Transformer-Based HER2 Scoring in Breast Cancer: Comparative Performance of a Foundation and a Lightweight Model
Abstract
1. Introduction
2. Material and Methods
2.1. Case Collection
2.2. Specimen Staining and Image Acquisition
2.3. Data Preparation and Model Training
2.4. Statistical Analysis
3. Results
3.1. Intra- and Inter-Observer Consistency at the Patch Level
3.2. Performance of the Two Models at the Patch Level
3.3. Performance of the Two Models at the WSI Level
3.4. Inference Time for the Two Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
H&E | Hematoxylin and eosin |
HER2 | Human epidermal growth factor 2 |
IHC | Immunohistochemical staining |
WSI | Whole-slide images |
References
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Hempenius, M.A.; Eenkhoorn, M.A.; Høeg, H.; Dabbs, D.J.; van der Vegt, B.; Sompuram, S.R.; ’t Hart, N.A. Quantitative comparison of immunohistochemical HER2-low detection in an interlaboratory study. Histopathology 2024, 85, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Bornstein-Quevedo, L.; de Anda-González, J.; Lara-Torres, C.O.; Flores-Gutiérrez, J.P.; Dorantes-Heredia, R.; Bautista-Piña, V.; Zaragoza-Vargas, P.; Alcaraz-Wong, A.; Soto-Sañudo, A.K.; Mendoza-Ramírez, S.; et al. Navigating HER2-low testing in invasive breast cancer: Update recommendations for pathologists. J. Pers. Med. 2024, 14, 467. [Google Scholar] [CrossRef] [PubMed]
- Baez-Navarro, X.; van Bockstal, M.R.; Nawawi, D.; Broeckx, G.; Colpaert, C.; Doebar, S.C.; Hogenes, M.C.H.; Koop, E.; Lambein, K.; Peeters, D.J.E.; et al. Interobserver variation in the assessment of immunohistochemistry expression levels in HER2-negative breast cancer: Can we improve the identification of low levels of HER2 expression by adjusting the criteria? An international interobserver study. Mod. Pathol. 2023, 36, 100009. [Google Scholar] [CrossRef] [PubMed]
- Franchina, M.; Pizzimenti, C.; Fiorentino, V.; Martini, M.; Ricciardi, G.R.R.; Silvestris, N.; Ieni, A.; Tuccari, G. Low and ultra-low HER2 in human breast cancer: An effort to define new neoplastic subtypes. Int. J. Mol. Sci. 2023, 24, 12795. [Google Scholar] [CrossRef]
- Pham, M.D.; Balezo, G.; Tilmant, C.; Petit, S.; Salmon, I.; Hadj, S.B.; Fick, R.H.J. Interpretable HER2 scoring by evaluating clinical guidelines through a weakly supervised, constrained deep learning approach. Comput. Med. Imaging Graph. 2023, 108, 102261. [Google Scholar] [CrossRef]
- Jiang, C.; Li, M.; Zheng, C.; Yan, S.; Kong, L.; Wu, Y.; Zhang, J.; Chao, X.; Cai, X.; Feng, W.; et al. Systematic analysis of factors affecting human epidermal growth factor receptor 2 interpretation consistency: Staining protocols, artificial intelligence-based image standardization, and classification criteria. Lab. Invest. 2025, 105, 104134. [Google Scholar] [CrossRef]
- Wróbel, A.; Vandenberghe, M.; Scott, M.; Jones, F.; Matsuo, T.; Boothman, A.M.; Whiteley, J.; Barker, C. Accuracy of human epidermal growth factor receptor 2 (HER2) immunohistochemistry scoring by pathologists in breast cancer, including the HER2-low cutoff: HER2 IHC scoring concordance in breast cancer. Diagn. Pathol. 2025, 20, 35. [Google Scholar] [CrossRef]
- Farshid, G.; Armes, J.; Dessauvagie, B.; Gilhotra, A.; Kumar, B.; Mahajan, H.; Millar, E.; Pathmanathan, N.; Snell, C. Independent validation of a HER2-low focused immunohistochemistry scoring system for enhanced pathologist precision and consistency. Mod. Pathol. 2025, 38, 100693. [Google Scholar] [CrossRef]
- Shaaban, A.M.; Kaur, T.; Provenzano, E. HER2-low breast cancer-current knowledge and future directions. Medicina 2025, 61, 644. [Google Scholar] [CrossRef]
- Rüschoff, J.; Penner, A.; Ellis, I.O.; Hammond, M.E.H.; Lebeau, A.; Osamura, R.Y.; Penault-Llorca, F.; Rojo, F.; Desai, C.; Moh, A.; et al. Global study on the accuracy of human epidermal growth factor receptor 2-low diagnosis in breast cancer. Arch. Pathol. Lab. Med. 2025, 149, 431–438. [Google Scholar] [CrossRef]
- Wu, S.; Shang, J.; Li, Z.; Liu, H.; Xu, X.; Zhang, Z.; Wang, Y.; Zhao, M.; Yue, M.; He, J.; et al. Interobserver consistency and diagnostic challenges in HER2-ultralow breast cancer: A multicenter study. ESMO Open 2025, 10, 104127. [Google Scholar] [CrossRef]
- Khameneh, F.D.; Razavi, S.; Kamasak, M. Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network. Comput. Biol. Med. 2019, 110, 164–174. [Google Scholar] [CrossRef]
- Rasmussen, S.A.; Taylor, V.J.; Surette, A.P.; Barnes, P.J.; Bethune, G.C. Using deep learning to predict final HER2 status in invasive breast cancers that are equivocal (2+) by immunohistochemistry. Appl. Immunohistochem. Mol. Morphol. 2022, 30, 668–673. [Google Scholar] [CrossRef]
- Priego-Torres, B.M.; Lobato-Delgado, B.; Atienza-Cuevas, L.; Sanchez-Morillo, D. Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images. Expert Syst. Appl. 2022, 193, 116471. [Google Scholar] [CrossRef]
- Jha, S.K.; Mishra, P.; Mathur, S.; Singh, G.; Kumar, R.; Aatre, K.; Rengarajan, S. Development and validation of fully automatic deep learning-based algorithms for immunohistochemistry reporting of invasive breast ductal carcinoma. arXiv 2024, arXiv:2406.10893. [Google Scholar] [CrossRef]
- Abdulsadig, R.S.; Williams, B.M.; Burlutskiy, N. Leveraging transfer learning and multiple instance learning for HER2 automatic scoring of H&E whole slide images. arXiv 2024, arXiv:2411.05028. [Google Scholar]
- Selcuk, S.Y.; Yang, X.; Bai, B.; Zhang, Y.; Li, Y.; Aydin, M.; Unal, A.F.; Gomatam, A.; Guo, Z.; Angus, D.M.; et al. Automated HER2 scoring in breast cancer images using deep learning and pyramid sampling. BME Front. 2024, 5, 0048. [Google Scholar] [CrossRef] [PubMed]
- Shamshoian, J.; Shanis, Z.; Cabeen, R.; Yu, L.; Chakraborty, S.; Thibault, M.; Martin, B.; Pagidela, H.; Juyal, D.; Javed, S.A.; et al. Impact of a machine learning-powered algorithm on pathologist HER2 IHC scoring in breast cancer. medRxiv 2025. [Google Scholar] [CrossRef]
- Wu, S.; Li, X.; Miao, J.; Xian, D.; Yue, M.; Liu, H.; Fan, S.; Wei, W.; Liu, Y. Artificial intelligence for assisted HER2 immunohistochemistry evaluation of breast cancer: A systematic review and meta-analysis. Pathol. Res. Pract. 2024, 260, 155472. [Google Scholar] [CrossRef]
- Thomas, F.; Cormier, B.; Bossard, C.; Poulet, B.; Guinaudeau, E.; Salhi, Y.; Chokri, I.; Jossic, F.; Lambros, L.; De Pinieux, I.; et al. Evaluation of AI-assisted HER2 scoring in breast carcinoma-stained whole-slide images. J. Clin. Oncol. 2024, 42 (Suppl. 16), e13029. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Schnitt, S.J.; Vincent-Salomon, A.; Canas-Marques, R.; Colon, E.; Kantekure, K.; Maklakovski, M.; Finck, W.; Thomassin, J.; Globerson, Y.; et al. Fully automated artificial intelligence solution for human epidermal growth factor receptor 2 immunohistochemistry scoring in breast cancer: A multireader study. JCO Precis. Oncol. 2024, 8, e2400353. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, J.; Peng, H.; Liu, M.; Xiao, B.; Fu, J.; Yuan, L. TinyViT: Fast pretraining distillation for small vision transformers. In Computer Vision—ECCV 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer Nature: Cham, Germany, 2022; pp. 68–85. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, C.; Zheng, S.; Zhang, K.; Sun, L.; Shui, Z.; Zhang, Y.; Li, H.; Yang, L. PathAsst: A generative foundation AI assistant towards artificial general intelligence of pathologyProc. AAAI Conf. Artif. Intel. 2024, 38, 5034–5042. [Google Scholar] [CrossRef]
- Lu, M.Y.; Chen, B.; Williamson, D.F.K.; Chen, R.J.; Liang, I.; Ding, T.; Jaume, G.; Odintsov, I.; Le, L.P.; Gerber, G.; et al. A visual-language foundation model for computational pathology. Nat. Med. 2024, 30, 863–874. [Google Scholar] [CrossRef]
- Vorontsov, E.; Bozkurt, A.; Casson, A.; Shaikovski, G.; Zelechowski, M.; Severson, K.; Zimmermann, E.; Hall, J.; Tenenholtz, N.; Fusi, N.; et al. A foundation model for clinical-grade computational pathology and rare cancers detection. Nat. Med. 2024, 30, 2924–2935. [Google Scholar] [CrossRef] [PubMed]
- Ochi, M.; Komura, D.; Ishikawa, S. Pathology foundation models. JMA J. 2025, 8, 121–130. [Google Scholar] [CrossRef]
- Wu, C.H.; Chang, M.H.; Tsai, H.H.; Yang, M.L.; Peng, Y.T. Consecutive cytokeratin immunochemistry-supervised algorithm for predicting tumor areas in Ki67 breast cancer images. Hum. Biol. 2024, 94, 729–737. [Google Scholar]
- Che, Y.; Ren, F.; Zhang, X.; Cui, L.; Wu, H.; Zhao, Z. Immunohistochemical HER2 recognition and analysis of breast cancer based on deep learning. Diagnostics 2023, 13, 263. [Google Scholar] [CrossRef]
- Tarantino, P.; Curigliano, G.; Tolaney, S.M. Navigating the HER2-low paradigm in breast oncology: New standards, future horizons. Cancer Discov. 2022, 12, 2026–2030. [Google Scholar] [CrossRef]
- Öttl, M.; Steenpass, J.; Wilm, F.; Qiu, J.; Rübner, M.; Lang-Schwarz, C.; Taverna, C.; Tava, F.; Hartmann, A.; Huebner, H.; et al. Fully automatic HER2 tissue segmentation for interpretable HER2 scoring. J. Pathol. Inform. 2025, 17, 100435. [Google Scholar] [CrossRef]
- Gustavson, M.; Haneder, S.; Spitzmueller, A.; Kapil, A.; Schneider, K.; Cecchi, F.; Sridhar, S.; Schmidt, G.; Lakis, S.; Teichert, R.; et al. Abstract PD6-01: Novel approach to HER2 quantification: Digital pathology coupled with AI-based image and data analysis delivers objective and quantitative HER2 expression analysis for enrichment of responders to trastuzumab deruxtecan (T-DXd; DS-8201), specifically in HER2-low patients. Cancer Res. 2021, 81 (Suppl. 4), PD6-01. [Google Scholar] [CrossRef]
- Pedraza, A.; Gonzalez, L.; Deniz, O.; Bueno, G. Deep Neural Networks for HER2 Grading of Whole Slide Images with Subclasses Levels. Algorithms 2024, 17, 97. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, X.; Chen, K.; Hao, L.; Liu, Y. HAHNet: A convolutional neural network for HER2 status classification of breast cancer. BMC Bioinform. 2023, 24, 353. [Google Scholar] [CrossRef] [PubMed]
HER2: 0 | HER2: 1+ | HER2: 2+ | HER2: 3+ | Total | |
---|---|---|---|---|---|
Dataset | 13 | 18 | 12 | 6 | 49 |
Training | 5 | 13 | 10 | 3 | 31 |
Validation | 5 | 4 | 1 | 1 | 11 |
Test | 3 | 1 | 1 | 2 | 7 |
WSI test set | 15 | 19 | 18 | 14 | 66 * |
Non-Tumor | 0 | 1+ | 2+ | 3+ | Total | |
---|---|---|---|---|---|---|
Training | 986 | 794 | 534 | 282 | 91 | 2687 |
Validation | 541 | 245 | 175 | 158 | 323 | 1442 |
Test | 273 | 181 | 165 | 158 | 203 | 980 |
Total | 1800 | 1220 | 874 | 598 | 617 | 5109 |
Binary Tasks | Model V (Virchow) | Model T (TinyVit) | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Sensitivity | F1 Score | Accuracy | Precision | Sensitivity | F1 Score | |
0, 1+, 2+ vs. 3+ * | 100% | 100% | 100% | 1.00 | 95.5% | 82.4% | 100% | 1.00 |
0, 1+ vs. 2+ ** | 84.6% | 100% | 55.6% | 0.714 | 80.8% | 83.3% | 55.6% | 0.667 |
0 vs. 1+, 2+ *** | 94.2% | 97.2% | 94.6% | 0.959 | 86.5% | 94.1% | 86.5% | 0.901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-H.; Chang, M.-H.; Tsai, H.-H.; Chien, C.-J.; Wang, J.-C. Transformer-Based HER2 Scoring in Breast Cancer: Comparative Performance of a Foundation and a Lightweight Model. Diagnostics 2025, 15, 2131. https://doi.org/10.3390/diagnostics15172131
Wang Y-H, Chang M-H, Tsai H-H, Chien C-J, Wang J-C. Transformer-Based HER2 Scoring in Breast Cancer: Comparative Performance of a Foundation and a Lightweight Model. Diagnostics. 2025; 15(17):2131. https://doi.org/10.3390/diagnostics15172131
Chicago/Turabian StyleWang, Yeh-Han, Min-Hsiang Chang, Hsin-Hsiu Tsai, Chun-Jui Chien, and Jian-Chiao Wang. 2025. "Transformer-Based HER2 Scoring in Breast Cancer: Comparative Performance of a Foundation and a Lightweight Model" Diagnostics 15, no. 17: 2131. https://doi.org/10.3390/diagnostics15172131
APA StyleWang, Y.-H., Chang, M.-H., Tsai, H.-H., Chien, C.-J., & Wang, J.-C. (2025). Transformer-Based HER2 Scoring in Breast Cancer: Comparative Performance of a Foundation and a Lightweight Model. Diagnostics, 15(17), 2131. https://doi.org/10.3390/diagnostics15172131