Exome Sequencing in Adults with Unexplained Liver Disease: Diagnostic Yield and Clinical Impact
Abstract
1. Introduction
2. Materials and Methods
2.1. Whole-Exome Sequencing and Data Analysis
2.2. Clinical Phenotypes
2.3. Statistics
3. Results
3.1. Study Cohort
3.2. Genetic Results
3.3. Clinical and Genetic Findings of the Patients with VUS or Pathogenic Variant Idiopathic Cholestasis
3.3.1. Idiopathic Cholestasis
3.3.2. Hepatic Steatosis
3.3.3. Elevated Liver Enzymes
3.3.4. Cryptogenic Cirrhosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NGS | next-generation sequencing |
WES | whole-exome sequencing |
WGS | whole-genome sequencing |
DILI | drug-induced liver injury |
RUCAM | Roussel Uclaf causality assessment method |
CT | abdominal tomography |
MRCP | magnetic resonance cholangiopancreatography |
SNV | single-nucleotide variant |
CNV | copy-number variant |
MAF | minor allele frequency |
OMIM | Online Mendelian Inheritance in Man |
VUS | variants of uncertain significance |
MASLD | metabolic dysfunction-associated fatty liver disease |
ALD | alcoholic liver disease |
AR | autosomal recessive |
AD | autosomal dominant |
ARCS1 | arthrogryposis, renal dysfunction, and cholestasis |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
ALP | alkaline phosphatase |
GGT | gamma-glutamyl-transferase |
CGD | congenital glycosylation disorder |
HCA | hepatocellular adenoma |
HCC | hepatocellular carcinoma |
LDLT | living liver donor transplantation |
References
- Tsochatzis, E.A.; Bosch, J.; Burroughs, A.K. Liver cirrhosis. Lancet 2014, 383, 1749–1761. [Google Scholar] [CrossRef]
- Kiezun, A.; Garimella, K.; Do, R.; Stitziel, N.O.; Neale, B.M.; McLaren, P.J.; Gupta, N.; Sklar, P.; Sullivan, P.F.; Moran, J.L.; et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 2012, 44, 623–630. [Google Scholar] [CrossRef]
- Ng, S.B.; Buckingham, K.J.; Lee, C.; Bigham, A.W.; Tabor, H.K.; Dent, K.M.; Huff, C.D.; Shannon, P.T.; Jabs, E.W.; Nickerson, D.A.; et al. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 2010, 42, 30–35. [Google Scholar] [CrossRef]
- Wawrocka, A.; Socha, M.; Walczak-Sztulpa, J.; Koczyk, G.; Skorczyk-Werner, A.; Krawczyński, M.R. Molecular Re-Diagnosis with Whole-Exome Sequencing Increases the Diagnostic Yield in Patients with Non-Syndromic Retinitis Pigmentosa. Diagnostics 2023, 13, 730. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.; Kim, M.; Jang, D.H. Diagnostic Yield of Trio Whole-Genome Sequencing in Children with Undiagnosed Developmental Delay or Congenital Anomaly: A Prospective Cohort Study. Diagnostics 2024, 14, 1680. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, H.; Pratiwi, L.; Romadhon, P.Z.; Bintoro, S.U.Y. Advancing chronic myeloid leukemia research with next-generation sequencing: Potential benefits, limitations, and future clinical integration. Hum. Genet. 2025, 144, 481–503. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.H.; Zheng, M.; Bale, A.E.; Vilarinho, S. Hepatology Genome Rounds: An interdisciplinary approach to integrate genomic data into clinical practice. J. Hepatol. 2023, 79, 1065–1071. [Google Scholar] [CrossRef]
- Kong, X.F.; Bogyo, K.; Kapoor, S.; Shea, P.R.; Groopman, E.E.; Thomas-Wilson, A.; Cocchi, E.; Milo Rasouly, H.; Zheng, B.; Sun, S.; et al. The diagnostic yield of exome sequencing in liver diseases from a curated gene panel. Sci. Rep. 2023, 13, 21540. [Google Scholar] [CrossRef]
- Yang, Y.; Muzny, D.M.; Reid, J.G.; Bainbridge, M.N.; Willis, A.; Ward, P.A.; Braxton, A.; Beuten, J.; Xia, F.; Niu, Z.; et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 2013, 369, 1502–1511. [Google Scholar] [CrossRef]
- Dixon-Salazar, T.J.; Silhavy, J.L.; Udpa, N.; Schroth, J.; Bielas, S.; Schaffer, A.E.; Olvera, J.; Bafna, V.; Zaki, M.S.; Abdel-Salam, G.H.; et al. Exome sequencing can improve diagnosis and alter patient management. Sci. Transl. Med. 2012, 4, 138ra178. [Google Scholar] [CrossRef]
- Meienberg, J.; Bruggmann, R.; Oexle, K.; Matyas, G. Clinical sequencing: Is WGS the better WES? Hum. Genet. 2016, 135, 359–362. [Google Scholar] [CrossRef]
- EASL Clinical Practice Guidelines on genetic cholestatic liver diseases. J. Hepatol. 2024, 81, 303–325. [CrossRef]
- Vilarinho, S.; Mistry, P.K. Exome Sequencing in Clinical Hepatology. Hepatology 2019, 70, 2185–2192. [Google Scholar] [CrossRef]
- Zheng, M.; Huang, D.Q.; Konkwo, C.; Agrawal, S.; Khera, A.V.; Loomba, R.; Vilarinho, S.; Ajmera, V. Genomic analysis of lean individuals with NAFLD identifies monogenic disorders in a prospective cohort study. JHEP Rep. 2023, 5, 100692. [Google Scholar] [CrossRef]
- Pelusi, S.; Ronzoni, L.; Malvestiti, F.; Bianco, C.; Marini, I.; D’Ambrosio, R.; Giannotta, J.A.; Soardo, G.; Maggioni, M.; Prati, D.; et al. Clinical exome sequencing for diagnosing severe cryptogenic liver disease in adults: A case series. Liver Int. 2022, 42, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Ronzoni, L.; Pelusi, S.; Moretti, V.; Malvestiti, F.; Eidgah Torghabehei, H.; Jamialahmadi, O.; Rondena, J.; Bianco, C.; Periti, G.; Filippo, M.R.; et al. Diagnostic Uptake of Targeted Sequencing in Adults With Steatotic Liver Disease and a Suspected Genetic Contribution. Liver Int. 2025, 45, e70010. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Hakim, A.; Konkwo, C.; Deaton, A.M.; Ward, L.D.; Silveira, M.G.; Assis, D.N.; Liapakis, A.; Jaffe, A.; Jiang, Z.G.; et al. Advancing diagnosis and management of liver disease in adults through exome sequencing. EBioMedicine 2023, 95, 104747. [Google Scholar] [CrossRef]
- Erdem, Y.; Tekşen, F. Genetic screening services provided in Turkey. J. Genet. Couns. 2013, 22, 858–864. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Stättermayer, A.F.; Halilbasic, E.; Wrba, F.; Ferenci, P.; Trauner, M. Variants in ABCB4 (MDR3) across the spectrum of cholestatic liver diseases in adults. J. Hepatol. 2020, 73, 651–663. [Google Scholar] [CrossRef]
- Reichert, M.C.; Lammert, F. ABCB4 Gene Aberrations in Human Liver Disease: An Evolving Spectrum. Semin. Liver Dis. 2018, 38, 299–307. [Google Scholar] [CrossRef]
- Gissen, P.; Tee, L.; Johnson, C.A.; Genin, E.; Caliebe, A.; Chitayat, D.; Clericuzio, C.; Denecke, J.; Di Rocco, M.; Fischler, B.; et al. Clinical and molecular genetic features of ARC syndrome. Hum. Genet. 2006, 120, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.L.; Liu, T.; Abuduxikuer, K.; Hao, C.Z.; Gong, J.Y.; Zhang, M.H.; Li, L.T.; Yan, Y.Y.; Li, J.Q.; Wang, J.S. Novel missense mutation in VPS33B is associated with isolated low gamma-glutamyltransferase cholestasis: Attenuated, incomplete phenotype of arthrogryposis, renal dysfunction, and cholestasis syndrome. Hum. Mutat. 2019, 40, 2247–2257. [Google Scholar] [CrossRef]
- Nayagam, J.S.; Foskett, P.; Strautnieks, S.; Agarwal, K.; Miquel, R.; Joshi, D.; Thompson, R.J. Clinical phenotype of adult-onset liver disease in patients with variants in ABCB4, ABCB11, and ATP8B1. Hepatol. Commun. 2022, 6, 2654–2664. [Google Scholar] [CrossRef]
- Miyajima, H. Aceruloplasminemia. Neuropathology 2015, 35, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Corradini, E.; Buzzetti, E.; Dongiovanni, P.; Scarlini, S.; Caleffi, A.; Pelusi, S.; Bernardis, I.; Ventura, P.; Rametta, R.; Tenedini, E.; et al. Ceruloplasmin gene variants are associated with hyperferritinemia and increased liver iron in patients with NAFLD. J. Hepatol. 2021, 75, 506–513. [Google Scholar] [CrossRef]
- Borges, M.D.; de Albuquerque, D.M.; Lanaro, C.; Costa, F.F.; Fertrin, K.Y. Clinical relevance of heterozygosis for aceruloplasminemia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2019, 180, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Kono, S.; Suzuki, H.; Oda, T.; Miyajima, H.; Takahashi, Y.; Shirakawa, K.; Ishikawa, K.; Kitagawa, M. Biochemical features of ceruloplasmin gene mutations linked to aceruloplasminemia. Neuromolecular Med. 2006, 8, 361–374. [Google Scholar] [CrossRef]
- Kuhn, J.; Miyajima, H.; Takahashi, Y.; Kunath, B.; Hartmann-Klosterkoetter, U.; Cooper-Mahkorn, D.; Schaefer, M.; Bewermeyer, H. Extrapyramidal and cerebellar movement disorder in association with heterozygous ceruloplasmin gene mutation. J. Neurol. 2005, 252, 111–113. [Google Scholar] [CrossRef]
- Ondruskova, N.; Cechova, A.; Hansikova, H.; Honzik, T.; Jaeken, J. Congenital disorders of glycosylation: Still “hot” in 2020. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129751. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.C.; Timal, S.; van Scherpenzeel, M.; Michelakakis, H.; Vicogne, D.; Ashikov, A.; Moraitou, M.; Hoischen, A.; Huijben, K.; Steenbergen, G.; et al. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation. Am. J. Hum. Genet. 2016, 98, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yang, F.X.; Tan, Y.F.; Deng, M.; Li, H.; Xu, Y.; Ouyang, W.X.; Song, Y.Z. Clinical and genetic characterization of pediatric patients with progressive familial intrahepatic cholestasis type 3 (PFIC3): Identification of 14 novel ABCB4 variants and review of the literatures. Orphanet J. Rare Dis. 2022, 17, 445. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Zeier, M.G.; Craig, J.C.; Ekberg, H.; Garvey, C.A.; Green, M.D.; Jha, V.; Josephson, M.A.; Kiberd, B.A.; Kreis, H.A.; et al. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. 3), S1-155. [Google Scholar] [CrossRef]
- Gravholt, C.H.; Viuff, M.H.; Brun, S.; Stochholm, K.; Andersen, N.H. Turner syndrome: Mechanisms and management. Nat. Rev. Endocrinol. 2019, 15, 601–614. [Google Scholar] [CrossRef]
- Roulot, D. Liver involvement in Turner syndrome. Liver Int. 2013, 33, 24–30. [Google Scholar] [CrossRef]
- Sinha, A.; Bhuva, M.; Grant, C.; Gimson, A.E.; Thompson, E.; Duckworth, A.; Davies, S.E.; Aithal, G.; Griffiths, W.J. ABCB4 Mutations in Adults Cause a Spectrum Cholestatic Disorder Histologically Distinct from Other Biliary Disease. Dig. Dis. Sci. 2022, 67, 5551–5561. [Google Scholar] [CrossRef]
- Moreno Traspas, R.; Teoh, T.S.; Wong, P.M.; Maier, M.; Chia, C.Y.; Lay, K.; Ali, N.A.; Larson, A.; Al Mutairi, F.; Al-Sannaa, N.A.; et al. Loss of FOCAD, operating via the SKI messenger RNA surveillance pathway, causes a pediatric syndrome with liver cirrhosis. Nat. Genet. 2022, 54, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Okazaki, H.; Ohashi, K.; Ogura, M.; Ishibashi, S.; Okazaki, S.; Hirayama, S.; Hori, M.; Matsuki, K.; Yokoyama, S.; et al. Current Diagnosis and Management of Abetalipoproteinemia. J. Atheroscler. Thromb. 2021, 28, 1009–1019. [Google Scholar] [CrossRef]
- Sakamoto, O.; Abukawa, D.; Takeyama, J.; Arai, N.; Nagano, M.; Hattori, H.; Egashira, T.; Sakai, N.; Yamashita, S.; Iinuma, K.; et al. An atypical case of abetalipoproteinaemia with severe fatty liver in the absence of steatorrhoea or acanthocytosis. Eur. J. Pediatr. 2006, 165, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, K.; Ishibashi, S.; Osuga, J.; Tozawa, R.; Harada, K.; Yahagi, N.; Shionoiri, F.; Iizuka, Y.; Tamura, Y.; Nagai, R.; et al. Novel mutations in the microsomal triglyceride transfer protein gene causing abetalipoproteinemia. J. Lipid Res. 2000, 41, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, M.; Moulin, P.; Roy, P.; Samson-Bouma, M.E.; Collardeau-Frachon, S.; Chebel-Dumont, S.; Peretti, N.; Dumortier, J.; Zoulim, F.; Fontanges, T.; et al. Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia. J. Hepatol. 2014, 61, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Bao, Y.; Liu, H.M.; Lee, P.; Leonard, J.V.; Chen, Y.T. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J. Clin. Investig. 1996, 98, 352–357. [Google Scholar] [CrossRef]
- Demo, E.; Frush, D.; Gottfried, M.; Koepke, J.; Boney, A.; Bali, D.; Chen, Y.T.; Kishnani, P.S. Glycogen storage disease type III-hepatocellular carcinoma a long-term complication? J. Hepatol. 2007, 46, 492–498. [Google Scholar] [CrossRef]
- Nicastro, E.; D’Antiga, L. Next generation sequencing in pediatric hepatology and liver transplantation. Liver Transpl. 2018, 24, 282–293. [Google Scholar] [CrossRef]
- Valenti, L.; Pelusi, S.; Baselli, G. Whole exome sequencing for personalized hepatology: Expanding applications in adults and challenges. J. Hepatol. 2019, 71, 849–850. [Google Scholar] [CrossRef]
- Akarsu, M.; Dolu, S.; Harputluoglu, M.; Yilmaz, S.; Akyildiz, M.; Gencdal, G.; Polat, K.Y.; Dincer, D.; Adanir, H.; Turan, I.; et al. Changing trends in the etiology of liver transplantation in Turkiye: A multicenter study. Hepatol. Forum 2024, 5, 3–6. [Google Scholar] [CrossRef]
- Ozturk, N.B.; Bartosek, N.; Toruner, M.D.; Mumtaz, A.; Simsek, C.; Dao, D.; Saberi, B.; Gurakar, A. Approach to Liver Transplantation: Is There a Difference between East and West? J. Clin. Med. 2024, 13, 1890. [Google Scholar] [CrossRef]
- Khalil, A.; Quaglia, A.; Gélat, P.; Saffari, N.; Rashidi, H.; Davidson, B. New Developments and Challenges in Liver Transplantation. J. Clin. Med. 2023, 12, 5586. [Google Scholar] [CrossRef]
- Kasahara, M.; Hong, J.C.; Dhawan, A. Evaluation of living donors for hereditary liver disease (siblings, heterozygotes). J. Hepatol. 2023, 78, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
Variable | Total Patients | Number of Patients with Definitive Genetic Diagnosis | p-Value |
---|---|---|---|
Female/male, n (%) | 18 (34%)/35 (53%) | 3 (50%)/3 (50%) | |
Age | 34 ± 10 | 31 ± 9 | |
Family history of liver disease, n (%) | 18 (34%) | 1 (17%) | p = 0.342 |
Consanguineous marriage, n (%) | 23 (43%) | 3 (44%) | p = 0.729 |
Cirrhosis, n (%) | 7 (13%) | 2 (33%) | |
Primary liver phenotype, n (%) | |||
Idiopathic cholestasis | 6 (11%) | 1 (22%) | |
Hepatic steatosis | 28 (53%) | 1 (22%) | |
Elevated liver enzymes | 12 (23%) | 2 (22%) | |
Cryptogenic cirrhosis | 7 (13%) | 2 (34%) | |
BMI | 24.8 | 24.5 | |
Comorbidities | |||
Hypothyroidism | 3 (6%) | 0 (0%) | |
Hyperlipidemia | 1 (2%) | 1 (17%) | |
Type 2 diabetes mellitus | 1 (2%) | 1 (17%) | |
Hypertension | 1 (2%) | 0 (0%) | |
Chronic kidney disease | 0 (0%) | 0 (0%) | |
Chronic lung disease | 0 (0%) | 0 (0%) | |
Medication history | |||
L-thyroxine | 3 (6%) | 0 (0%) | |
Metformin | 1 (2%) | 1 (2%) | |
Calcium-channel blockers | 1 (2%) | 0 (0%) |
Patient | Clinical Findings | Gene | Transcript | Variant | Frequency (GnomAD v.4.1.0) | Zygosity | Interpretation (ACMG Class) | Genetic Diagnosis | Related Disease Mode of Inheritance (OMIM) |
---|---|---|---|---|---|---|---|---|---|
P1 | İdiopathic cholestasis | ABCB4 | NM_000443.4 | c.2177C > T p.Pro726Leu | f = 0.00001301 | Het | P** | D | Cholestasis, progressive familial intrahepatic 3, AR |
P2 | İdiopathic cholestasis | VPS33B | NM_018668 | c.277C > T p.Arg93Ter | f = 0.00001301 | Het | P** | P* | Cholestasis, progressive familial intrahepatic, 12, AR |
P3 | Hepatic steatosis | CP | NM_000096.4 | c.1948G > A p.Gly650Arg | f = 0.00001301 | Het | LP | D | Aceruloplasminemia, AR |
APOB | NM_000384.3 | c.29C > T p.Ala10Val | f = 0.000002833 | Hom | VUS | P* | Hypercholesterolemia, familial, 2, AD | ||
c.2258G > A p.Gly753Glu | f = 0.0001413 | Hom | VUS | P* | |||||
KLF11 | NM_003597.5 | c.42 + 3G > C | f = 7.255 × 10−7 | Het | VUS | - | Maturity-onset diabetes of the young, type VII, AD | ||
P4 | Hepatic steatosis | TMEM199 | NM_152464.3 | c.532C > T p.Arg178Trp | f = 0.0002225 | Hom | VUS | P* | Congenital disorder of glycosylation, type IIp, AR |
P5 | Elevated liver enzymes | ABCB4 | NM_000443.4 | c.716C > T 5 p.Ser239Leu | f = 0.00000805 | Hom | LP | D | Cholestasis, progressive familial intrahepatic 3, AR |
P6 | Elevated liver enzymes | CNV analysis: chr X deletion, confirmed by karyotype analysis: Mos 45,X[23]/46,XX[17] | D | Mosaic Turner syndrome | |||||
NBAS | NM_015909.4 | c.5465_5467delinsCTT p.Asn1822_Ile1823de linsThrPhe | f = 0 | Het | VUS | - | Infantile liver failure syndrome 2, AR | ||
ABCB4 | NM_000443.4 | c.217C > G p.Leu73Val | f = 0.001106 | Het | VUS | P* | Cholestasis, progressive familial intrahepatic 3, AR | ||
P7 | Cryptogenic cirrhosis | FOCAD | NM_001375567.1 | c.1507C > G p.Pro503Ala | f = 0.00001813 | Hom | VUS | P* | Liver disease, severe congenital, AR |
P8 | Cryptogenic cirrhosis | MTTP | NM_001386140.1 | c.59_61 + 14del | f = 0 | Het | LP | D | Abetalipoproteinemia, AR |
c.1946A > G p.Asn649Ser | f = 0 | Het | LP | D | |||||
P9 | Cryptogenic cirrhosis | AGL | NM_000642.3 | c.889A > T p.Lys297 | f = 6.204 × 10−7 | Hom | P** | D | Glycogen storage disease IIIa, AR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moral, K.; Kayhan, G.; Duzenli, T.; Sari, S.; Cindoruk, M.; Ekmen, N. Exome Sequencing in Adults with Unexplained Liver Disease: Diagnostic Yield and Clinical Impact. Diagnostics 2025, 15, 2010. https://doi.org/10.3390/diagnostics15162010
Moral K, Kayhan G, Duzenli T, Sari S, Cindoruk M, Ekmen N. Exome Sequencing in Adults with Unexplained Liver Disease: Diagnostic Yield and Clinical Impact. Diagnostics. 2025; 15(16):2010. https://doi.org/10.3390/diagnostics15162010
Chicago/Turabian StyleMoral, Kenan, Gülsüm Kayhan, Tarik Duzenli, Sinan Sari, Mehmet Cindoruk, and Nergiz Ekmen. 2025. "Exome Sequencing in Adults with Unexplained Liver Disease: Diagnostic Yield and Clinical Impact" Diagnostics 15, no. 16: 2010. https://doi.org/10.3390/diagnostics15162010
APA StyleMoral, K., Kayhan, G., Duzenli, T., Sari, S., Cindoruk, M., & Ekmen, N. (2025). Exome Sequencing in Adults with Unexplained Liver Disease: Diagnostic Yield and Clinical Impact. Diagnostics, 15(16), 2010. https://doi.org/10.3390/diagnostics15162010