Integrating PSA Change with PSA Density Enhances Diagnostic Accuracy and Helps Avoid Unnecessary Prostate Biopsies
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurement of PSA and Related Parameters
2.3. Biopsy Protocol
2.4. Outcomes of Interest
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Comparison of Single Predictive Variable for Diagnosing Prostate Cancer
3.3. Comparison of Single Predictive Variable for Clinically Significant Prostate Cancer
3.4. Comparison of PSA Density Derived from TRUS and MRI
3.5. Impact of Combining PSA Density and PSA Change on Prostate Cancer Diagnosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergengren, O.; Pekala, K.R.; Matsoukas, K.; Fainberg, J.; Mungovan, S.F.; Bratt, O.; Bray, F.; Brawley, O.; Luckenbaugh, A.N.; Mucci, L.; et al. 2022 Update on Prostate Cancer Epidemiology and Risk Factors-A Systematic Review. Eur. Urol. 2023, 84, 191–206. [Google Scholar] [CrossRef]
- Bell, K.J.; Del Mar, C.; Wright, G.; Dickinson, J.; Glasziou, P. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int. J. Cancer 2015, 137, 1749–1757. [Google Scholar] [CrossRef]
- Martin, R.M.; Turner, E.L.; Young, G.J.; Metcalfe, C.; Walsh, E.I.; Lane, J.A.; Sterne, J.A.C.; Noble, S.; Holding, P.; Ben-Shlomo, Y.; et al. Prostate-Specific Antigen Screening and 15-Year Prostate Cancer Mortality: A Secondary Analysis of the CAP Randomized Clinical Trial. JAMA 2024, 331, 1460–1470. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, P.F.; Parnes, H.L.; Andriole, G. Mortality and complications after prostate biopsy in the Prostate, Lung, Colorectal and Ovarian Cancer Screening (PLCO) trial. BJU Int. 2014, 113, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Tchetgen, M.B.; Oesterling, J.E. The effect of prostatitis, urinary retention, ejaculation, and ambulation on the serum prostate-specific antigen concentration. Urol. Clin. N. Am. 1997, 24, 283–291. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Broeck, T.V.D.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef]
- De Nunzio, C.; Lombardo, R.; Nacchia, A.; Tema, G.; Tubaro, A. Repeat prostate-specific antigen (PSA) test before prostate biopsy: A 20% decrease in PSA values is associated with a reduced risk of cancer and particularly of high-grade cancer. BJU Int. 2018, 122, 83–88. [Google Scholar] [CrossRef]
- Nordström, T.; Adolfsson, J.; Grönberg, H.; Eklund, M. Repeat Prostate-Specific Antigen Tests Before Prostate Biopsy Decisions. J. Natl. Cancer Inst. 2016, 108, djw165. [Google Scholar] [CrossRef] [PubMed]
- Rosario, D.J.; Lane, J.A.; Metcalfe, C.; Catto, J.W.; Dedman, D.; Donovan, J.L.; Neal, D.E.; Hamdy, F.C. Contribution of a single repeat PSA test to prostate cancer risk assessment: Experience from the ProtecT study. Eur. Urol. 2008, 53, 777–784. [Google Scholar] [CrossRef]
- Pinsky, P.F.; Kramer, B.S.; Crawford, E.D.; Grubb, R.L.; Urban, D.A.; Andriole, G.L.; Chia, D.; Levin, D.L.; Gohagan, J.K. Prostate volume and prostate-specific antigen levels in men enrolled in a large screening trial. Urology 2006, 68, 352–356. [Google Scholar] [CrossRef]
- Gravas, S.; Gacci, M.; Gratzke, C.; Herrmann, T.R.; Karavitakis, M.; Kyriazis, I.; Malde, S.; Mamoulakis, C.; Rieken, M.; Sakalis, V.I.; et al. Summary Paper on the 2023 European Association of Urology Guidelines on the Management of Non-neurogenic Male Lower Urinary Tract Symptoms. Eur. Urol. 2023, 84, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y. Intraindividual variation of prostate specific antigen measurement and implications for early detection of prostate carcinoma. Cancer 2001, 92, 776–780. [Google Scholar] [CrossRef]
- Eastham, J.A.; Riedel, E.; Scardino, P.T.; Shike, M.; Fleisher, M.; Schatzkin, A.; Lanza, E.; Latkany, L.; Begg, C.B.; for the Polyp Prevention Trial Study Group. Variation of serum prostate-specific antigen levels: An evaluation of year-to-year fluctuations. JAMA 2003, 289, 2695–2700. [Google Scholar] [CrossRef]
- Connolly, D.; Black, A.; Murray, L.J.; Nambirajan, T.; Keane, P.F.; Gavin, A. Repeating an abnormal prostate-specific antigen (PSA) level: How relevant is a decrease in PSA? Prostate Cancer Prostatic Dis. 2009, 12, 47–51. [Google Scholar] [CrossRef]
- Stopiglia, R.M.; Ferreira, U.; Silva, M.M.; Jr et, a.l. Prostate specific antigen decrease and prostate cancer diagnosis: Antibiotic versus placebo prospective randomized clinical trial. J. Urol. 2010, 183, 940–944. [Google Scholar] [CrossRef]
- Yusim, I.; Krenawi, M.; Mazor, E.; Novack, V.; Mabjeesh, N.J. The use of prostate specific antigen density to predict clinically significant prostate cancer. Sci. Rep. 2020, 10, 20015. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.; Patel, H.D.; Lanzotti, N.; Okabe, Y.; Rac, G.; Shea, S.M.; Gorbonos, A.; Quek, M.L.; Flanigan, R.C.; Goldberg, A.; et al. MRI vs Transrectal Ultrasound to Estimate Prostate Volume and PSAD: Impact on Prostate Cancer Detection. Urology 2023, 171, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Zhang, C.; Zheng, L.; Wang, Q.; Wu, Q.; Tu, X.; Bao, Y.; Wei, Q. The Impact of Prostate Volume on Prostate Cancer Detection: Comparing Magnetic Resonance Imaging with Transrectal Ultrasound in Biopsy-naïve Men. Eur. Urol. Open Sci. 2024, 64, 1–8. [Google Scholar] [CrossRef]
- Robinson, E.; Kinsella, N.; Ap Dafydd, D.; Shur, J.; Sohaib, A.; Hazell, S.; Bassett, P.; Kumar, P.; Mayer, E.; Cahill, D.; et al. Prostate Specific Antigen Density and Clinically-Significant Prostate Cancer: The Influence of Prostatic Volume. Prostate 2025, 85, 784–791. [Google Scholar] [CrossRef]
- Wang, S.; Kozarek, J.; Russell, R.; Drescher, M.; Khan, A.; Kundra, V.; Barry, K.H.; Naslund, M.; Siddiqui, M.M. Diagnostic Performance of Prostate-specific Antigen Density for Detecting Clinically Significant Prostate Cancer in the Era of Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2024, 7, 89–203. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.K.; Leow, J.J.; Chiang, C.H.; Mok, A.; Zhang, K.; Hsieh, P.-F.; Zhu, Y.; Lam, W.; Tsang, W.-C.; Fan, Y.-H.; et al. Prostate Health Index Density Outperforms Prostate-specific Antigen Density in the Diagnosis of Clinically Significant Prostate Cancer in Equivocal Magnetic Resonance Imaging of the Prostate: A Multicenter Evaluation. J. Urol. 2023, 210, 88–98. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All (N = 291) | Cancer (N = 112) | Non-Cancer (N = 179) | p-Value a | Clinically Significant Cancer (N = 77) | Clinically Insignificant Cancer (N = 35) | p-Value b |
---|---|---|---|---|---|---|---|
Age, median (IQR) | 69 (62–73) | 70 (65–76) | 68 (62–72) | 0.003 | 70 (64–76) | 70 (66–75) | 0.732 |
1st PSA, median (IQR) | 8.33 (6.52–11.3) | 9.07 (7.05–12) | 8.09 (6.3–10.8) | 0.025 | 10.1 (7.59–13) | 7.78 (6.32–9.5) | 0.004 |
2nd PSA, median (IQR) | 8.31 (6.1–11.2) | 9.54 (6.85–12.4) | 7.84 (5.8–10.1) | <0.001 | 10.6 (8.1–13.7) | 7.78 (5.75–10.6) | 0.001 |
Interval time (days), median (IQR) | 24 (15–39) | 23 (15–34) | 24 (15–41) | 0.195 | 22 (15–30) | 26 (16–39) | 0.521 |
PSA change (%), median (IQR) | −1.1 (−14.3–12.9) | 1.9 (−4.2–12.7) | −4.7 (−19.5–12.9) | 0.001 | 5.9 (−2.6–14.8) | −3.2 (−11.4–6.9) | 0.013 |
Absolute PSA change (%), median (IQR) | 13.7 (5.9–22.5) | 10.4 (3.5–17.1) | 16.8 (7.5–24.9) | <0.001 | 10.2 (3.2–15.9) | 10.6 (3.9–22.5) | 0.739 |
TRUS volume, median (IQR) c | 48.2 (37–72.2) | 39 (31.1–52.3) | 58.1 (44.2–77) | <0.001 | 38.8 (30.3–51) | 40.9 (35.4–77.2) | 0.156 |
PSA density by ultrasound, median (IQR) c | 0.17 (0.12–0.23) | 0.23 (0.17–0.31) | 0.15 (0.11–0.19) | <0.001 | 0.26 (0.2–0.34) | 0.18 (0.14–0.23) | 0.001 |
Biopsy method, No. (%) | |||||||
Random | 218 (74.9%) | 89 (79.5%) | 129 (72.1%) | 0.148 | 60 (77.9%) | 29 (82.9%) | 0.603 |
Cognitive fusion | 42 (14.4%) | 16 (14.3%) | 26 (14.5%) | 11 (14.3%) | 5 (14.3%) | ||
Software fusion | 31 (10.7%) | 7 (6.2%) | 24 (13.4) | 6 (7.8%) | 1 (2.8) | ||
Total biopsy cores, median (IQR) | 12 (12–13) | 12 (12–12) | 12 (12–13) | 0.039 | 12 (12–12) | 12 (12–12) | 0.76 |
Systemic biopsy cores, median (IQR) | 12 (12–12) | 12 (12–12) | 12 (12–12) | 0.46 | 12 (12–12) | 12 (12–12) | 0.59 |
Target biopsy cores per target, median (IQR) d | 3.4 (3–4) | 3 (3–4) | 3.5 (3–4) | 0.83 | 3 (3–4) | 5 (3.6–5) | 0.53 |
PIRADS, No. (%) e | |||||||
2 | 16 (21.9%) | 1 (4.3%) | 15 (30%) | <0.001 | 0 (0%) | 1 (16.7%) | 0.019 |
3 | 37 (50.7%) | 4 (17.4%) | 33 (66%) | 1 (5.9%) | 3 (50%) | ||
4 | 12 (16.4%) | 10 (43.5%) | 2 (4%) | 9 (52.9%) | 1 (16.7%) | ||
5 | 8 (11%) | 8 (34.8%) | 0 (0%) | 7 (41.2%) | 1 (16.7%) |
Variables | Detection of Any-Grade Cancer | Detection of Clinically Significant Cancer | ||||
---|---|---|---|---|---|---|
AUC | 95% CI | p-Value | AUC | 95% CI | p-Value | |
PSA | 0.59 | 0.52–0.66 | <0.001 | 0.64 | 0.56–0.71 | <0.001 |
PSA change | 0.64 | 0.57–0.70 | 0.003 | 0.67 | 0.60–0.73 | 0.002 |
Absolute PSA change | 0.64 | 0.57–0.71 | 0.004 | 0.63 | 0.55–0.70 | <0.001 |
PSA density + PSA change | 0.79 | 0.73–0.84 | 0.068 | 0.82 | 0.76–0.88 | 0.049 |
PSA density | 0.77 | 0.71–0.83 | Reference | 0.81 | 0.75–0.87 | Reference |
Cut-Off for Biopsy Decision | Sensitivity | Specificity | Unnecessary Biopsy Avoided | Grade Group 1 Cancer Avoided |
---|---|---|---|---|
PSA density ≥0.15 | 84.5% | 49.5% | 50.3% | 39.4% |
PSA density ≥0.15 + PSA does not decrease >20% | 84.5% | 63.6% | 66.7% | 48.5% |
PSA density ≥0.15 + PSA does not decrease >10% | 73.2% | 72.2% | 75.8% | 54.5% |
PSA density ≥0.2 | 73.2% | 75.8% | 80.6% | 51.5% |
PSA density ≥0.2 + PSA does not decrease >20% | 73.2% | 81.8% | 86.1% | 60.6% |
PSA density ≥0.2 + PSA does not decrease >10% | 64.8% | 86.9% | 90.9% | 66.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, Y.-J.; Jong, B.-E.; Tsai, Y.-C. Integrating PSA Change with PSA Density Enhances Diagnostic Accuracy and Helps Avoid Unnecessary Prostate Biopsies. Diagnostics 2025, 15, 2027. https://doi.org/10.3390/diagnostics15162027
Chou Y-J, Jong B-E, Tsai Y-C. Integrating PSA Change with PSA Density Enhances Diagnostic Accuracy and Helps Avoid Unnecessary Prostate Biopsies. Diagnostics. 2025; 15(16):2027. https://doi.org/10.3390/diagnostics15162027
Chicago/Turabian StyleChou, Yi-Ju, Bor-En Jong, and Yao-Chou Tsai. 2025. "Integrating PSA Change with PSA Density Enhances Diagnostic Accuracy and Helps Avoid Unnecessary Prostate Biopsies" Diagnostics 15, no. 16: 2027. https://doi.org/10.3390/diagnostics15162027
APA StyleChou, Y.-J., Jong, B.-E., & Tsai, Y.-C. (2025). Integrating PSA Change with PSA Density Enhances Diagnostic Accuracy and Helps Avoid Unnecessary Prostate Biopsies. Diagnostics, 15(16), 2027. https://doi.org/10.3390/diagnostics15162027