Global Longitudinal Strain in Stress Echocardiography: A Review of Its Diagnostic and Prognostic Role in Noninvasive Cardiac Assessment
Abstract
1. Introduction
1.1. Coronary Artery Disease
Author | Year/Country | Type of the Study | Number of Patients | Type of Stress | Echocardiographic Parameters | Anatomical Test | Results |
---|---|---|---|---|---|---|---|
Hwang [11] | 2014/Korea | Prospective | 44 | DSE | GLS (rest and recovery); WMA (peak stress) | ICA | GLS at recovery: Sens. 71%, Spec. 83%; WMA at peak stress: Sens. 72%, Spec. 85% |
Montgomery [13] | 2011/USA | Retrospective | 123 | DSE | GLS (rest); WMSi (rest and peak stress) | ICA | GLS predicted coronary stenosis ≥50%; AUC: ~0.72; comparable to WMSI. Global strain cut point value of ~17.77% sensitivity/specificity (66/76%) |
Rumbinaitė [15] | 2016/Lithuania | Prospective | 127 | DSE | GLS (rest); GLS (low to high dose); WMA (rest); WMA (low to high dose); Diastolic SR | ICA + stress CMR | Stress GLS best CAD predictor (AUC: 0.955; Sens. 94%, Spec. 92%) Combination of WMA and GLS at rest AUC: 0.951; Sens. 93%, Spec. 87% (p < 0.001); combination of WMA and GLS at high dobutamine dose AUC: 0.977; Sens. 96%, Spec. 93% (p < 0.001) |
Cusmà-Piccione [16] | 2015/Italy | Prospective | 52 | Dipyridamole SE | GLS (rest and peak stress) WMSi (rest & peak stress) | ICA | GLS more accurate than wall motion for single-vessel CAD (Sens. 84%, Spec. 92% vs. Sens. 44%, Spec. 51%) |
Ejlersen [23] | 2016/Denmark | Prospective | 132 | Adenosine SE | Layer-specific GLS AFI | ICA | ΔGLS (endo/mid/epi) predicted CAD with AUC: ~0.8. From the cut of values: ΔendoGLS: Sens. 65%, Spec. 85%; ΔmvGLS: Sens. 59%, Spec. 91%; ΔepiGLS: Sens. 59%, Spec. 84%; ΔAFI: Sens. 54%, Spec. 80% |
Dattilo [24] | 2016/Italy | Prospective | 90 | Dipyridamole SE | ΔGLS (rest and peak stress) | CTCA | ΔGLS ≤ 0%: Sens. 95%, Spec. 93%; AUC: 0.91 for coronary stenosis 15–50%) |
Mansour [20] | 2018/Lebanon | Prospective | 103 | ESE | GLS (rest and peak stress) | CTCA | pGLS ≥ 20% ruled out obstructive CAD |
Smiianov [25] | 2020/Ukraine | Prospective | 140 | DSE | GLS; ΔGLS; ΔWMSI | ICA | DSE with GLS had Sens. 98.3%, Spec. 91.7%, AUC = 0.98. Combined ΔGLS + WMSI was less accurate (Sens. 86.2%, Spec. 80.4%, AUC 0.83) |
Roushdy [26] | 2017/Egypt | Prospective | 80 | DSE | 2D GLS, GCS, territorial strain | ICA | Peak GLS (cutoff –16.75) showed Sens. 77.4%, Spec. 83.3%; better agreement than WMSI for lesion detection, vessel number, and CAD localization |
Ilardi [27] | 2021/Italy | Prospective | 50 | DSE | GLS, RLS (peak stress) | GLS and RLS more accurate than WMSI in detecting LAD stenosis (94.3% accuracy); less effective for LCX/RCA; combination RLS + WMSI improved LAD detection | |
Elamragy [28] | 2020/Egypt | Prospective | 101 | DSE | GLS (peak stress) | ICA | GLS increased diagnostic accuracy in intermediate-risk CAD patients; combining GLS cutoff with DSE had higher AUC (0.9, p < 0.001): Sens. 95.9% and Spec. 84.6% |
Licordari [29] | 2022/Italy | Longitudinal | 65 | Dipyridamole SE | GLS (rest and peak stress) 2D strain | CTCA | GLS predicted outcome in early CAD (5-year follow-up). Left ventricular GLS improves the accuracy of SE in the detection of mild CAD |
Ragab et al. [30] | 2025/Egypt | Prospective | 125 | DSE | GLS (rest, peak stress and recovery) | ICA | Adding GLS to DSE improved CAD detection. GLS at recovery Sens. 95% and Spec. 98% |
Abazid [22] | 2024/Canada | Prospective | 33 | ESE | GLS (rest and peak stress) | ICA | GLS improved diagnostic performance for ischemia, AUC = 0.72; a cutoff value of -20% of stress LS Sens. 71% and Spec. 60% for ruling out inducible myocardial ischemia (p < 0.0001) |
Karlsen [19] | 2022/Norway | Prospective | 78 | ESE | GLS (rest and recovery) WMSi (rest & recovery) | ICA + FFR | Post-exercise GLS increase ruled out CAD (AUC = 0.97) with Sens. 93.9% and Spec. 93.2%; superior to LVEF and WMSi |
Davis [31] | 2024/USA | Prospective | 120 | ESE | GLS | CTCA | GLS predicted inducible ischemia in patients with no obstructive CAD |
1.2. Chronic Kidney Disease
1.3. Liver Failure
1.4. Cardio-Oncology
1.5. Hypertrophic Cardiomyopathy
1.6. Heart Transplant
1.7. Heart Failure with Reduced Ejection Fraction
1.8. Childhood and Congenital Heart Disease
Author | Year/Country | Type of the Study | Number of Patients | Type of Stress | Echocardiographic Parameters | Results |
---|---|---|---|---|---|---|
Cognet [12] | 2013/France | Prospective | 63 non-ischemic patients | Dipyridamole SE | GLS; LSR | LSR > 0% predicted mortality; LSR higher in diabetics, lower with age |
Gaibazzi [14] | 2014/Italy | Retrospective | 100 patients referred for CA | Dipyridamole SE | GLS (rest/peak stress); WM (rest/peak stress) | GLS > –20.7% predicted CAD, AUC 0.86; stress GLS superior for demonstration of reversible ischemia to rest GLS |
Licordari [29] | 2022/Italy | Longitudinal | n/a | Not specified | 2D strain | 2D strain predicted outcome in early ischemic heart disease (5-year follow-up) |
Lech [34] | 2017/Poland | Observational | 50 ASAS and 21 control patients | ESE | GLS (rest/peak stress); ∆GLS | ASAS patients had lower ∆GLS vs. controls (–0.8% vs. –2.2%); stress GLS indicates preserved functional reserve in ASAS |
Dahou [35] | 2015/Canada | Prospective | 75 with low-flow, low-gradient AS | DSE | GLS (rest/peak stress) | Stress GLS <10% predicted poor survival; stress GLS is superior to rest GLS |
Arbucci [36] | 2022/Argentina | Prospective | 101 | Not specified | GLS | Contractile reserve via GLS predicted long-term outcome in asymptomatic AS |
D’Andrea [37] | 2020/Italy | Prospective | 170 | ESE | GLS; Myocardial Work | SESAR protocol revealed LV contractile reserve in asymptomatic severe AR |
Li [38] | 2023/China | Prospective | 50 | DSE | GLS | Combined GLS and DSE predicted surgical outcome in severe AR |
Tsartsalis [40] | 2024/Greece | Prospective | 61 | Resting | GLS (rest) | Resting GLS identified ischemia in CKD patients |
Anderson [41] | 2023/USA | Prospective | 36 | DSE | GLS; Post-systolic Shortening (PSS) | GLS + PSS improved sensitivity of DSE in end-stage liver disease |
Zamirian [42] | 2019/Iran | Prospective | 30 | DSE | GLS; TDI | Reduced myocardial reserve in cirrhotic patients |
Khouri [43] | 2014/USA | Prospective | 53 breast cancer survivors | ESE | GLS; 2D LVEF; 3D LVEF | GLS identified dysfunction in 20% with preserved EF; correlated with VO2peak |
Nabiałek-Trojanowska [44] | 2023/Poland | Observational | 60 | None (rest echo) | GLS | Asymptomatic lymphoma survivors showed subtle GLS abnormalities |
Reant [45] | 2015/France | Prospective | 115 with HCM | ESE | GLS (rest/peak stress); LVOT gradient (rest/peak) | GLS ≤15% and LVOT ≥50 mmHg predicted adverse events |
Cameli [46] | 2016/Italy | Observational | 13 marginal donors | Dipyridamole SE | GLS (rest/peak stress); ΔGLS (rest/peak streess) | ΔGLS identified transplantable hearts; ΔGLS normal and pathological stress echo (+ 13.2 ± 5.2 vs. −6.1% ± 3.1%, p = 0.0001) |
Paraskevaidis [47] | 2017/Greece | Prospective | 100 HFrEF patients | DSE | GLS; RS; CS | Stress ΔGLS and rest RS independent predictors of long-term cardiac mortality |
Broberg [48] | 2023/Sweden | Prospective | 152 | DSE | GLS | Childhood cancer survivors had reduced myocardial contractile reserve |
Taha [49] | 2020/Egypt | Prospective | 61 | DSE | GLS (systemic RV) | Quantified contractile reserve in post-Senning children |
Mese [50] | 2016/Turkey | Prospective | 20 adolescents with repaired TOF & 20 controls | DSE | GLS LV and RV (rest/stress); GCS LV and RV (rest/stress) | Stress GLS superior to rest GLS: TOF patients had blunted GLS response; revealed early LV dysfunction |
2. Discussion
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Woodward, W.; Dockerill, C.; McCourt, A.; Upton, R.; O’DRiscoll, J.; Balkhausen, K.; Chandrasekaran, B.; Firoozan, S.; Kardos, A.; Wong, K.; et al. Real-world performance and accuracy of stress echocardiography: The EVAREST observational multi-centre study. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Sicari, R.; Nihoyannopoulos, P.; Evangelista, A.; Kasprzak, J.; Lancellotti, P.; Poldermans, D.; Voigt, J.-U.; Zamorano, J.L.; European Association of Echocardiography. Stress Echocardiography Expert Consensus Statement—Executive Summary: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur. Heart J. 2009, 30, 278–289. [Google Scholar] [CrossRef]
- Hoffmann, R.; Lethen, H.; Marwick, T.; Arnese, M.; Fioretti, P.; Pingitore, A.; Picano, E.; Buck, T.; Erbel, R.; Flachskampf, F.A.; et al. Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J. Am. Coll. Cardiol. 1996, 27, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Saraste, M.; Knuuti, J.; Saraste, A. Two-Dimensional Speckle-Tracking during Dobutamine Stress Echocardiography in the Detection of Myocardial Ischemia in Patients with Suspected Coronary Artery Disease. J. Am. Soc. Echocardiogr. 2016, 29, 470–479.e3. [Google Scholar]
- Nagy, A.I.; Sahlén, A.; Manouras, A.; Henareh, L.; da Silva, C.; Günyeli, E.; Apor, A.A.; Merkely, B.; Winter, R. Combination of contrast-enhanced wall motion analysis and myocardial deformation imaging during dobutamine stress echocardiography. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 88–95. [Google Scholar] [CrossRef]
- Norum, I.B.; Ruddox, V.; Edvardsen, T.; Otterstad, J.E. Diagnostic accuracy of left ventricular longitudinal function by speckle tracking echocardiography to predict significant coronary artery stenosis. A systematic review. BMC Med. Imaging 2015, 15, 25. [Google Scholar]
- Koulaouzidis, G.; Kleitsioti, P.; Kalaitzoglou, M.; Tzimos, C.; Charisopoulou, D.; Theodorou, P.; Bostanitis, I.; Tsaousidis, A.; Tzalamouras, V.; Giannakopoulou, P.; et al. Left Ventricular Longitudinal Strain Detects Ischemic Dysfunction at Rest, Reflecting Significant Coronary Artery Disease. Diagnostics 2025, 15, 1102. [Google Scholar] [CrossRef]
- Voigt, J.-U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Donal, E.; Thebault, C.; O’Connor, K.; Veillard, D.; Rosca, M.; Pierard, L.; Lancellotti, P. Impact of aortic stenosis on longitudinal myocardial deformation during exercise. Eur. J. Echocardiogr. 2011, 12, 235–241. [Google Scholar] [CrossRef]
- Koulaouzidis, G.; Jadczyk, T.; Iakovidis, D.K.; Koulaouzidis, A.; Bisnaire, M.; Charisopoulou, D. Artificial Intelligence in Cardiology-A Narrative Review of Current Status. J. Clin. Med. 2022, 11, 3910. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Lee, H.-M.; Yang, I.-H.; Lee, J.L.; Pak, H.Y.; Park, C.-B.; Jin, E.-S.; Cho, J.-M.; Kim, C.-J.; Sohn, I.S. The value of assessing myocardial deformation at recovery after dobutamine stress echocardiography. J. Cardiovasc. Ultrasound 2014, 22, 127–133. [Google Scholar] [CrossRef]
- Cognet, T.; Vervueren, P.-L.; Dercle, L.; Bastié, D.; Richaud, R.; Berry, M.; Marchal, P.; Gautier, M.; Fouilloux, A.; Galinier, M.; et al. New concept of myocardial longitudinal strain reserve assessed by a dipyridamole infusion using 2D-strain echocardiography: The impact of diabetes and age, and the prognostic value. Cardiovasc. Diabetol. 2013, 12, 84. [Google Scholar] [CrossRef]
- Montgomery, D.E.; Puthumana, J.J.; Fox, J.M.; Ogunyankin, K.O. Global longitudinal strain aids the detection of non-obstructive coronary artery disease in the resting echocardiogram. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Gaibazzi, N.; Pigazzani, F.; Reverberi, C.; Porter, T.R. Rest global longitudinal 2D strain to detect coronary artery disease in patients undergoing stress echocardiography: A comparison with wall-motion and coronary flow reserve responses. Echo Res. Pract. 2014, 1, 61–70. [Google Scholar] [CrossRef]
- Rumbinaite, E.; Zaliaduonyte-Peksiene, D.; Lapinskas, T.; Zvirblyte, R.; Karuzas, A.; Jonauskiene, I.; Viezelis, M.; Ceponiene, I.; Gustiene, O.; Slapikas, R.; et al. Early and late diastolic strain rate vs global longitudinal strain at rest and during dobutamine stress for the assessment of significant coronary artery stenosis in patients with a moderate and high probability of coronary artery disease. Echocardiography 2016, 33, 1512–1522. [Google Scholar] [CrossRef] [PubMed]
- Cusmà-Piccione, M.; Zito, C.; Oreto, L.; D’angelo, M.; Tripepi, S.; Di Bella, G.; Todaro, M.C.; Oreto, G.; Khandheria, B.K.; Carerj, S. Longitudinal Strain by Automated Function Imaging Detects Single-Vessel Coronary Artery Disease in Patients Undergoing Dipyridamole Stress Echocardiography. J. Am. Soc. Echocardiogr. 2015, 28, 1214–1221. [Google Scholar] [CrossRef]
- Hoffmann, R.; Altiok, E.; Nowak, B.; Heussen, N.; Kühl, H.; Kaiser, H.J.; Büll, U.; Hanrath, P. Strain rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia and myocardial viability. J. Am. Coll. Cardiol. 2004, 43, A15. [Google Scholar]
- Carluccio, E.; Biagioli, P.; Alunni, G.; Murrone, A.; Giombolini, C.; Ragni, T.; Marino, P.N.; Ambrosio, G. Advantages of deformation indices over systolic velocities in assessment of longitudinal systolic function in patients with heart failure and normal ejection fraction. Eur. J. Heart Fail. 2013, 15, 661–669. [Google Scholar] [CrossRef]
- Karlsen, S.; Melichova, D.; Dahlslett, T.; Grenne, B.; Sjøli, B.; Smiseth, O.; Edvardsen, T.; Brunvand, H. Increased deformation of the left ventricle during exercise test measured by global longitudinal strain can rule out significant coronary artery disease in patients with suspected unstable angina pectoris. Echocardiography 2022, 39, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.J.; AlJaroudi, W.; Hamoui, O.; Chaaban, S.; Chammas, E. Multimodality imaging for evaluation of chest pain using strain analysis at rest and peak exercise. Echocardiography 2018, 35, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Picano, E.; Ciampi, Q.; Cortigiani, L.; Citro, R.; D’Andrea, A.; Scali, M.C.; Cortigiani, L.; Olivotto, I.; Mori, F.; Galderisi, M.; et al. Stress echocardiography in 2020: What’s new? Eur. Heart J. Cardiovasc. Imaging 2020, 21, 347–355. [Google Scholar]
- Abazid, R.M.; Patil, N.; Elrayes, M.; Chandy, M.; Hassanin, M.; De Mathew, A.; Bagur, S.R.; Tzemos, N. Role of myocardial strain imaging in diagnosing inducible myocardial ischemia with treadmill contrast-enhanced stress echocardiography. BMC Cardiovasc. Disord. 2024, 24, 254, Erratum in BMC Cardiovasc. Disord. 2025, 25, 183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ejlersen, J.A.; Poulsen, S.H.; Mortensen, J.; May, O. Diagnostic value of layer-specific global longitudinal strain during adenosine stress in patients suspected of coronary artery disease. Int. J. Cardiovasc. Imaging 2017, 33, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Dattilo, G.; Imbalzano, E.; Lamari, A.; Casale, M.; Paunovic, N.; Busacca, P.; Di Bella, G. Ischemic heart disease and early diagnosis. Study on the predictive value of 2D strain. Int. J. Cardiol. 2016, 215, 150–156. [Google Scholar] [CrossRef]
- Smiianov, V.A.; Rudenko, S.A.; Potashev, S.; Salo, S.V.; Gavrylyshin, A.Y.; Levchyshina, E.V.; Hrubyak, L.M.; Nosovets, E.K.; Nastenko, E.A.; Rudenko, A.V.; et al. Speckle tracking dobutamine stress echocardiography diagnostic accuracy in primary coronary arteries disease diagnosis. Wiad. Lek. 2020, 73, 2447–2456. [Google Scholar] [CrossRef] [PubMed]
- Roushdy, A.; el Seoud, Y.A.; Elrahman, M.A.; Wadeaa, B.; Eletriby, A.; Abd El Salam, Z. The additional utility of two-dimensional strain in detection of coronary artery disease presence and localization in patients undergoing dobutamine stress echocardiogram. Echocardiography 2017, 34, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, F.; Santoro, C.; Maréchal, P.; Dulgheru, R.; Postolache, A.; Esposito, R.; Giugliano, G.; Sannino, A.; Avvedimento, M.; Leone, A.; et al. Accuracy of global and regional longitudinal strain at peak of dobutamine stress echocardiography to detect significant coronary artery disease. Int. J. Cardiovasc. Imaging 2021, 37, 1321–1331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elamragy, A.A.; Abdelwahab, M.A.; Elremisy, D.R.; Hassan, M.; Ammar, W.A.; Taha, H.S. Additional diagnostic accuracy of global longitudinal strain at peak dobutamine stress in patients with moderate pretest probability of coronary artery disease. Echocardiography 2020, 37, 1222–1232. [Google Scholar] [CrossRef] [PubMed]
- Licordari, R.; Casale, M.; Correale, M.; Imbalzano, E.; Crea, P.; Signorelli, S.S.; Pistelli, L.; Parisi, F.; Perna, A.; de Sarro, R.; et al. Prognostic value of two-dimensional strain in early ischemic heart disease: A 5-year follow-up study. Echocardiography 2022, 39, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Ragab, T.M.; Metwally, M.O.; El-Khashab, K.A.; Elshamy, E.M.; Saad, M.K. Usefulness of the addition of two-dimensional speckle tracking during dobutamine stress echocardiography for the detection of coronary artery disease. Acta Cardiol. 2025, 80, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.F.; Crousillat, D.R.; Peteiro, J.; Lopez-Sendon, J.; Senior, R.; Shapiro, M.D.; Pellikka, P.A.; Lyubarova, R.; Alfakih, K.; Abdul-Nour, K.; et al. Global Longitudinal Strain as Predictor of Inducible Ischemia in No Obstructive Coronary Artery Disease in the CIAO-ISCHEMIA Study. J. Am. Soc. Echocardiogr. 2024, 37, 89–99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ben Driss, A.; Ben Driss Lepage, C.; Sfaxi, A.; Hakim, M.; Elhadad, S.; Tabet, J.Y.; Salhi, A.; Brandao Carreira, V.; Hattab, M.; Meurin, P.; et al. Strain predicts left ventricular functional recovery after acute myocardial infarction with systolic dysfunction. Int. J. Cardiol. 2020, 307, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Joyce, E.; Hoogslag, G.E.; Leong, D.P.; Debonnaire, P.; Katsanos, S.; Boden, H.; Schalij, M.J.; Marsan, N.A.; Bax, J.J.; Delgado, V. Association between left ventricular global longitudinal strain and adverse left ventricular dilatation after ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Imaging 2014, 7, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Lech, A.K.; Dobrowolski, P.P.; Klisiewicz, A.; Hoffman, P. Exercise-induced changes in left ventricular global longitudinal strain in asymptomatic severe aortic stenosis. Kardiol. Pol. 2017, 75, 143–149. [Google Scholar] [CrossRef]
- Dahou, A.; Bartko, P.E.; Capoulade, R.; Clavel, M.A.; Mundigler, G.; Grondin, S.L.; Bergler-Klein, J.; Burwash, I.; Dumesnil, J.G.; Sénéchal, M.; et al. Usefulness of Global Left Ventricular Longitudinal Strain for Risk Stratification in Low Ejection Fraction, Low-Gradient Aortic Stenosis: Results from the Multicenter True or Pseudo-Severe Aortic Stenosis Study. Circ. Cardiovasc. Imaging 2015, 8, e002117. [Google Scholar] [CrossRef] [PubMed]
- Arbucci, R.; Haber, D.M.L.; Rousse, M.G.; Saad, A.K.; Golleti, L.M.; Gastaldello, N.; Amor, M.; Caniggia, C.; Merlo, P.; Zambrana, G.; et al. Long Term Prognostic Value of Contractile Reserve Assessed by Global Longitudinal Strain in Patients with Asymptomatic Severe Aortic Stenosis. J. Clin. Med. 2022, 11, 689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’ANdrea, A.; Sperlongano, S.; Formisano, T.; Tocci, G.; Cameli, M.; Tusa, M.; Novo, G.; Corrado, G.; Ciampi, Q.; Citro, R.; et al. Stress Echocardiography and Strain in Aortic Regurgitation (SESAR protocol): Left ventricular contractile reserve and myocardial work in asymptomatic patients with severe aortic regurgitation. Echocardiography 2020, 37, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zuo, W.; Liu, Y.; Chen, B.; Wu, Y.; Dong, L.; Shu, X. Value of Speckle Tracking Echocardiography Combined with Stress Echocardiography in Predicting Surgical Outcome of Severe Aortic Regurgitation with Markedly Reduced Left Ventricular Function. Rev. Cardiovasc. Med. 2023, 24, 114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lancellotti, P.; Dulgheru, R.; Go, Y.Y.; Sugimoto, T.; Marchetta, S.; Oury, C.; Garbi, M. Stress echocardiography in patients with native valvular heart disease. Heart 2015, 101, 260–267. [Google Scholar] [CrossRef]
- Tsartsalis, D.; Dimitroglou, Y.; Kalompatsou, A.; Koukos, M.; Patsourakos, D.; Tolis, E.; Tzoras, S.; Petras, D.; Tsioufis, C.; Aggeli, C. Resting strain analysis to identify myocardial ischemia in patients with advanced chronic kidney disease. Clin. Physiol. Funct. Imaging 2024, 44, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.L.; Bateman, P.V.; Ofner, S.; Li, X.; Maatman, B.; Green-Hess, D.; Sawada, S.G.; Feigenbaum, H. Assessment of Postsystolic Shortening and Global Longitudinal Strain Improves the Sensitivity of Dobutamine Stress Echocardiography in End-Stage Liver Disease. J. Am. Soc. Echocardiogr. 2023, 36, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Zamirian, M.; Afsharizadeh, F.; Moaref, A.; Abtahi, F.; Amirmoezi, F.; Attar, A. Reduced myocardial reserve in cirrhotic patients: An evaluation by dobutamine stress speckle tracking and tissue Doppler imaging (TDI) echocardiography. J. Cardiovasc. Thorac. Res. 2019, 11, 127–131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khouri, M.G.; Hornsby, W.E.; Risum, N.; Velazquez, E.J.; Thomas, S.; Lane, A.; Scott, J.M.; Koelwyn, G.J.; Herndon, J.E.; Mackey, J.R.; et al. Utility of 3-dimensional echocardiography, global longitudinal strain, and exercise stress echocardiography to detect cardiac dysfunction in breast cancer patients treated with doxorubicin-containing adjuvant therapy. Breast Cancer Res. Treat. 2014, 143, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Nabiałek-Trojanowska, I.; Jankowska, H.; Sławiński, G.; Dąbrowska-Kugacka, A.; Lewicka, E. Echocardiographic Findings in Asymptomatic Mediastinal Lymphoma Survivors Years after Treatment Termination. J. Clin. Med. 2023, 12, 3427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reant, P.; Reynaud, A.; Pillois, X.; Dijos, M.; Arsac, F.; Touche, C.; Landelle, M.; Rooryck, C.; Roudaut, R.; Lafitte, S. Comparison of resting and exercise echocardiographic parameters as indicators of outcomes in hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 2015, 28, 194–203. [Google Scholar] [CrossRef]
- Cameli, M.; Bombardini, T.; Dokollari, A.; Sassi, C.; Losito, M.; Sparla, S.; Lisi, G.; Bernazzali, S.; Davoli, G.; Capannini, G.; et al. Longitudinal Strain Stress-Echo Evaluation of Aged Marginal Donor Hearts: Feasibility in the Adonhers Project. Transplant. Proc. 2016, 48, 399–401. [Google Scholar] [CrossRef]
- Paraskevaidis, I.A.; Ikonomidis, I.; Simitsis, P.; Parissis, J.; Stasinos, V.; Makavos, G.; Lekakis, J. Multidimensional contractile reserve predicts adverse outcome in patients with severe systolic heart failure: A 4-year follow-up study. Eur. J. Heart Fail. 2017, 19, 846–861. [Google Scholar] [CrossRef]
- Broberg, O.; Øra, I.; Weismann, C.G.; Wiebe, T.; Liuba, P. Childhood Cancer Survivors Have Impaired Strain-Derived Myocardial Contractile Reserve by Dobutamine Stress Echocardiography. J. Clin. Med. 2023, 12, 2782. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taha, F.A.; Elshedoudy, S.; Adel, M. Quantitative assessment of contractile reserve of systemic right ventricle in post-Senning children: Incorporating speckle-tracking strain and dobutamine stress echocardiography. Echocardiography 2020, 37, 2091–2101. [Google Scholar] [CrossRef] [PubMed]
- Mese, T.; Guven, B.; Yilmazer, M.M.; Demirol, M.; Çoban, Ş.; Karadeniz, C. Global Deformation Parameters Response to Exercise in Adolescents with Repaired Tetralogy of Fallot. Pediatr. Cardiol. 2017, 38, 362–367. [Google Scholar] [CrossRef]
- Picano, E.; Pierard, L.; Peteiro, J.; Djordjevic-Dikic, A.; Sade, L.E.; Cortigiani, L.; Van De Heyning, C.M.; Celutkiene, J.; Gaibazzi, N.; Ciampi, Q.; et al. The clinical use of stress echocardiography in chronic coronary syndromes and beyond coronary artery disease: A clinical consensus statement from the European Association of Cardiovascular Imaging of the ESC. Eur. Heart J. Cardiovasc. Imaging 2024, 25, e65–e90. [Google Scholar] [CrossRef] [PubMed]
- Nagel, E.; Lehmkuhl, H.B.; Bocksch, W.; Klein, C.; Vogel, U.; Frantz, E.; Ellmer, A.; Dreysse, S.; Fleck, E. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: Comparison with dobutamine stress echocardiography. Circulation 1999, 99, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.J.; Luo, S.Y.; Zhong, X.F.; Lin, X.X.; Zheng, Y.Q.; Xu, J.F.; Liu, Y.Y.; Chen, L.X. Feasibility and reproducibility of semi-automated longitudinal strain analysis: A comparative study with conventional manual strain analysis. Cardiovasc. Ultrasound 2023, 21, 12. [Google Scholar] [CrossRef]
- Nagel, E.; Lehmkuhl, H.B.; Klein, C.; Schneider, U.; Frantz, E.; Ellmer, A.; Bocksch, W.; Dreysse, S.; Fleck, E. Einfluss der Bildqualität auf die Genauigkeit der nichtinvasiven Ischämiediagnostik mit der Dobutamin-Stressmagnetresonanztomographie im Vergleich zur Dobutamin-Stressechokardiographie [Influence of image quality on the diagnostic accuracy of dobutamine stress magnetic resonance imaging in comparison with dobutamine stress echocardiography for the noninvasive detection of myocardial ischemia]. Z. Kardiol. 1999, 88, 622–630. (In German) [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniou, N.; Iliopoulou, S.; Raptis, D.G.; Grammenos, O.; Kalaitzoglou, M.; Chrysikou, M.; Mantzios, C.; Theodorou, P.; Bostanitis, I.; Charisopoulou, D.; et al. Global Longitudinal Strain in Stress Echocardiography: A Review of Its Diagnostic and Prognostic Role in Noninvasive Cardiac Assessment. Diagnostics 2025, 15, 2076. https://doi.org/10.3390/diagnostics15162076
Antoniou N, Iliopoulou S, Raptis DG, Grammenos O, Kalaitzoglou M, Chrysikou M, Mantzios C, Theodorou P, Bostanitis I, Charisopoulou D, et al. Global Longitudinal Strain in Stress Echocardiography: A Review of Its Diagnostic and Prognostic Role in Noninvasive Cardiac Assessment. Diagnostics. 2025; 15(16):2076. https://doi.org/10.3390/diagnostics15162076
Chicago/Turabian StyleAntoniou, Nikolaos, Sotiria Iliopoulou, Dimitrios G. Raptis, Orestis Grammenos, Maria Kalaitzoglou, Marianthi Chrysikou, Christos Mantzios, Panagiotis Theodorou, Ioannis Bostanitis, Dafni Charisopoulou, and et al. 2025. "Global Longitudinal Strain in Stress Echocardiography: A Review of Its Diagnostic and Prognostic Role in Noninvasive Cardiac Assessment" Diagnostics 15, no. 16: 2076. https://doi.org/10.3390/diagnostics15162076
APA StyleAntoniou, N., Iliopoulou, S., Raptis, D. G., Grammenos, O., Kalaitzoglou, M., Chrysikou, M., Mantzios, C., Theodorou, P., Bostanitis, I., Charisopoulou, D., & Koulaouzidis, G. (2025). Global Longitudinal Strain in Stress Echocardiography: A Review of Its Diagnostic and Prognostic Role in Noninvasive Cardiac Assessment. Diagnostics, 15(16), 2076. https://doi.org/10.3390/diagnostics15162076