Evolution and Prognostic Variables of Cystic Fibrosis in Children and Young Adults: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy of Electronic Databases
2.1.1. Inclusion and Exclusion Criteria
2.1.2. Selection of Studies and Information Extraction
3. Results
4. Prenatal Diagnosis of CF and Fetal Risk Factors
Prognostic and Clinical Evolution of CF Neonates with Meconium Ileus
5. Clinical and Biological Assessment of CF Severity and the Prognostic Implications
5.1. Cystic Fibrosis Lung Disease
5.1.1. Biomarkers of Inflammation in Sputum and Bronchoalveolar Lavage Fluid as a Predictive Factor
5.1.2. The Effect of Microbial Colonization on CF Prognosis
5.2. Serum Biomarkers of Inflammation, Nasal Potential Difference, and Sweat Chloride Concentration as Predictive Factors in CF
5.3. Genotype’s Impact on the Prognosis of CF Patients
5.4. Effect of Gender on Outcome of CF
5.5. The Correlation Between CF Prognosis and Exocrine Dysfunction
5.6. Cystic Fibrosis-Related Diabetes (CFRD)
5.7. Cystic Fibrosis-Related Liver Disease (CFLD)
5.8. Weight and Nutritional Status in Predicting the Course of CF
6. Using Radiology to Forecast Prognosis in CF
7. Discussions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Giambona, A.; Vinciguerra, M.; Leto, F.; Cassarà, F.; Marchese, G.; Cigna, V.; Orlandi, E.; Mugavero, M.E.; Cucinella, G.; Maggio, A.; et al. Prenatal Diagnosis of Cystic Fibrosis by Celocentesis. Genes 2024, 15, 662. [Google Scholar] [CrossRef] [PubMed]
- Donos, M.A.; Ghiga, G.; Trandafir, L.M.; Cojocaru, E.; Țarcă, V.; Butnariu, L.I.; Bernic, V.; Moroșan, E.; Roca, I.C.; Mîndru, D.E.; et al. Diagnosis and Management of Simple and Complicated Meconium Ileus in Cystic Fibrosis, a Systematic Review. Diagnostics 2024, 14, 1179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCarthy, C.; Dimitrov, B.D.; Meurling, I.J.; Gunaratnam, C.; McElvaney, N.G. The CF-ABLE score: A novel clinical prediction rule for prognosis in patients with cystic fibrosis. Chest 2013, 143, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; Vitullo, P.; Di Gioia, S.; Conese, M. Lung Inflammatory Genes in Cystic Fibrosis and Their Relevance to Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapies. Genes 2023, 14, 1966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. J Clin Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef]
- Jeppesen, L.D.; Lildballe, D.L.; Hatt, L.; Hedegaard, J.; Singh, R.; Toft, C.L.F.; Schelde, P.; Pedersen, A.S.; Knudsen, M.; Vogel, I. Noninvasive prenatal screening for cystic fibrosis using circulating trophoblasts: Detection of the 50 most common disease-causing variants. Prenat. Diagn. 2023, 43, 3–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parikh, N.S.; Ibrahim, S.; Ahlawat, R. Meconium Ileus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537008/ (accessed on 12 April 2025).
- Schlüter, D.K.; Griffiths, R.; Adam, A.; Akbari, A.; Heaven, M.L.; Paranjothy, S.; Andersen, A.-M.N.; Carr, S.B.; Pressler, T.; Diggle, P.J.; et al. Impact of cystic fibrosis on birthweight: A population based study of children in Denmark and Wales. Thorax 2019, 74, 447–454. [Google Scholar] [CrossRef]
- Skilton, M.; Krishan, A.; Patel, S.; Sinha, I.P.; Southern, K.W. Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis. Cochrane Database Syst. Rev. 2019, 1, CD009841. [Google Scholar] [CrossRef]
- Yule, A.; Sills, D.; Smith, S.; Spiller, R.; Smyth, A.R. Thinking outside the box: A review of gastrointestinal symptoms and complications in cystic fibrosis. Expert Rev. Respir. Med. 2023, 17, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.B.; Slaven, J.E.; Maguiness, K.; Chmiel, J.F.; Ren, C.L. Early-Life Height Attainment in Cystic Fibrosis is Associated with Pulmonary Function at Age 6 Years. Ann. Am. Thorac. Soc. 2021, 18, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.M.J.; Coffey, M.J.; Ooi, C.Y. Differences in clinical outcomes of paediatric cystic fibrosis patients with and without meconium ileus. J. Cyst. Fibros. 2019, 18, 857–862. [Google Scholar] [CrossRef]
- Dupuis, A.; Keenan, K.; Ooi, C.Y.; Dorfman, R.; Sontag, M.K.; Naehrlich, L.; Castellani, C.; Strug, L.J.; Rommens, J.M.; Gonska, T. Prevalence of meconium ileus marks the severity of mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Genet. Med. 2016, 18, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Tobias, J.; Tillotson, M.; Maloney, L.; Fialkowski, E. Meconium Ileus, Distal Intestinal Obstruction Syndrome, and Other Gastrointestinal Pathology in the Cystic Fibrosis Patient. Surg. Clin. N. Am. 2022, 102, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Farrelly, P.J.; Charlesworth, C.; Lee, S.; Southern, K.W.; Baillie, C.T. Gastrointestinal surgery in cystic fibrosis: A 20-year review. J. Pediatr. Surg. 2014, 49, 280–283. [Google Scholar] [CrossRef]
- Aquino, C.S.B.; Rodrigues, J.C.; Silva-Filho, L.V.R.F.D. Routine spirometry in cystic fibrosis patients: Impact on pulmonary exacerbation diagnosis and FEV1 decline. J. Bras. Pneumol. 2022, 48, e20210237. [Google Scholar] [CrossRef]
- Dournes, G.; Walkup, L.L.; Benlala, I.; Willmering, M.M.; Macey, J.; Bui, S.; Laurent, F.; Woods, J.C. The Clinical Use of Lung MRI in Cystic Fibrosis: What, Now, How? Chest 2021, 159, 2205–2217. [Google Scholar] [CrossRef]
- Kinghorn, B.; McNamara, S.; Genatossio, A.; Sullivan, E.; Siegel, M.; Bauer, I.; Clem, C.; Johnson, R.C.; Davis, M.; Griffiths, A.; et al. Comparison of Multiple Breath Washout and Spirometry in Children with Primary Ciliary Dyskinesia and Cystic Fibrosis and Healthy Controls. Ann. Am. Thorac. Soc. 2020, 17, 1085–1093. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hardaker, K.; Panda, H.; Hulme, K.; Wong, A.; Coward, E.; Cooper, P.; Fitzgerald, D.; Pandit, C.; Towns, S.; Selvadurai, H.; et al. Abnormal preschool Lung Clearance Index (LCI) reflects clinical status and predicts lower spirometry later in childhood in cystic fibrosis. J. Cyst. Fibros. 2019, 18, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Wielpütz, M.O.; Graeber, S.Y.; Joachim, C.; Sommerburg, O.; Kauczor, H.U.; Puderbach, M.; Eichinger, M.; Mall, M.A. Comparison of Lung Clearance Index and Magnetic Resonance Imaging for Assessment of Lung Disease in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2017, 195, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Chapron, J.; Hubert, D.; Kanaan, R.; Honoré, I.; Paillasseur, J.-L.; Aubourg, F.; Dinh-Xuan, A.-T.; Dusser, D.; Fajac, I.; et al. Prognostic value of six minute walk test in cystic fibrosis adults. Respir. Med. 2013, 107, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Andrade Lima, C.; Dornelas de Andrade, A.; Campos, S.L.; Brandão, D.C.; Mourato, I.P.; Britto, M.C.A. Six-minute walk test as a determinant of the functional capacity of children and adolescents with cystic fibrosis: A systematic review. Respir. Med. 2018, 137, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Lepissier, A.; Addy, C.; Hayes, K.; Noel, S.; Bui, S.; Burgel, P.-R.; Dupont, L.; Eickmeier, O.; Fayon, M.; Leal, T.; et al. Inflammation biomarkers in sputum for clinical trials in cystic fibrosis: Current understanding and gaps in knowledge. J. Cyst. Fibros. 2022, 21, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Garratt, L.W.; Sutanto, E.N.; Ling, K.-M.; Looi, K.; Iosifidis, T.; Martinovich, K.M.; Shaw, N.C.; Kicic-Starcevich, E.; Knight, D.A.; Ranganathan, S.; et al. Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis. Eur. Respir. J. 2015, 46, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Sagel, S.D.; Wagner, B.D.; Anthony, M.M.; Emmett, P.; Zemanick, E.T. Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2012, 186, 857–865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mayer-Hamblett, N.; Aitken, M.L.; Accurso, F.J.; Kronmal, R.A.; Konstan, M.W.; Burns, J.L.; Sagel, S.D.; Ramsey, B.W. Association between pulmonary function and sputum biomarkers in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2007, 175, 822–828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zemanick, E.T.; Emerman, I.; McCreary, M.; Mayer-Hamblett, N.; Warden, M.N.; Odem-Davis, K.; VanDevanter, D.R.; Ren, C.L.; Young, J.; Konstan, M.W.; et al. Heterogeneity of CFTR modulator-induced sweat chloride concentrations in people with cystic fibrosis. J. Cyst. Fibros. 2024, 23, 676–684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horati, H.; Margaroli, C.; Chandler, J.D.; Kilgore, M.B.; Manai, B.; Andrinopoulou, E.-R.; Peng, L.; Guglani, L.; Tiddens, H.A.; Caudri, D.; et al. Key inflammatory markers in bronchoalveolar lavage predict bronchiectasis progression in young children with CF. J. Cyst. Fibros. 2024, 23, 450–456. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Haas, D.; Bouchard, M.; Quon, B.S. Metabolomic Biomarkers to Predict and Diagnose Cystic Fibrosis Pulmonary Exacerbations: A Systematic Review. Front. Pediatr. 2022, 10, 896439. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hisert, K.B.; Heltshe, S.L.; Pope, C.; Jorth, P.; Wu, X.; Edwards, R.M.; Radey, M.; Accurso, F.J.; Wolter, D.J.; Cooke, G.; et al. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections. Am. J. Respir. Crit. Care Med. 2017, 195, 1617–1628. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ledger, E.L.; Smith, D.J.; Teh, J.J.; E Wood, M.; E Whibley, P.; Morrison, M.; Goldberg, J.B.; Reid, D.W.; Wells, T.J. Impact of CFTR Modulation on Pseudomonas aeruginosa Infection in People With Cystic Fibrosis. J. Infect. Dis. 2024, 230, e536–e547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosenfeld, M.; Rayner, O.; Smyth, A.R. Prophylactic anti-staphylococcal antibiotics for cystic fibrosis. Cochrane Database Syst. Rev. 2020, 9, CD001912. [Google Scholar] [CrossRef]
- McGarry, M.E.; Huang, C.-Y.; Ly, N.P. Ethnic differences in staphylococcus aureus acquisition in cystic fibrosis. J. Cyst. Fibros. 2023, 22, 909–915. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gilpin, D.; Hoffman, L.R.; Ceppe, A.; Muhlebach, M.S. Phenotypic characteristics of incident and chronic MRSA isolates in cystic fibrosis. J. Cyst. Fibros. 2021, 20, 692–698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duceac, L.D.; Banu, E.A.; Baciu, G.; Lupu, V.V.; Ciomaga, I.M.; Tarca, E.; Mitrea, G.; Ichim, D.L.; Damir, D.; Constantin, M.; et al. Assessment of Bacteria Resistance According to Antibiotic Chemical Structure. Rev. Chim. 2019, 70, 906–908. [Google Scholar] [CrossRef]
- Maliniak, M.L.; Stecenko, A.A.; McCarty, N.A. A longitudinal analysis of chronic MRSA and Pseudomonas aeruginosa co-infection in cystic fibrosis: A single-center study. J. Cyst. Fibros. 2016, 15, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez Santana, J.C.; Coria Jiménez, V.R. Burkholderia cepacia complex in cystic fibrosis: Critical gaps in diagnosis and therapy. Ann Med. 2024, 56, 2307503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eikani, M.S.; Nugent, M.; Poursina, A.; Simpson, P.; Levy, H. Clinical course and significance of nontuberculous mycobacteria and its subtypes in cystic fibrosis. BMC Infect. Dis. 2018, 18, 311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caverly, L.J.; Zimbric, M.; Azar, M.; Opron, K.; LiPuma, J.J. Cystic fibrosis airway microbiota associated with outcomes of nontuberculous mycobacterial infection. ERJ Open Res. 2021, 7, 00578-2020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lazzarotto, E.S.; Vasco, J.F.d.M.; Führ, F.; Riedi, C.A.; Filho, N.A.R. Systematic review on fecal calprotectin in cystic fibrosis. J. Pediatr. 2023, 99, 4–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jain, R.; Baines, A.; Khan, U.; Wagner, B.D.; Sagel, S.D. Evaluation of airway and circulating inflammatory biomarkers for cystic fibrosis drug development. J. Cyst. Fibros. 2021, 20, 50–56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caceres, S.M.; Sanders, L.A.; Rysavy, N.M.; Poch, K.R.; Jones, C.R.; Pickard, K.; Fingerlin, T.E.; Marcus, R.A.; Malcolm, K.C.; Taylor-Cousar, J.L.; et al. Blood mRNA biomarkers distinguish variable systemic and sputum inflammation at treatment initiation of inhaled antibiotics in cystic fibrosis: A prospective non-randomized trial. PLoS One 2022, 17, e0267592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iwuji, K.; Kanu, A.; Stroever, S.; Nugent, K.; Hamood, A.; Scott, C.; Navarro, S. Clinical significance of BPI-ANCA in patients with cystic fibrosis: A single center prospective study. Sci. Rep. 2023, 13, 18138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hubert, D.; Marguet, C.; Benichou, J.; DeSouza, C.; Payen-Champenois, C.; Kinnman, N.; Chandarana, K.; Munck, A.; Fajac, I.; BRIO Study Group. Real-World Long-Term Ivacaftor for Cystic Fibrosis in France: Clinical Effectiveness and Healthcare Resource Utilization. Utilization. Pulm. Ther. 2021, 7, 455–468, Erratum in Pulm. Ther. 2021, 7, 469–470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mei-Zahav, M.; Orenti, A.; Jung, A.; Kerem, E. Variability in disease severity among cystic fibrosis patients carrying residual-function variants: Data from the European Cystic Fibrosis Society Patient Registry. ERJ Open Res. 2025, 11, 00587-2024. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lang, E.; Kiernan, B.; Muise, E.D.; Giusti, R. Meconium ileus and pancreatic sufficiency with D1152H mutation: A case report and review of the literature. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2023, 22, 1125–1127. [Google Scholar] [CrossRef]
- Sawicki, G.S.; Konstan, M.W.; McKone, E.F.; Moss, R.B.; Lubarsky, B.; Suthoff, E.; Millar, S.J.; Pasta, D.J.; Mayer-Hamblett, N.; Goss, C.H.; et al. Rate of Lung Function Decline in People with Cystic Fibrosis Having a Residual Function Gene Mutation. Pulm. Ther. 2022, 8, 385–395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewis, C.; Blackman, S.M.; Nelson, A.; Oberdorfer, E.; Wells, D.; Dunitz, J.; Thomas, W.; Moran, A. Diabetes-related Mortality in Adults with Cystic Fibrosis. Role of Genotype and Sex. Am. J. Respir. Crit. Care Med. 2015, 191, 194–200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McKone, E.F.; Borowitz, D.; Drevinek, P.; Griese, M.; Konstan, M.W.; Wainwright, C.; Ratjen, F.; Sermet-Gaudelus, I.; Plant, B.; Munck, A.; et al. Long-term safety and efficacy of ivacaftor in patients with cystic fibrosis who have the Gly551Asp-CFTR mutation: A phase 3, open-label extension study (PERSIST). Lancet Respir. Med. 2014, 2, 902–910. [Google Scholar] [CrossRef]
- A Flume, P.; Biner, R.F.; Downey, D.G.; Jain, M.; Fischer, R.; De Boeck, K.; Sawicki, G.S.; Chang, P.; Paz-Diaz, H.; Rubin, J.L.; et al. Long-term safety and efficacy of tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years or older who are homozygous or heterozygous for Phe508del CFTR (EXTEND): An open-label extension study. Lancet Respir. Med. 2021, 9, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Cho, A.; Huang, E.N.; Xu, Y.; Quach, H.; Hu, J.; Wong, A.P. Gene therapy for cystic fibrosis: New tools for precision medicine. J. Transl. Med. 2021, 19, 452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harness-Brumley, C.L.; Elliott, A.C.; Rosenbluth, D.B.; Raghavan, D.; Jain, R. Gender Differences in Outcomes of Patients with Cystic Fibrosis. J. Women’s Health 2014, 23, 1012–1020. [Google Scholar] [CrossRef]
- Oates, G.R.; Schechter, M.S. Aiming to Improve Equity in Pulmonary Health: Cystic Fibrosis. Clin. Chest Med. 2023, 44, 555–573. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McNally, E.; Casey, M. Sex disparities in cystic fibrosis in the era of highly effective modulator treatment. BMC Pulm. Med. 2025, 25, 212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saint-Criq, V.; Kim, S.H.; Katzenellenbogen, J.A.; Harvey, B.J.; Migliaccio, A. Non-genomic estrogen regulation of ion transport and airway surface liquid dynamics in cystic fibrosis bronchial epithelium. PLoS ONE 2013, 8, e78593. [Google Scholar] [CrossRef]
- Soltman, S.; Hicks, R.A.; Naz Khan, F.; Kelly, A. Body composition in individuals with cystic fibrosis. J. Clin. Transl. Endocrinol. 2021, 26, 100272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jain, R.; Kazmerski, T.M.; Taylor-Cousar, J.L. The modern landscape of fertility, pregnancy, and parenthood in people with cystic fibrosis. Curr. Opin. Pulm. Med. 2023, 29, 595–602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naz Khan, F.; Mason, K.; Roe, A.H.; Tangpricha, V. CF and male health: Sexual and reproductive health, hypogonadism, and fertility. J. Clin. Transl. Endocrinol. 2021, 27, 100288. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Campbell, K.; Deebel, N.; Kohn, T.; Passarelli, R.; Velez, D.; Ramasamy, R. Prevalence of Low Testosterone in Men With Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens: A Cross-sectional Study Using a Large, Multi-institutional Database. Urology 2023, 182, 143–148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McKay, I.R.; Ooi, C.Y. The Exocrine Pancreas in Cystic Fibrosis in the Era of CFTR Modulation: A Mini Review. Front. Pediatr. 2022, 10, 914790. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.R.; Mondick, J.; Barrett, J.S.; Wilson, M.; Stallings, V.A.; Schall, J.I. Malabsorption blood test: Assessing fat absorption in patients with cystic fibrosis and pancreatic insufficiency. J. Clin. Pharmacol. 2015, 55, 854–865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kerem, E.; Viviani, L.; Zolin, A.; MacNeill, S.; Hatziagorou, E.; Ellemunter, H.; Drevinek, P.; Gulmans, V.; Krivec, U.; Olesen, H.; et al. Factors associated with FEV1 decline in cystic fibrosis: Analysis of the ECFS patient registry. Eur. Respir. J. 2014, 43, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Schwarzenberg, S.J. Pancreatic insufficiency in Cystic Fibrosis. J. Cyst. Fibros. 2017, 16 (Suppl. S2), S70–S78. [Google Scholar] [CrossRef] [PubMed]
- Pozo, L.; Bello, F.; Mendez, Y.; Surani, S. Cystic fibrosis-related diabetes: The unmet need. World J. Diabetes 2020, 11, 213–217. [Google Scholar] [CrossRef]
- Nielsen, B.U.; Faurholt-Jepsen, D.; Oturai, P.S.; Qvist, T.; Krogh-Madsen, R.; Katzenstein, T.L.; Shaw, J.; Ritz, C.; Pressler, T.; Almdal, T.P.; et al. Associations Between Glucose Tolerance, Insulin Secretion, Muscle and Fat Mass in Cystic Fibrosis. Clin. Med. Insights Endocrinol. Diabetes 2021, 14, 11795514211038259. [Google Scholar] [CrossRef]
- Iafusco, F.; Maione, G.; Rosanio, F.M.; Mozzillo, E.; Franzese, A.; Tinto, N. Cystic Fibrosis-Related Diabetes (CFRD): Overview of Associated Genetic Factors. Diagnostics 2021, 11, 572. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tofé, S.; Moreno, J.C.; MáiZ, L.; Alonso, M.; Escobar, H.; Barrio, R. Insulin-secretion abnormalities and clinical deterioration related to impaired glucose tolerance in cystic fibrosis. Eur. J. Endocrinol. 2005, 152, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenberg, S.J.; Thomas, W.; Olsen, T.W.; Grover, T.; Walk, D.; Milla, C.; Moran, A. Microvascular complications in cystic fibrosis–Related diabetes. Diabetes Care 2007, 30, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Olesen, H.V.; Drevinek, P.; Gulmans, V.A.; Hatziagorou, E.; Jung, A.; Mei-Zahav, M.; Stojnic, N.; Thomas, M.; Zolin, A.; ECFSPR Steering Group. Cystic fibrosis related diabetes in Europe: Prevalence, risk factors and outcome; Olesen et al. J. Cyst. Fibros. 2020, 19, 321–327. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.; O’Carroll, O.; Franciosi, A.N.; McElvaney, N.G. Factors Affecting Prognosis and Prediction of Outcome in Cystic Fibrosis Lung Disease. In Cystic Fibrosis in the Light of New Research; InTech: London, UK, 2015. [Google Scholar] [CrossRef]
- Moyer, K.; Balistreri, W. Hepatobiliary disease in patients with cystic fibrosis. Curr. Opin. Gastroenterol. 2009, 25, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Betapudi, B.; Aleem, A.; Kothadia, J.P. Cystic Fibrosis and Liver Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556086/ (accessed on 18 April 2025).
- Turck, D.; Braegger, C.P.; Colombo, C.; Declercq, D.; Morton, A.; Pancheva, R.; Robberecht, E.; Stern, M.; Strandvik, B.; Wolfe, S.; et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin. Nutr. 2016, 35, 557–577. [Google Scholar] [CrossRef]
- Stonebraker, J.R.; Pace, R.G.; Gallins, P.J.; Dang, H.; Aksit, M.A.; Faino, A.V.; Gordon, W.W.; MacParland, S.; Bamshad, M.J.; Gibson, R.L.; et al. Genetic variation in severe cystic fibrosis liver disease is associated with novel mechanisms for disease pathogenesis. Hepatology 2024, 80, 1012–1025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palaniappan, S.K.; Than, N.N.; Thein, A.W.; van Mourik, I. Interventions for preventing and managing advanced liver disease in cystic fibrosis. Cochrane Database Syst. Rev. 2020, 3, CD012056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eldredge, J.A.; Oliver, M.R.; Ooi, C.Y. Cystic fibrosis liver disease in the new era of cystic fibrosis transmembrane conductance regulator (CFTR) modulators. Paediatr. Respir. Rev. 2024, 50, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Ashby, D.; Smyth, R.L. Ursodeoxycholic acid for cystic fibrosis-related liver disease. Cochrane Database Syst. Rev. 2017, 9, CD000222. [Google Scholar] [CrossRef] [PubMed]
- Poore, T.S.; Meier, M.; Towler, E.; Martiniano, S.L.; Brinton, J.T.; DeBoer, E.M.; Sagel, S.D.; Wagner, B.D.; Zemanick, E.T. Clinical characteristics of people with cystic fibrosis and frequent fungal infection. Pediatr. Pulmonol. 2022, 57, 152–161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeffery, T.C.; Chang, A.B.; Conwell, L.S. Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst. Rev. 2023, 1, CD002010. [Google Scholar] [CrossRef]
- Salvatore, D.; Padoan, R.; Amato, A.; Salvatore, M.; Campagna, G.; on behalf of the Italian CF Registry Working Group. Nutritional Trends in Cystic Fibrosis: Insights from the Italian Cystic Fibrosis Patient Registry. J. Clin. Med. 2024, 13, 3652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trandafir, L.M.; Frăsinariu, O.E.; Țarcă, E.; Butnariu, L.I.; Constantin, M.M.L.; Moscalu, M.; Temneanu, O.R.; Popescu, A.S.M.; Popescu, M.G.M.; Stârcea, I.M.; et al. Can Bioactive Food Substances Contribute to Cystic Fibrosis-Related Cardiovascular Disease Prevention? Nutrients 2023, 15, 314. [Google Scholar] [CrossRef]
- Bass, R.; Alvarez, J.A. Nutritional status in the era of highly effective CFTR modulators. Pediatr. Pulmonol. 2024, 59, S6–S16. [Google Scholar] [CrossRef] [PubMed]
- Knott-Torcal, C.; Sebastián-Valles, F.; Girón Moreno, R.M.; Martín-Adán, J.C.; Jiménez-Díaz, J.; Marazuela, M.; Sánchez de la Blanca, N.; Fernández-Contreras, R.; Arranz-Martín, A. A prospective study to assess the impact of a novel CFTR therapy combination on body composition in patients with cystic fibrosis with F508del mutation. Clin. Nutr. 2023, 42, 2468–2474. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, Y.; Yang, Y.; Sun, Y.; Cheng, C.; Dai, J.; Meng, S.; Chen, K.; Zhao, Y.; Liu, X.; et al. Progression and mortality of patients with cystic fibrosis in China. Orphanet J. Rare Dis. 2025, 20, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frings, M.; Welsner, M.; Mousa, C.; Zensen, S.; Salhöfer, L.; Meetschen, M.; Beck, N.; Bos, D.; Westhölter, D.; Wienker, J.; et al. Low-dose high-resolution chest CT in adults with cystic fibrosis: Intraindividual comparison between photon-counting and energy-integrating detector CT. Eur. Radiol. Exp. 2024, 8, 105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaworska, J.; Buda, N.; Kwaśniewicz, P.; Komorowska-Piotrowska, A.; Sands, D. Lung Ultrasound in the Evaluation of Lung Disease Severity in Children with Clinically Stable Cystic Fibrosis: A Prospective Cross-Sectional Study. J. Clin. Med. 2023, 12, 3086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boni, A.; Cristiani, L.; Majo, F.; Ullmann, N.; Esposito, M.; Supino, M.C.; Tomà, P.; Villani, A.; Musolino, A.M.; Cutrera, R. Use of Lung Ultrasound in Cystic Fibrosis: Is It a Valuable Tool? Children 2024, 11, 917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Felipe Montiel, A.; Fernández, A.Á.; Amigo, M.C.; Traversi, L.; Clofent Alarcón, D.; Reyes, K.L.; Polverino, E. The ageing of people living with cystic fibrosis: What to expect now? Eur. Respir. Rev. 2024, 33, 240071. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Butnariu, L.I.; Țarcă, E.; Cojocaru, E.; Rusu, C.; Moisă, Ș.M.; Leon Constantin, M.M.; Gorduza, E.V.; Trandafir, L.M. Genetic Modifying Factors of Cystic Fibrosis Phenotype: A Challenge for Modern Medicine. J. Clin. Med. 2021, 10, 5821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sathe, M.; Houwen, R. Meconium ileus in Cystic Fibrosis. J. Cyst. Fibros. 2017, 16 (Suppl. S2), S32–S39. [Google Scholar] [CrossRef] [PubMed]
- Giddings, O.; Esther, C.R., Jr. Mapping targetable inflammation and outcomes with cystic fibrosis biomarkers. Pediatr. Pulmonol. 2017, 52, S21–S28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Breuer, O.; Caudri, D.; Stick, S.; Turkovic, L. Predicting disease progression in cystic fibrosis. Expert Rev. Respir. Med. 2018, 12, 905–917. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.I.; Gappa, M.; Eder, J.; Unsinn, K.M.; Steinkamp, G.; Ellemunter, H. Tracking Lung Clearance Index and chest CT in mild cystic fibrosis lung disease over a period of three years. Respir. Med. 2014, 108, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Walicka-Serzysko, K.; Postek, M.; Milczewska, J.; Sands, D. Lung Clearance Index in Children with Cystic Fibrosis during Pulmonary Exacerbation. J. Clin. Med. 2021, 10, 4884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fretzayas, A.; Douros, K.; Moustaki, M.; Loukou, I. Applications of lung clearance index in monitoring children with cystic fibrosis. World J. Clin. Pediatr. 2019, 8, 15–22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ciuca, I.M.; Pop, L.L.; Dediu, M.; Stoicescu, E.R.; Marc, M.S.; Manea, A.M.; Manolescu, D.L. Lung Ultrasound in Children with Cystic Fibrosis in Comparison with Chest Computed Tomography: A Feasibility Study. Diagnostics 2022, 12, 376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chassagnon, G.; Zacharaki, E.I.; Bommart, S.; Burgel, P.-R.; Chiron, R.; Dangeard, S.; Paragios, N.; Martin, C.; Revel, M.-P. Quantification of Cystic Fibrosis Lung Disease with Radiomics-based CT Scores. Radiol. Cardiothorac. Imaging 2020, 2, e200022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cogen, J.; Emerson, J.; Sanders, D.B.; Ren, C.; Schechter, M.S.; Gibson, R.L.; Morgan, W.; Rosenfeld, M.; for the EPIC Study Group. Risk factors for lung function decline in a large cohort of young cystic fibrosis patients. Pediatr. Pulmonol. 2015, 50, 763–770. [Google Scholar] [CrossRef]
- Burgener, E.B.; Cornfield, D.N. Delivering a New Future for People with Cystic Fibrosis. Pediatrics 2023, 152, e2023062985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guta, M.T.; Tekalign, T.; Awoke, N.; Fite, R.O.; Dendir, G.; Lenjebo, T.L. Global Burden of Anxiety and Depression among Cystic Fibrosis Patient: Systematic Review and Meta-Analysis. Int. J. Chronic Dis. 2021, 2021, 6708865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Țarcă, V.; Țarcă, E.; Moscalu, M. Social and Economic Determinants of Life Expectancy at Birth in Eastern Europe. Healthcare 2024, 12, 1148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oates, G.R.; Harris, W.T.; Gutierrez, H.H.; Mims, C.; Rutland, S.B.; Ott, C.; Niranjan, S.J.; Scarinci, I.C.; Walley, S.C. Tobacco smoke exposure in pediatric cystic fibrosis: A qualitative study of clinician and caregiver perspectives on smoking cessation. Pediatr. Pulmonol. 2020, 55, 2330–2340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McKone, E.F.; Ariti, C.; Jackson, A.; Zolin, A.; Carr, S.B.; Orenti, A.; van Rens, J.G.; Lemonnier, L.; Macek, M., Jr.; Keogh, R.H.; et al. Survival estimates in European cystic fibrosis patients and the impact of socioeconomic factors: A retrospective registry cohort study. Eur. Respir. J. 2021, 58, 2002288. [Google Scholar] [CrossRef] [PubMed]
- Oates, G.R.; Zhu, A.; Stepanikova, I. Impact of tobacco smoke exposure on pulmonary function in paediatric cystic fibrosis patients. J Cyst. Fibros. 2018, 17 (Suppl. S3), 9. [Google Scholar] [CrossRef]
- Dickinson, K.M.; Psoter, K.J.; Riekert, K.A.; Collaco, J.M. Association between insurance variability and early lung function in children with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 104–110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tumin, D.; Li, S.S.; Kopp, B.T.; Kirkby, S.E.; Tobias, J.D.; Morgan, W.J.; Hayes, D., Jr. The effect of the affordable care act dependent coverage provision on patients with cystic fibrosis. Pediatr. Pulmonol. 2017, 52, 458–466. [Google Scholar] [CrossRef] [PubMed]
Class | Impact on Cellular Process | Type of Mutation | Pancreatic Status | Variants | |
---|---|---|---|---|---|
I | No functional protein produced | (I) Impaired protein production due to nonsense-mediated decay | Premature stop codons: Nonsense; splicing; deletions | Insufficient | W128X; R553X; G542X; Y122X; 3950delT |
(VII) Absence of full-length mature mRNA | dele2,3(21kb); 1717-1G > A | ||||
II | Defective processing and maturation | Missense; small deletions or insertions | Insufficient | F508del; N1303K; G85E | |
III | Defects in regulation of channel opening (gating defect) | Missense; small deletions or insertions | Insufficient | G551D; G551S; G1349D; S1251N; G178R; G970R | |
IV | Defective chloride conductance | Missense; small deletions or insertions | Insufficient | R117H; R334W; R347P; G314R | |
V | Reduction in wild-type mRNA (reduced quantity) | Partial splicing | Sufficient | A455E; 2789 + 5G > A; 3272-26A > G; 3849 + 10kbC > T | |
VI | Increased turnover of unstable protein at cell surface | Missense; nonsense | Variable | 120del23; N287Y; 4279insA; rF508del |
CF Prognostic Factor | Evidence Strength (High, Moderate, Low) | Modifiability (Yes, Partially, Not) | Pre-Modulator Prognosis Impact (High, Moderate, Low) | Relevance in CFTR Modulator Era (High, Moderate, Low) |
---|---|---|---|---|
CFTR Genotype | high | not | high | high |
Meconium Ileus | moderate | partially | high | moderate |
Pancreatic Insufficiency | high | partially | high | moderate |
Early Pseudomonas Infection | moderate | partially | high | moderate |
Nutritional Status (BMI) | moderate | yes | high | low |
Lung Function (FEV1) | high | partially | high | moderate |
Sweat Chloride | low | not | moderate | low |
Inflammatory Biomarkers (e.g., IL-8) | high | not | moderate | high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donos, M.A.; Țarcă, E.; Cojocaru, E.; Țarcă, V.; Butnariu, L.I.; Bernic, V.; Popovici, P.; Roșu, S.T.; Tîrnovanu, M.C.; Ionescu, N.S.; et al. Evolution and Prognostic Variables of Cystic Fibrosis in Children and Young Adults: A Narrative Review. Diagnostics 2025, 15, 1940. https://doi.org/10.3390/diagnostics15151940
Donos MA, Țarcă E, Cojocaru E, Țarcă V, Butnariu LI, Bernic V, Popovici P, Roșu ST, Tîrnovanu MC, Ionescu NS, et al. Evolution and Prognostic Variables of Cystic Fibrosis in Children and Young Adults: A Narrative Review. Diagnostics. 2025; 15(15):1940. https://doi.org/10.3390/diagnostics15151940
Chicago/Turabian StyleDonos, Mădălina Andreea, Elena Țarcă, Elena Cojocaru, Viorel Țarcă, Lăcrămioara Ionela Butnariu, Valentin Bernic, Paula Popovici, Solange Tamara Roșu, Mihaela Camelia Tîrnovanu, Nicolae Sebastian Ionescu, and et al. 2025. "Evolution and Prognostic Variables of Cystic Fibrosis in Children and Young Adults: A Narrative Review" Diagnostics 15, no. 15: 1940. https://doi.org/10.3390/diagnostics15151940
APA StyleDonos, M. A., Țarcă, E., Cojocaru, E., Țarcă, V., Butnariu, L. I., Bernic, V., Popovici, P., Roșu, S. T., Tîrnovanu, M. C., Ionescu, N. S., & Trandafir, L. M. (2025). Evolution and Prognostic Variables of Cystic Fibrosis in Children and Young Adults: A Narrative Review. Diagnostics, 15(15), 1940. https://doi.org/10.3390/diagnostics15151940