI Enhances Lung Ultrasound Interpretation Across Clinicians with Varying Expertise Levels. Diagnostics 2025, 15, 2145. https://doi.org/10.3390/diagnostics15172145
Seyed Bolouri SE, Dehghan M, Nekoui M, Buchanan B, Jaremko JL, Zonoobi D, Nagdev A, Kapur J. AI Enhances Lung Ultrasound Interpretation Across Clinicians with Varying Expertise Levels. Diagnostics. 2025; 15(17):2145. https://doi.org/10.3390/diagnostics15172145
Chicago/Turabian StyleSeyed Bolouri, Seyed Ehsan, Masood Dehghan, Mahdiar Nekoui, Brian Buchanan, Jacob L. Jaremko, Dornoosh Zonoobi, Arun Nagdev, and Jeevesh Kapur. 2025. "AI Enhances Lung Ultrasound Interpretation Across Clinicians with Varying Expertise Levels" Diagnostics 15, no. 17: 2145. https://doi.org/10.3390/diagnostics15172145
APA StyleSeyed Bolouri, S. E., Dehghan, M., Nekoui, M., Buchanan, B., Jaremko, J. L., Zonoobi, D., Nagdev, A., & Kapur, J. (2025). AI Enhances Lung Ultrasound Interpretation Across Clinicians with Varying Expertise Levels. Diagnostics, 15(17), 2145. https://doi.org/10.3390/diagnostics15172145