Vestibulo-Ocular Reflex Results in Patients with Intralabyrinthine Schwannomas: Case Series with a Literature Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Series
2.2. Literature Review
3. Results
3.1. Case Series Presentation
3.1.1. Case 1
3.1.2. Case 2
3.1.3. Case 3
3.1.4. Case 4
3.2. Literature Review
4. Discussion
4.1. Impaired VOR Function in ILS
4.2. Decreased Signal Intensity of Inner Ear in ILS
4.3. Potential Mechanisms of VOR Dysfunction in ILS
- (1)
- Mechanical compression and anatomical disruption: The subtype and location of the tumor are considered determinants of audiovestibular dysfunction in ILS. It is believed that hearing loss and vestibular hypofunction are the consequences of direct compression or destruction of adjacent inner ear end organs [15,21]. Our cases, all involving vestibular structures, consistently showed abnormal caloric results, supporting this mechanical basis. Nonetheless, vestibular hypofunction is not exclusive to lesions involving the vestibule. West et al. [12] reported significantly reduced mean VOR gain, worse dizziness handicap scores, and decreased caloric response in ILSves patients, but also noted vestibular hypofunction in ILScoch patients, where tumors were confined to the cochlea. These results may suggest that while mechanical disruption is important, other mechanisms may contribute even in the absence of direct vestibular involvement.
- (2)
- ELH and inner ear fluid imbalance: A second possible mechanism involves the development of ELH. Several studies have described an association between schwannoma and ELH, which may arise due to impaired endolymphatic outflow or altered labyrinthine homeostasis [25,26]. Venkatasamy et al. [25] found that 47% of ILS cases were associated with ipsilateral ELH using non-enhanced high-resolution T2-weighted imaging. In contrast, Pollion et al. [26] observed ELH in only 7% of ILS cases on gadolinium-enhanced MRI. Notably, the majority of Poillon’s cases were intracochlear, whereas subtype data were not specified in Venkatasamy’s study. These discrepancies may reflect differences in imaging modality or tumor subtype. In our series, the two intravestibulocochlear ILS cases showed decreased signal intensity in the SCCs, possibly reflecting altered endolymphatic flow or protein accumulation. These findings are consistent with the hypothesis that tumor compression of the vestibular labyrinth, cochlear duct, or adjacent vasculature may impair endolymph circulation and lead to fluid imbalance. It is also possible that ILS induces subclinical inflammation, contributing to ELH through microvascular changes or epithelial dysfunction [27].
- (3)
- Inflammatory or immune response and microenvironmental alterations: A third potential mechanism involves inflammatory and microenvironmental changes within the labyrinth. Although specific studies on ILS are lacking, findings from VS research provide a plausible framework. In VS, neoplastic Schwann cells have been shown to secrete pro-inflammatory cytokines such as transforming growth factor-β1, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, intracellular adhesion molecule-1, and vascular endothelial growth factor [28,29,30]. These factors can promote tumor proliferation, mediate neural injury, and increase vascular permeability, particularly across the blood–labyrinth barrier, which is a critical regulator of ionic and fluid homeostasis in the inner ear [31]. Although not yet explored in ILS, similar mechanisms may occur at a more localized or subclinical level. Further proteomics and metabolomics of ILS are required to investigate the presence and role of cytokines and barrier integrity in ILS.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D-SPACE | 3D sampling perfection with application-optimized contrasts using different flip angle evolutions |
AR | asymmetry ratio |
CP | canal paresis |
CSs | corrective saccades |
ELH | endolymphatic hydrops |
ILS | intralabyrinthine schwannoma |
MD | Ménière’s disease |
MRI | magnetic resonance imaging |
VEMP | vestibular evoked myogenic potential |
vHIT | video head impulse test |
VOR | vestibulo-ocular reflex |
SCCs | semicircular canals |
References
- Marinelli, J.P.; Lohse, C.M.; Carlson, M.L. Incidence of Intralabyrinthine Schwannoma: A Population-based Study Within the United States. Otol. Neurotol. 2018, 39, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Elias, T.G.A.; Perez Neto, A.; Zica, A.T.S.; Antunes, M.L.; Penido, N.O. Different clinical presentation of intralabyrinthine schwannomas—A systematic review. Braz. J. Otorhinolaryngol. 2019, 85, 111–120. [Google Scholar] [CrossRef]
- Kennedy, R.J.; Shelton, C.; Salzman, K.L.; Davidson, H.C.; Harnsberger, H.R. Intralabyrinthine schwannomas: Diagnosis, management, and a new classification system. Otol. Neurotol. 2004, 25, 160–167. [Google Scholar] [CrossRef]
- Salzman, K.L.; Childs, A.M.; Davidson, H.C.; Kennedy, R.J.; Shelton, C.; Harnsberger, H.R. Intralabyrinthine schwannomas: Imaging diagnosis and classification. AJNR Am. J. Neuroradiol. 2012, 33, 104–109. [Google Scholar] [CrossRef]
- Van Abel, K.M.; Carlson, M.L.; Link, M.J.; Neff, B.A.; Beatty, C.W.; Lohse, C.M.; Eckel, L.J.; Lane, J.I.; Driscoll, C.L. Primary inner ear schwannomas: A case series and systematic review of the literature. Laryngoscope 2013, 123, 1957–1966. [Google Scholar] [CrossRef]
- Dubernard, X.; Somers, T.; Veros, K.; Vincent, C.; Franco-Vidal, V.; Deguine, O.; Bordure, P.; Linder, T.; Lescanne, E.; Ayache, D.; et al. Clinical presentation of intralabyrinthine schwannomas: A multicenter study of 110 cases. Otol. Neurotol. 2014, 35, 1641–1649. [Google Scholar] [CrossRef]
- Wagner, F.; Herrmann, E.; Wiest, R.; Raabe, A.; Bernasconi, C.; Caversaccio, M.; Vibert, D. 3D-constructive interference into steady state (3D-CISS) labyrinth signal alteration in patients with vestibular schwannoma. Auris Nasus Larynx 2018, 45, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Hong, H.S.; Lee, J.D. Association of audiovestibular findings with fluid-attenuated inversion recovery magnetic resonance imaging in patients with vestibular schwannoma. Clin. Neurol. Neurosurg. 2024, 244, 108402. [Google Scholar] [CrossRef] [PubMed]
- Waissbluth, S.; Sepúlveda, V.; Leung, J.S.; Oyarzún, J. Caloric and video head impulse test dissociated results in dizzy patients. Front. Neurol. 2022, 13, 1000318. [Google Scholar] [CrossRef]
- Abrahamsen, E.R.; Christensen, A.E.; Hougaard, D.D. Intra- and Interexaminer Variability of Two Separate Video Head Impulse Test Systems Assessing All Six Semicircular Canals. Otol. Neurotol. 2018, 39, e113–e122. [Google Scholar] [CrossRef]
- Leng, Y.; Fan, W.; Liu, Y.; Xia, K.; Zhou, R.; Liu, J.; Wang, H.; Ma, H.; Liu, B. Comparison between audio-vestibular findings and contrast-enhanced MRI of inner ear in patients with unilateral Ménière’s disease. Front. Neurosci. 2023, 17, 1128942. [Google Scholar] [CrossRef] [PubMed]
- West, N.C.; Groth, J.B.; Cayé-Thomasen, P. Does Location of Intralabyrinthine Vestibular Schwannoma Determine Objective and Subjective Vestibular Function? Otol. Neurotol. 2024, 45, 319–325. [Google Scholar] [CrossRef]
- Lee, S.U.; Bae, Y.J.; Kim, H.J.; Choi, J.Y.; Song, J.J.; Choi, B.Y.; Choi, B.S.; Koo, J.W.; Kim, J.S. Intralabyrinthine Schwannoma: Distinct Features for Differential Diagnosis. Front. Neurol. 2019, 10, 750. [Google Scholar] [CrossRef]
- Plontke, S.K.; Rahne, T.; Pfister, M.; Götze, G.; Heider, C.; Pazaitis, N.; Strauss, C.; Caye-Thomasen, P.; Kösling, S. Intralabyrinthine schwannomas: Surgical management and hearing rehabilitation with cochlear implants. Hno 2017, 65, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Slattery, E.L.; Babu, S.C.; Chole, R.A.; Zappia, J.J. Intralabyrinthine schwannomas mimic cochleovestibular disease: Symptoms from tumor mass effect in the labyrinth. Otol. Neurotol. 2015, 36, 167–171. [Google Scholar] [CrossRef]
- Machner, B.; Gottschalk, S.; Sander, T.; Helmchen, C.; Rambold, H. Intralabyrinthine schwannoma affecting the low but not high frequency function of the vestibulo-ocular reflex: Implications for the clinical diagnosis of chronic peripheral vestibular deficits. J. Neurol. Neurosurg. Psychiatry 2007, 78, 772–774. [Google Scholar] [CrossRef]
- Nishimura, K.; Murofushi, T.; Hakuba, N. Case report: Concurrent intravestibular schwannoma mimicking Ménière’s disease and cochlear hydrops detected via delayed three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging. Front. Neurol. 2022, 13, 1043452. [Google Scholar] [CrossRef]
- Reda, J.D.; West, N.; Cayé-Thomasen, P. Intracochlear Vestibular Schwannoma Presenting with Mixed Hearing Loss. J. Int. Adv. Otol. 2021, 17, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Schutt, C.A.; Kveton, J.F. Cochlear implantation after resection of an intralabyrinthine schwannoma. Am. J. Otolaryngol. 2014, 35, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Olsgård Hansen, J.; Cramer West, N.; Cayé-Thomasen, P. Intralabyrinthine Schwannoma Mimicking Posterior Canalithiasis. J. Int. Adv. Otol. 2024, 20, 279–282. [Google Scholar] [CrossRef]
- Lee, S.U.; Kim, H.J.; Choi, J.Y.; Song, J.J.; Choi, B.S.; Kim, J.S. Teaching Video NeuroImages: Intralabyrinthine schwannoma masquerading as Ménière disease. Neurology 2020, 94, e1227–e1228. [Google Scholar] [CrossRef]
- McCaslin, D.L.; Rivas, A.; Jacobson, G.P.; Bennett, M.L. The dissociation of video head impulse test (vHIT) and bithermal caloric test results provide topological localization of vestibular system impairment in patients with “definite” Ménière’s disease. Am. J. Audiol. 2015, 24, 1–10. [Google Scholar] [CrossRef]
- Hannigan, I.P.; Welgampola, M.S.; Watson, S.R.D. Dissociation of caloric and head impulse tests: A marker of Meniere’s disease. J. Neurol. 2021, 268, 431–439. [Google Scholar] [CrossRef]
- Constanzo, F.; Teixeira, B.C.A.; Sens, P.; Escuissato, D.; Ramina, R. Relationship between Signal Intensity of the Labyrinth and Cochleovestibular Testing and Morphologic Features of Vestibular Schwannoma. J. Neurol. Surg. B Skull Base 2022, 83, e208–e215. [Google Scholar] [CrossRef] [PubMed]
- Venkatasamy, A.; Bretz, P.; Karol, A.; Karch-Georges, A.; Charpiot, A.; Veillon, F. MRI of endolymphatic hydrops in patients with intralabyrinthine schwannomas: A case-controlled study using non-enhanced T2-weighted images at 3 T. Eur. Arch. Otorhinolaryngol. 2021, 278, 1821–1827. [Google Scholar] [CrossRef] [PubMed]
- Poillon, G.; Horion, J.; Daval, M.; Bouccara, D.; Hautefort, C.; Housset, J.; Levy, D.; Purcell, Y.; Savatovsky, J.; Toupet, M.; et al. MRI characteristics of intralabyrinthine schwannoma on post-contrast 4 h-delayed 3D-FLAIR imaging. Diagn. Interv. Imaging 2022, 103, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, B.; Carlson, M.L.; Jethanamest, D. Intralabyrinthine Schwannomas: Disease Presentation, Tumor Management, and Hearing Rehabilitation. J. Neurol. Surg. B Skull Base 2019, 80, 196–202. [Google Scholar] [CrossRef]
- Taurone, S.; Bianchi, E.; Attanasio, G.; Di Gioia, C.; Ierinó, R.; Carubbi, C.; Galli, D.; Pastore, F.S.; Giangaspero, F.; Filipo, R.; et al. Immunohistochemical profile of cytokines and growth factors expressed in vestibular schwannoma and in normal vestibular nerve tissue. Mol. Med. Rep. 2015, 12, 737–745. [Google Scholar] [CrossRef]
- Dilwali, S.; Landegger, L.D.; Soares, V.Y.; Deschler, D.G.; Stankovic, K.M. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage. Sci. Rep. 2015, 5, 18599. [Google Scholar] [CrossRef]
- Vasilijic, S.; Seist, R.; Yin, Z.; Xu, L.; Stankovic, K.M. Immune profiling of human vestibular schwannoma secretions identifies TNF-α and TWEAK as cytokines with synergistic potential to impair hearing. J. Neuroinflammation 2025, 22, 35. [Google Scholar] [CrossRef]
- Bowen, A.J.; Carlson, M.L.; Lane, J.I. Inner Ear Enhancement With Delayed 3D-FLAIR MRI Imaging in Vestibular Schwannoma. Otol. Neurotol. 2020, 41, 1274–1279. [Google Scholar] [CrossRef] [PubMed]
Case No. | Age (Year) | Sex | Symptoms | Location and Diameter | Subtype | PTA of the Affected Side | Audiogram | vHIT (Anterior/Horizontal/Posterior SCC) | Caloric Test | cVEMP | oVEMP |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 60 | F | Recurrent vertigo, tinnitus, HL | Right 3.6 mm | Intravestibulocochlear | >95 | PSNHL | Decreased right mean VOR gain and CSs (0.4/0.74/0.35) | CP = 84% right side hypofunction | NP | NP |
2 | 14 | M | HL, aural fullness, recurrent vertigo | Left 4.3 mm | Intravestibular | 45 | LFHL | Decreased left mean VOR gain and CSs (0.7/0.64/0.75) | CP = 100% left side hypofunction | AR = 0.53 | Absent |
3 | 65 | F | Recurrent vertigo, tinnitus, HL | Right 8 mm | Intravestibulocochlear | >95 | PSNHL | Normal (0.74/0.88/0.78) | CP = 42% right side hypofunction | Normal | Absent |
4 | 45 | F | Tinnitus, HL, recurrent vertigo | Right 4.3 mm | Intravestibular | 48 | LFHL | NP | CP = 100% right side hypofunction | Absent on unaffected side | Absent on both sides |
Authors | N | Radiological Classification Used | Subtypes | Nystagmus | Caloric Test | vHIT |
---|---|---|---|---|---|---|
Dubernard et al. [6] | 110 | Kennedy [3] | 21 intravestibular, 55 intracochlear, 13 intravestibulocochlear, 16 transmodiolar, 3 transmacular, 2 tympanolabyrinthine and transotic schwannoma | NP | Abnormal in 56/72 | NP |
West et al. [12] | 20 | Salzman [4] | 7 intravestibular, 7 intracochlear, 6 intravestibulocochlear schwannoma | NP | Unilateral weakness in ILSves was 100% and 14% in ILScoch | The median gain of horizontal SCC was 0.40 for ILSves and 1.02 for ILScoch. The mean gain of anterior SCC was 0.50 for ILSves and 1.52 for ILScoch. CSs were found in 6, 12, and 10 cases of anterior, horizontal, and posterior SCC, respectively, in ILSves |
Lee et al. [13] | 16 | Van Abel [5] | 3 intravestibular, 6 intracochlear, 3 intravestibulocochlear, 2 transmodiolar, 1 transmacular schwannoma | SN was observed in 3/14, vibration-induced nystagmus in 7/13 | Unilateral weakness was found in 8/11 | Abnormal in 6/11 for horizontal, 4/11 for anterior, and 5/11 for posterior SCC. CSs were not mentioned in detail |
Plontke et al. [14] | 12 | Salzman [4] | 3 intravestibular, 6 intracochlear, 1 intravestibulocochlear, 1 transmodiolar, 1 transotic schwannoma | Provocational nystagmus in 1 case | DP range 0–34.7% in 8 patients, 3 cases had DP > 25% | Decreased mean VOR gain in 3/5 for the horizontal, 3/4 for the anterior, and 3/4 for the posterior SCC. CSs were not mentioned in detail |
Slattery et al. [15] | 8 | NM | 4 intravestibular, 4 intracochlear schwannoma | Nystagmus in all positions in 1 case | 2 cases had caloric symmetry | NP |
Machner et al. [16] | 1 | NM | NM | Without nystagmus | CP range 43–61% in 3 years | Normal |
Nishimura et al. [17] | 1 | Salzman [4] or Kennedy [3] | 1 intravestibular schwannoma | Without SN | NP | Decreased VOR gains on anterior and posterior SCC on both sides. CSs were observed on lesion side performed by scleral search coil recordings |
Reda et al. [18] | 1 | NM | 1 intracochlear schwannoma | NP | CP = 86% | NP |
Schutt et al. [19] | 1 | NM | NM | NP | Normal | NP |
Olsgård [20] | 1 | NM | 1 intravestibular schwannoma | Positional nystagmus | CP = 100% | Decreased VOR gain and CSs on horizontal SCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Liu, Y.; Leng, Y.; Lei, P.; Shen, X.; Xia, K.; Liu, Q.; Xu, Z.; Liu, B.; Xiao, H. Vestibulo-Ocular Reflex Results in Patients with Intralabyrinthine Schwannomas: Case Series with a Literature Review. Diagnostics 2025, 15, 2093. https://doi.org/10.3390/diagnostics15162093
Chen X, Liu Y, Leng Y, Lei P, Shen X, Xia K, Liu Q, Xu Z, Liu B, Xiao H. Vestibulo-Ocular Reflex Results in Patients with Intralabyrinthine Schwannomas: Case Series with a Literature Review. Diagnostics. 2025; 15(16):2093. https://doi.org/10.3390/diagnostics15162093
Chicago/Turabian StyleChen, Xiaoye, Yingzhao Liu, Yangming Leng, Ping Lei, Xingqian Shen, Kaijun Xia, Qin Liu, Ziying Xu, Bo Liu, and Hongjun Xiao. 2025. "Vestibulo-Ocular Reflex Results in Patients with Intralabyrinthine Schwannomas: Case Series with a Literature Review" Diagnostics 15, no. 16: 2093. https://doi.org/10.3390/diagnostics15162093
APA StyleChen, X., Liu, Y., Leng, Y., Lei, P., Shen, X., Xia, K., Liu, Q., Xu, Z., Liu, B., & Xiao, H. (2025). Vestibulo-Ocular Reflex Results in Patients with Intralabyrinthine Schwannomas: Case Series with a Literature Review. Diagnostics, 15(16), 2093. https://doi.org/10.3390/diagnostics15162093