AI-Powered Adaptive Disability Prediction and Healthcare Analytics Using Smart Technologies
Abstract
1. Introduction
- It develops a scalable AI-driven disability monitoring system that utilizes health sensors to collect physiological and behavioral data, ensuring latency and rapid response through local-level edge processing.
- It explores federated learning techniques to protect health records while ensuring compliance with privacy policies and enhancing trust in big data analytics for medical services.
- It utilizes a lightweight intelligent algorithm to observe health metrics, provide personalized healthcare and timely interventions, and offer adaptive solutions for real-time data analysis.
2. Related Work
Problem Statement
3. Materials and Methods
3.1. Clinical Role of Biomarkers in Disability Detection
3.2. Discussion
3.3. Logistic Regression with Multi-Modal Data for Disability Prediction
3.4. Security Aspects of Disability Prediction Using AI and IoMT
3.5. Proposed Algorithms
4. Simulation and Experimental Analysis
Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Idrissi, H.; Palmieri, P. Agent-based blockchain model for robust authentication and authorization in IoT-based healthcare systems. J. Supercomput. 2024, 80, 6622–6660. [Google Scholar] [CrossRef]
- Allam, A.H.; Gomaa, I.; Zayed, H.H.; Taha, M. IoT-based eHealth using blockchain technology: A survey. Clust. Comput. 2024, 27, 7083–7110. [Google Scholar] [CrossRef]
- Al-Hawawreh, M.; Hossain, M.S. A Human-Centered Quantum Machine Learning Framework for Attack Detection in IoT-Based Healthcare Industry 5.0. IEEE Internet Things J. 2025. early access. [Google Scholar] [CrossRef]
- Moloudian, G.; Hosseinifard, M.; Kumar, S.; Simorangkir, R.B.; Buckley, J.L.; Song, C.; Fantoni, G.; O’Flynn, B. RF energy harvesting techniques for battery-less wireless sensing, Industry 4.0, and Internet of Things: A review. IEEE Sens. J. 2024, 24, 5732–5745. [Google Scholar] [CrossRef]
- Hakiri, A.; Gokhale, A.; Yahia, S.B.; Mellouli, N. A comprehensive survey on digital twin for future networks and emerging Internet of Things industry. Comput. Netw. 2024, 244, 110350. [Google Scholar] [CrossRef]
- Ullah, S.; Li, J.; Chen, J.; Ali, I.; Khan, S.; Ahad, A.; Ullah, F.; Leung, V.C. A Survey on Emerging Trends and Applications of 5G and 6G to Healthcare Environments. ACM Comput. Surv. 2024, 57, 1–36. [Google Scholar] [CrossRef]
- Mahdi, M.N.; Ahmad, A.R.; Qassim, Q.S.; Natiq, H.; Subhi, M.A.; Mahmoud, M. From 5G to 6G technology: Meets energy, internet-of-things and machine learning: A survey. Appl. Sci. 2021, 11, 8117. [Google Scholar] [CrossRef]
- Bourechak, A.; Zedadra, O.; Kouahla, M.N.; Guerrieri, A.; Seridi, H.; Fortino, G. At the confluence of artificial intelligence and edge computing in iot-based applications: A review and new perspectives. Sensors 2023, 23, 1639. [Google Scholar] [CrossRef]
- Ficili, I.; Giacobbe, M.; Tricomi, G.; Puliafito, A. From sensors to data intelligence: Leveraging IoT, cloud, and edge computing with AI. Sensors 2025, 25, 1763. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, C. Artificial intelligence and edge computing for teaching quality evaluation based on 5G-enabled wireless communication technology. J. Cloud Comput. 2023, 12, 45. [Google Scholar] [CrossRef]
- Sharma, M.; Tomar, A.; Hazra, A. Edge computing for industry 5.0: Fundamental, applications and research challenges. IEEE Internet Things J. 2024, 11, 19070–19093. [Google Scholar] [CrossRef]
- Lin, P.C.; Tsai, Y.S.; Yeh, Y.M.; Shen, M.R. Cutting-edge ai technologies meet precision medicine to improve cancer care. Biomolecules 2022, 12, 1133. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Dua, A.; Gupta, S. Role of emerging technologies in future IoT-driven Healthcare 4.0 technologies: A survey, current challenges and future directions. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 361–407. [Google Scholar] [CrossRef]
- Chakraborty, C.; Kishor, A. Real-time cloud-based patient-centric monitoring using computational health systems. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1613–1623. [Google Scholar] [CrossRef]
- Li, Y.H.; Li, Y.L.; Wei, M.Y.; Li, G.Y. Innovation and challenges of artificial intelligence technology in personalized healthcare. Sci. Rep. 2024, 14, 18994. [Google Scholar] [CrossRef] [PubMed]
- Murala, D.K.; Panda, S.K.; Dash, S.P. MedMetaverse: Medical care of chronic disease patients and managing data using artificial intelligence, blockchain, and wearable devices state-of-the-art methodology. IEEE Access 2023, 11, 138954–138985. [Google Scholar] [CrossRef]
- Gillani, N.; Arslan, T. Intelligent sensing technologies for the diagnosis, monitoring and therapy of Alzheimer’s disease: A systematic review. Sensors 2021, 21, 4249. [Google Scholar] [CrossRef]
- Hasan, M.K.; Ghazal, T.M.; Saeed, R.A.; Pandey, B.; Gohel, H.; Eshmawi, A.A.; Abdel-Khalek, S.; Alkhassawneh, H.M. A review on security threats, vulnerabilities, and counter measures of 5G enabled Internet-of-Medical-Things. IET Commun. 2022, 16, 421–432. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Dehghantanha, A.; Parizi, R.M.; Srivastava, G.; Karimipour, H. Secure intelligent fuzzy blockchain framework: Effective threat detection in iot networks. Comput. Ind. 2023, 144, 103801. [Google Scholar] [CrossRef]
- Singh, G.; Rana, S.; Mishra, D.; Khan, M.K. Blockchain-Based Access Control Architecture for Enhancing Authorized E-Healthcare Data Sharing Services in Industry 5.0. IEEE Trans. Consum. Electron. 2024. early access. [Google Scholar] [CrossRef]
- Amin, M.S.; Ahmad, S.; Loh, W.K. Federated learning for Healthcare 5.0: A comprehensive survey, taxonomy, challenges, and solutions. Soft Comput. 2025, 29, 673–700. [Google Scholar] [CrossRef]
- Wazid, M.; Das, A.K.; Mohd, N.; Park, Y. Healthcare 5.0 security framework: Applications, issues and future research directions. IEEE Access 2022, 10, 129429–129442. [Google Scholar] [CrossRef]
- Onasanya, A.; Elshakankiri, M. Smart integrated IoT healthcare system for cancer care. Wirel. Netw. 2021, 27, 4297–4312. [Google Scholar] [CrossRef]
- Balasundaram, A.; Routray, S.; Prabu, A.V.; Krishnan, P.; Malla, P.P.; Maiti, M. Internet of things (IoT)-based smart healthcare system for efficient diagnostics of health parameters of patients in emergency care. IEEE Internet Things J. 2023, 10, 18563–18570. [Google Scholar] [CrossRef]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef]
- Baseer, K.K.; Sivakumar, K.; Veeraiah, D.; Chhabra, G.; Lakineni, P.K.; Pasha, M.J.; Gandikota, R.; Harikrishnan, G. Healthcare diagnostics with an adaptive deep learning model integrated with the Internet of medical Things (IoMT) for predicting heart disease. Biomed. Signal Process. Control 2024, 92, 105988. [Google Scholar] [CrossRef]
- Thirunavukarasu, R.; Gnanasambandan, R.; Gopikrishnan, M.; Palanisamy, V. Towards computational solutions for precision medicine based big data healthcare system using deep learning models: A review. Comput. Biol. Med. 2022, 149, 106020. [Google Scholar] [CrossRef]
- Karatas, M.; Eriskin, L.; Deveci, M.; Pamucar, D.; Garg, H. Big Data for Healthcare Industry 4.0: Applications, challenges and future perspectives. Expert Syst. Appl. 2022, 200, 116912. [Google Scholar] [CrossRef]
- Babar, M.; Qureshi, B.; Koubaa, A. Review on Federated Learning for digital transformation in healthcare through big data analytics. Future Gener. Comput. Syst. 2024, 160, 14–28. [Google Scholar] [CrossRef]
- Adam, M.; Hammoudeh, M.; Alrawashdeh, R.; Alsulaimy, B. A survey on security, privacy, trust, and architectural challenges in IoT systems. IEEE Access 2024, 2, 57128–57149. [Google Scholar] [CrossRef]
- Alzu’Bi, A.; Alomar, A.A.; Alkhaza’Leh, S.; Abuarqoub, A.; Hammoudeh, M. A review of privacy and security of edge computing in smart healthcare systems: Issues, challenges, and research directions. Tsinghua Sci. Technol. 2024, 29, 1152–1180. [Google Scholar] [CrossRef]
- Refaee, E.; Parveen, S.; Begum, K.M.J.; Parveen, F.; Raja, M.C.; Gupta, S.K.; Krishnan, S. Secure and scalable healthcare data transmission in IoT based on optimized routing protocols for mobile computing applications. Wirel. Commun. Mob. Comput. 2022, 2022, 5665408. [Google Scholar] [CrossRef]
- Chakraborty, C.; Othman, S.B.; Almalki, F.A.; Sakli, H. FC-SEEDA: Fog computing-based secure and energy efficient data aggregation scheme for Internet of healthcare Things. Neural Comput. Appl. 2024, 36, 241–257. [Google Scholar] [CrossRef]
- Lakshmanan, R.; Balakrishnan, S.; Mahendran, A.; Subramanian, A.K. Multimodal healthcare data classification with Tangent Namib Beetle Optimization based routing in blockchain based IoT. Comput. Electr. Eng. 2024, 120, 109614. [Google Scholar] [CrossRef]
- Balakrishnan, D.; Rajkumar, T.D.; Dhanasekaran, S.; Murugan, B.S. Secure and energy-efficient data transmission framework for IoT-based healthcare applications using EMCQLR and EKECC. Clust. Comput. 2024, 27, 2999–3016. [Google Scholar] [CrossRef]
- Gupta, S.; Chithaluru, P.; Stephan, T.; Nafisa, S.; Kumar, S. HSPBCI: A robust framework for secure healthcare data management in blockchain-based IoT systems. Multimed. Tools Appl. 2024, 84, 27695–27719. [Google Scholar] [CrossRef]
- Geng, Y.; Li, Q.; Yang, G.; Qiu, W. Logistic regression. In Practical Machine Learning Illustrated with KNIME; Springer Nature: Singapore, 2024; pp. 99–132. [Google Scholar]
- Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A public domain dataset for human activity recognition using smartphones. In Proceedings of the ESANN 2013 Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013; Volume 3, pp. 3–4. [Google Scholar]
- Burkhardt, F.; Paeschke, A.; Rolfes, M.; Sendlmeier, W.F.; Weiss, B. A database of German emotional speech. In Proceedings of the INTERSPEECH 2005—Eurospeech, 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, 4–8 September 2005; Volume 5, pp. 1517–1520. [Google Scholar]
Phase | Enhanced Functionality and Contribution |
---|---|
xHealthcare Data Collection and Preprocessing |
|
AI-Driven Early Disability Detection |
|
Lightweight Trust Level Prediction Computation |
|
Parameter | Value |
---|---|
Initial energy | 2 j |
Health Sensors | 30, 60, 90, 120, 150 |
Number of edges | 10 |
Size of packets | 512 bits |
Nodes deployment | Random |
Sensing radius | 3 m |
Data packets | 5 to 50 |
Edge Devices | 20 |
Malicious nodes | 30 |
MAC layer | IEEE 802.11b |
Analyzing Scenarios | Varying health devices and sensing rates |
Simulations run | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamri, M.; Humayun, M.; Haseeb, K.; Abbas, N.; Ramzan, N. AI-Powered Adaptive Disability Prediction and Healthcare Analytics Using Smart Technologies. Diagnostics 2025, 15, 2104. https://doi.org/10.3390/diagnostics15162104
Alamri M, Humayun M, Haseeb K, Abbas N, Ramzan N. AI-Powered Adaptive Disability Prediction and Healthcare Analytics Using Smart Technologies. Diagnostics. 2025; 15(16):2104. https://doi.org/10.3390/diagnostics15162104
Chicago/Turabian StyleAlamri, Malak, Mamoona Humayun, Khalid Haseeb, Naveed Abbas, and Naeem Ramzan. 2025. "AI-Powered Adaptive Disability Prediction and Healthcare Analytics Using Smart Technologies" Diagnostics 15, no. 16: 2104. https://doi.org/10.3390/diagnostics15162104
APA StyleAlamri, M., Humayun, M., Haseeb, K., Abbas, N., & Ramzan, N. (2025). AI-Powered Adaptive Disability Prediction and Healthcare Analytics Using Smart Technologies. Diagnostics, 15(16), 2104. https://doi.org/10.3390/diagnostics15162104