Comparison of Amyloid-PET Analysis Software Using 18F-Florbetaben PET in Patients with Cognitive Impairment
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Image Acquisition and Reconstruction
2.3. Image Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef]
- Villemagne, V.L. Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev. 2016, 30, 95–106. [Google Scholar] [CrossRef]
- Barthel, H.; Gertz, H.J.; Dresel, S.; Peters, O.; Bartenstein, P.; Buerger, K.; Hiemeyer, F.; Wittemer-Rump, S.M.; Seibyl, J.; Reininger, C.; et al. Cerebral amyloid imaging with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: A multicentre phase 2 diagnostic study. Lancet Neurol. 2011, 10, 424–435. [Google Scholar] [CrossRef]
- Sabri, O.; Seibyl, J.; Rowe, C.; Barthel, H. Beta-amyloid imaging with florbetaben. Clin. Transl. Imaging. 2015, 3, 13–26. [Google Scholar] [CrossRef]
- Ruan, D.; Sun, L. Amyloid-β PET in Alzheimer’s disease: A systematic review and Bayesian meta-analysis. Brain Behav. 2023, 13, e2850. [Google Scholar] [CrossRef] [PubMed]
- Chapleau, M.; Iaccarino, L.; Soleimani-Meigooni, D.; Rabinovici, G.D. The Role of Amyloid PET in Imaging Neurodegenerative Disorders: A Review. J. Nucl. Med. 2022, 63, 13S–19S. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, A.; Nihashi, T.; Sakurai, K.; Notomi, K.; Ono, H.; Inui, Y.; Ito, S.; Arahata, Y.; Takeda, A.; Ishii, K.; et al. Interrater agreement and variability in visual reading of [18F] flutemetamol PET images. Ann. Nucl. Med. 2025, 39, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Paghera, B.; Altomare, D.; Peli, A.; Morbelli, S.; Buschiazzo, A.; Bauckneht, M.; Giubbini, R.; Rodella, C.; Camoni, L.; Boccardi, M.; et al. Comparison of visual criteria for amyloid-PET reading: Could criteria merging reduce inter-rater variability? Q. J. Nucl. Med. Mol. Imaging 2020, 64, 414–421. [Google Scholar] [CrossRef]
- Leuzy, A.; Bollack, A.; Pellegrino, D.; Teunissen, C.E.; La Joie, R.; Rabinovici, G.D.; Franzmeier, N.; Johnson, K.; Barkhof, F.; Shaw, L.M.; et al. Considerations in the clinical use of amyloid PET and CSF biomarkers for Alzheimer’s disease. Alzheimer’s Dement. 2025, 21, e14528. [Google Scholar] [CrossRef]
- Morris, E.; Chalkidou, A.; Hammers, A.; Peacock, J.; Summers, J.; Keevil, S. Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 374–385. [Google Scholar] [CrossRef]
- Harn, N.R.; Hunt, S.L.; Hill, J.; Vidoni, E.; Perry, M.; Burns, J.M. Augmenting Amyloid PET Interpretations With Quantitative Information Improves Consistency of Early Amyloid Detection. Clin. Nucl. Med. 2017, 42, 577–581. [Google Scholar] [CrossRef]
- Matsuda, H.; Yamao, T. Software development for quantitative analysis of brain amyloid PET. Brain Behav. 2022, 12, e2499. [Google Scholar] [CrossRef] [PubMed]
- Chiao, P.; Bedell, B.J.; Avants, B.; Zijdenbos, A.P.; Grand’Maison, M.; O’Neill, P.; O’Gorman, J.; Chen, T.; Koeppe, R. Impact of Reference and Target Region Selection on Amyloid PET SUV Ratios in the Phase 1b PRIME Study of Aducanumab. J. Nucl. Med. 2019, 60, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Pemberton, H.G.; Buckley, C.; Battle, M.; Bollack, A.; Patel, V.; Tomova, P.; Cooke, D.; Balhorn, W.; Hegedorn, K.; Lilja, J.; et al. Software compatibility analysis for quantitative measures of [18F]flutemetamol amyloid PET burden in mild cognitive impairment. EJNMMI Res. 2023, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Roh, H.W.; Son, S.J.; Hong, C.H.; Moon, S.Y.; Lee, S.M.; Seo, S.W.; Choi, S.H.; Kim, E.J.; Cho, S.H.; Kim, B.C.; et al. Comparison of automated quantification of amyloid deposition between PMOD and Heuron. Sci. Rep. 2023, 13, 9891. [Google Scholar] [CrossRef]
- Choi, W.H.; Um, Y.H.; Jung, W.S.; Kim, S.H. Automated quantification of amyloid positron emission tomography: A comparison of PMOD and MIMneuro. Ann. Nucl. Med. 2016, 30, 682–689. [Google Scholar] [CrossRef]
- Knešaurek, K.; Warnock, G.; Kostakoglu, L.; Burger, C. Comparison of Standardized Uptake Value Ratio Calculations in Amyloid Positron Emission Tomography Brain Imaging. World J. Nucl. Med. 2018, 17, 21–26. [Google Scholar] [CrossRef]
- Yamakuni, R.; Abe, M.; Ukon, N.; Matsuda, H.; Takano, H.; Sawamoto, N.; Shima, A.; Mori, Y.; Sekino, H.; Ishii, S.; et al. Parkinson’s and Alzheimer’s disease Dimensional Neuroimaging Initiative (PADNI). Comparison and cutoff values of two amyloid PET scaling methods: Centiloid scale and amyloid-β load. Ann. Nucl. Med. 2025, 39, 799–812. [Google Scholar] [CrossRef]
- Shang, C.; Sakurai, K.; Nihashi, T.; Arahata, Y.; Takeda, A.; Ishii, K.; Ishii, K.; Matsuda, H.; Ito, K.; Kato, T.; et al. Comparison of consistency in centiloid scale among different analytical methods in amyloid PET: The CapAIBL, VIZCalc, and Amyquant methods. Ann. Nucl. Med. 2024, 38, 460–467. [Google Scholar] [CrossRef]
- Peira, E.; Poggiali, D.; Pardini, M.; Barthel, H.; Sabri, O.; Morbelli, S.; Cagnin, A.; Chincarini, A.; Cecchin, D. A comparison of advanced semi-quantitative amyloid PET analysis methods. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4097–4108. [Google Scholar] [CrossRef]
- Nai, Y.H.; Tay, Y.H.; Tanaka, T.; Chen, C.P.; Robins, E.G.; Reilhac, A. Comparison of Three Automated Approaches for Classification of Amyloid-PET Images. Neuroinformatics 2022, 20, 1065–1075. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, N.; Um, Y.H.; Choi, W.H. Consistency Analysis of Centiloid Values Across Three Commercial Software Platforms for Amyloid PET Quantification. Diagnostics 2025, 24, 1599. [Google Scholar] [CrossRef]
- Saguil, A.; Buck, E. Brief Cognitive Testing in the Detection and Diagnosis of Clinical Alzheimer-Type Dementia. Am. Fam. Physician 2021, 103, 183–185. [Google Scholar] [PubMed]
- Reisberg, B.; Burns, A.; Brodaty, H.; Eastwood, R.; Rossor, M.; Sartorius, N.; Winblad, B. Diagnosis of Alzheimer’s disease. Report of an International Psychogeriatric Association Special Meeting Work Group under the cosponsorship of Alzheimer’s Disease International, the European Federation of Neurological Societies, the World Health Organization, and the World Psychiatric Association. Int. Psychogeriatr. 1997, 9, 11–38. [Google Scholar] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Cheon, M.; Yi, H.; Abdelhafez, Y.G.; Nardo, L. Comparison of Amyloid-PET Quantification Tools in Alzheimer’s Disease. In Proceedings of the 2025 Society of Nuclear Medicine and Molecular Imaging Annual Meeting, New Orleans, LA, USA, 21–24 June 2025. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Bucci, M.; Savitcheva, I.; Farrar, G.; Salvadó, G.; Collij, L.; Doré, V.; Gispert, J.D.; Gunn, R.; Hanseeuw, B.; Hansson, O.; et al. A multisite analysis of the concordance between visual image interpretation and quantitative analysis of [18F]flutemetamol amyloid PET images. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2183–2199. [Google Scholar] [CrossRef]
- Schreiber, S.; Landau, S.M.; Fero, A.; Schreiber, F.; Jagust, W.J. Comparison of Visual and Quantitative Florbetapir F 18 Positron Emission Tomography Analysis in Predicting Mild Cognitive Impairment Outcomes. JAMA Neurol. 2015, 72, 1183–1190. [Google Scholar] [CrossRef]
- Pontecorvo, M.J.; Arora, A.K.; Devine, M.; Lu, M.; Galante, N.; Siderowf, A.; Devadanam, C.; Joshi, A.D.; Heun, S.L.; Teske, B.F.; et al. Quantitation of PET signal as an adjunct to visual interpretation of florbetapir imaging. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 825–837. [Google Scholar] [CrossRef]
- Curry, S.; Patel, N.; Fakhry-Darian, D.; Khan, S.; Perry, R.J.; Malhotra, P.A.; Nijran, K.S.; Win, Z. Quantitative evaluation of beta-amyloid brain PET imaging in dementia: A comparison between two commercial software packages and the clinical report. Br. J. Radiol. 2019, 92, 20181025. [Google Scholar] [CrossRef]
- Clark, C.M.; Schneider, J.A.; Bedell, B.J.; Beach, T.G.; Bilker, W.B.; Mintun, M.A.; Pontecorvo, M.J.; Hefti, F.; Carpenter, A.P.; Flitter, M.L.; et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 2011, 19, 275–283. [Google Scholar] [CrossRef]
- Sabri, O.; Sabbagh, M.N.; Seibyl, J.; Barthel, H.; Akatsu, H.; Ouchi, Y.; Senda, K.; Murayama, S.; Ishii, K.; Takao, M.; et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: Phase 3 study. Alzheimers Dement. 2015, 11, 964–974. [Google Scholar] [CrossRef]
Feature | MIMneuro | CortexID Suite | Neurophet SCALE PET |
---|---|---|---|
Developer | MIM Software Inc. | GE Healthcare | Neurophet Corp. |
Software Version | v6.9.8 | v2.1 | v1.6 |
Regulatory Clearance | |||
FDA Clearance | Yes | Yes | Yes |
CE Marking | Yes | Yes | Yes |
MFDS Approval | Yes | Yes | Yes |
Tracer | 18F-Florbetaben, 18F-Florbetapir, others | 18F-Florbetaben, 18F-Florbetapir, others | 18F-Florbetaben, 18F-Florbetapir, others |
Centiloid scaling | Yes | Yes | Yes |
Quantification | SUVR, Z-score | SUVR, Z-score | SUVR, Z-score |
Normative Database | Age-matched, scanner-independent | Age-matched, scanner-dependent | Age-matched, multi-ethnic normative database |
Normative Database Size | ~74 cognitively normal adults | ~50–70 cognitively normal controls | ~100 cognitively normal adults |
Automated anatomical segmentation | Yes | Yes | Yes |
Anatomical Template | Talairach-like (proprietary) | MNI152 (Montreal Neurological Institute) | Neurophet proprietary MRI template |
Segmentation Method | Atlas-based segmentation | Atlas-based segmentation | Atlas-based segmentation |
Visual interpretation support | Yes | Yes | Yes |
Quality Control Tools | Visual verification | Visual verification | Visual review and structured QC reports |
AD (n = 39) | Non-AD (n = 90) | p-Value | |
---|---|---|---|
Gender (male vs. female) | 27 vs. 12 | 68 vs. 22 | 0.585 |
Age | 75.94 ± 5.86 | 76 ± 5.86 | 0.958 |
MMSE | 24.07 ± 4.50 | 24.06 ± 4.49 | 0.991 |
GDS | 3.97 ± 2.91 | 3.93 ± 2.78 | 0.941 |
Brain Region | Software | AD (n = 39) | Non-AD (n = 90) | p-Value |
---|---|---|---|---|
Anterior cingulate gyrus | MIMneuro | 1.37 ± 0.34 | 1.19 ± 0.42 | <0.001 |
CortexID Suite | 1.54 ± 0.42 | 1.13 ± 0.19 | <0.001 | |
Neurophet SCALE PET | 1.34 ± 0.31 | 1.16 ± 0.27 | <0.001 | |
Inferior medial frontal gyrus | MIMneuro | 1.35 ± 0.45 | 1.18 ± 0.35 | <0.001 |
CortexID Suite | 1.50 ± 0.44 | 1.08 ± 0.15 | <0.001 | |
Neurophet SCALE PET | 1.20 ± 0.15 | 1.14 ± 0.11 | <0.001 | |
Lateral temporal lobe | MIMneuro | 1.34 ± 0.33 | 1.22 ± 0.29 | <0.001 |
CortexID Suite | 1.55 ± 1.24 | 1.24 ± 1.34 | <0.001 | |
Neurophet SCALE PET | 1.31 ± 0.15 | 1.27 ± 0.13 | <0.001 | |
Posterior cingulate gyrus | MIMneuro | 1.54 ± 0.37 | 1.37 ± 0.35 | <0.001 |
CortexID Suite | 1.65 ± 0.43 | 1.21 ± 0.18 | <0.001 | |
Neurophet SCALE PET | 1.40 ± 0.31 | 1.25 ± 0.25 | <0.001 | |
Precuneus | MIMneuro | 1.47 ± 0.41 | 1.29 ± 0.37 | <0.001 |
CortexID Suite | 1.34 ± 0.31 | 1.19 ± 0.18 | <0.001 | |
Neurophet SCALE PET | 1.49 ± 0.26 | 1.39 ± 0.21 | <0.001 | |
Superior parietal lobule | MIMneuro | 1.43 ± 0.33 | 1.30 ± 0.28 | <0.001 |
CortexID Suite | 1.51 ± 1.14 | 1.14 ± 0.15 | <0.001 | |
Neurophet SCALE PET | 1.44 ± 0.17 | 1.39 ± 0.14 | <0.001 |
Brain Region | Software | Cut-off Value | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
Anterior cingulate gyrus | MIMneuro | ≤1.31 | 97.78 | 100.00 | 1.000 |
CortexID Suite | ≤1.245 | 72.41 | 85.71 | 0.822 | |
Neurophet SCALE PET | ≤1.267 | 93.33 | 89.74 | 0.945 | |
Inferior medial frontal gyrus | MIMneuro | ≤1.3 | 95.56 | 87.18 | 0.937 |
CortexID Suite | ≤1.135 | 70.11 | 88.10 | 0.831 | |
Neurophet SCALE PET | ≤1.216 | 93.33 | 82.05 | 0.923 | |
Lateral temporal lobe | MIMneuro | ≤1.28 | 92.22 | 84.62 | 0.927 |
CortexID Suite | ≤1.335 | 74.71 | 73.81 | 0.765 | |
Neurophet SCALE PET | ≤1.344 | 93.33 | 76.92 | 0.876 | |
Posterior cingulate gyrus | MIMneuro | ≤1.46 | 93.33 | 92.31 | 0.969 |
CortexID Suite | ≤1.28 | 70.11 | 85.71 | 0.813 | |
Neurophet SCALE PET | ≤1.344 | 93.33 | 76.92 | 0.876 | |
Precuneus | MIMneuro | ≤1.32 | 88.89 | 94.87 | 0.966 |
CortexID Suite | ≤1.245 | 78.16 | 69.05 | 0.768 | |
Neurophet SCALE PET | ≤1.407 | 87.78 | 92.31 | 0.944 | |
Superior parietal lobule | MIMneuro | ≤1.37 | 91.11 | 94.87 | 0.948 |
CortexID Suite | ≤1.29 | 79.31 | 73.81 | 0.804 | |
Neurophet SCALE PET | ≤1.393 | 76.67 | 89.74 | 0.876 |
Brain Region | MIMneuro vs. CortexID Suite | MIMneuro vs. Neurophet SCALE PET | CortexID Suite vs. Neurophet SCALE PET |
---|---|---|---|
Anterior cingulate gyrus | 0.004 | 0.865 * | 0.030 |
Inferior medial frontal gyrus | −0.025 | 0.819 * | 0.032 |
Lateral temporal lobe | −0.016 | 0.758 * | 0.013 |
Posterior cingulate gyrus | −0.041 | 0.729 * | 0.088 |
Precuneus | 0.051 | 0.828 * | 0.068 |
Superior parietal lobule | 0.080 | 0.715 * | 0.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheon, M.; Yi, H.; Ha, S.-W.; Kang, M.J.; Jeong, D.-E.; Abdelhafez, Y.G.; Nardo, L. Comparison of Amyloid-PET Analysis Software Using 18F-Florbetaben PET in Patients with Cognitive Impairment. Diagnostics 2025, 15, 2028. https://doi.org/10.3390/diagnostics15162028
Cheon M, Yi H, Ha S-W, Kang MJ, Jeong D-E, Abdelhafez YG, Nardo L. Comparison of Amyloid-PET Analysis Software Using 18F-Florbetaben PET in Patients with Cognitive Impairment. Diagnostics. 2025; 15(16):2028. https://doi.org/10.3390/diagnostics15162028
Chicago/Turabian StyleCheon, Miju, Hyunkyung Yi, Sang-Won Ha, Min Ju Kang, Da-Eun Jeong, Yasser G. Abdelhafez, and Lorenzo Nardo. 2025. "Comparison of Amyloid-PET Analysis Software Using 18F-Florbetaben PET in Patients with Cognitive Impairment" Diagnostics 15, no. 16: 2028. https://doi.org/10.3390/diagnostics15162028
APA StyleCheon, M., Yi, H., Ha, S.-W., Kang, M. J., Jeong, D.-E., Abdelhafez, Y. G., & Nardo, L. (2025). Comparison of Amyloid-PET Analysis Software Using 18F-Florbetaben PET in Patients with Cognitive Impairment. Diagnostics, 15(16), 2028. https://doi.org/10.3390/diagnostics15162028