Structural Brain Changes in Patients with Congenital Anosmia: MRI-Based Analysis of Gray- and White-Matter Volumes
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Participants
2.4. SPM12
2.5. Power Analysis and Sample Size Estimation
2.6. Statistical Analyses
3. Results
3.1. Overall Brain Volumes
3.2. Gray Matter
3.3. White Matter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BM | White matter |
CA | Congenital anosmia |
FLAIR | Fluid-attenuated inversion recovery |
GM | Gray matter |
MRI | Magnetic Resonance Imaging |
PEA | Phenyl ethyl alcohol |
References
- Ghadami, M.; Majidzadeh, A.K.; Morovvati, S.; Damavandi, E.; Nishimura, G.; Komatsu, K.; Kinoshita, A.; Najafi, M.T.; Niikawa, N.; Yoshiura, K. Isolated congenital anosmia with morphologically normal olfactory bulb in two Iranian families: A new clinical entity? Am. J. Med. Genet. A 2004, 127a, 307–309. [Google Scholar] [CrossRef]
- Karstensen, H.G.; Mang, Y.; Fark, T.; Hummel, T.; Tommerup, N. The first mutation in CNGA2 in two brothers with anosmia. Clin. Genet. 2015, 88, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, N.H.; Alrashed, M.; Drad, M.K.; Abu-Safieh, L.; Almobarak, A.A.; Baz, B.; Farzan, R.A.; Alsuhaibani, M.S.; Al-Alsheikh, Y. Isolated Congenital Anosmia: Case Report and Literature Review. EarNose Throat J. 2022. [Google Scholar] [CrossRef]
- Sailani, M.R.; Jingga, I.; MirMazlomi, S.H.; Bitarafan, F.; Bernstein, J.A.; Snyder, M.P.; Garshasbi, M. Isolated Congenital Anosmia and CNGA2 Mutation. Sci. Rep. 2017, 7, 2667. [Google Scholar] [CrossRef]
- Karstensen, H.G.; Vestergaard, M.; Baaré, W.F.C.; Skimminge, A.; Djurhuus, B.; Ellefsen, B.; Brüggemann, N.; Klausen, C.; Leffers, A.M.; Tommerup, N.; et al. Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions. Brain Imaging Behav. 2018, 12, 1569–1582. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Han, P.; Faria, V.; Larsson, M.; Hummel, T. Neural processing of olfactory-related words in subjects with congenital and acquired olfactory dysfunction. Sci. Rep. 2020, 10, 14377. [Google Scholar] [CrossRef] [PubMed]
- Aiba, T.; Inoue, Y.; Matsumoto, K.; Shakudo, M.; Hashimoto, K.; Yamane, H. Magnetic resonance imaging for diagnosis of congenital anosmia. Acta Otolaryngol. Suppl. 2004, 124, 50–54. [Google Scholar] [CrossRef]
- Ogawa, T.; Kato, T.; Ono, M.; Shimizu, T. [Clinical and MRI Findings in Patients with Congenital Anosmia]. Nihon Jibiinkoka Gakkai Kaiho 2015, 118, 1016–1026. [Google Scholar] [CrossRef]
- Yousem, D.M.; Geckle, R.J.; Bilker, W.; McKeown, D.A.; Doty, R.L. MR evaluation of patients with congenital hyposmia or anosmia. AJR Am. J. Roentgenol. 1996, 166, 439–443. [Google Scholar] [CrossRef]
- Peter, M.G.; Mårtensson, G.; Postma, E.M.; Nordin, L.E.; Westman, E.; Boesveldt, S.; Lundström, J.N. Morphological changes in secondary, but not primary, sensory cortex in individuals with life-long olfactory sensory deprivation. Neuroimage 2020, 218, 117005. [Google Scholar] [CrossRef]
- Rombaux, P.; Mouraux, A.; Bertrand, B.; Nicolas, G.; Duprez, T.; Hummel, T. Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. Laryngoscope 2006, 116, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Rombaux, P.; Mouraux, A.; Bertrand, B.; Nicolas, G.; Duprez, T.; Hummel, T. Retronasal and orthonasal olfactory function in relation to olfactory bulb volume in patients with posttraumatic loss of smell. Laryngoscope 2006, 116, 901–905. [Google Scholar] [CrossRef]
- Rombaux, P.; Weitz, H.; Mouraux, A.; Nicolas, G.; Bertrand, B.; Duprez, T.; Hummel, T. Olfactory function assessed with orthonasal and retronasal testing, olfactory bulb volume, and chemosensory event-related potentials. Arch. Otolaryngol. Head Neck Surg. 2006, 132, 1346–1351. [Google Scholar] [CrossRef]
- Rombaux, P.; Duprez, T.; Hummel, T. Olfactory bulb volume in the clinical assessment of olfactory dysfunction. Rhinology 2009, 47, 3–9. [Google Scholar] [PubMed]
- Rombaux, P.; Martinage, S.; Huart, C.; Collet, S. Post-infectious olfactory loss: A cohort study and update. B-ENT 2009, 5 (Suppl. 13), 89–95. [Google Scholar] [PubMed]
- Weiss, T.; Soroka, T.; Gorodisky, L.; Shushan, S.; Snitz, K.; Weissgross, R.; Furman-Haran, E.; Dhollander, T.; Sobel, N. Human Olfaction without Apparent Olfactory Bulbs. Neuron 2020, 105, 35–45.e5. [Google Scholar] [CrossRef]
- Abolmaali, N.D.; Hietschold, V.; Vogl, T.J.; Hüttenbrink, K.B.; Hummel, T. MR evaluation in patients with isolated anosmia since birth or early childhood. AJNR Am. J. Neuroradiol. 2002, 23, 157–164. [Google Scholar]
- Huart, C.; Meusel, T.; Gerber, J.; Duprez, T.; Rombaux, P.; Hummel, T. The depth of the olfactory sulcus is an indicator of congenital anosmia. AJNR Am. J. Neuroradiol. 2011, 32, 1911–1914. [Google Scholar] [CrossRef]
- Frasnelli, J.; Fark, T.; Lehmann, J.; Gerber, J.; Hummel, T. Brain structure is changed in congenital anosmia. Neuroimage 2013, 83, 1074–1080. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, W.; Shi, F.; Liu, Y.; Li, J.; Qin, W.; Li, K.; Yu, C.; Jiang, T. Thick visual cortex in the early blind. J. Neurosci. 2009, 29, 2205–2211. [Google Scholar] [CrossRef]
- Coppola, D.M. Studies of olfactory system neural plasticity: The contribution of the unilateral naris occlusion technique. Neural Plast. 2012, 2012, 351752. [Google Scholar] [CrossRef] [PubMed]
- Bitter, T.; Gudziol, H.; Burmeister, H.P.; Mentzel, H.J.; Guntinas-Lichius, O.; Gaser, C. Anosmia leads to a loss of gray matter in cortical brain areas. Chem. Senses 2010, 35, 407–415. [Google Scholar] [CrossRef]
- Peng, P.; Gu, H.; Xiao, W.; Si, L.F.; Wang, J.F.; Wang, S.K.; Zhai, R.Y.; Wei, Y.X. A voxel-based morphometry study of anosmic patients. Br. J. Radiol. 2013, 86, 20130207. [Google Scholar] [CrossRef]
- Han, P.; Winkler, N.; Hummel, C.; Hähner, A.; Gerber, J.; Hummel, T. Alterations of Brain Gray Matter Density and Olfactory Bulb Volume in Patients with Olfactory Loss after Traumatic Brain Injury. J. Neurotrauma 2018, 35, 2632–2640. [Google Scholar] [CrossRef]
- Manan, H.A.; Yahya, N.; Han, P.; Hummel, T. A systematic review of olfactory-related brain structural changes in patients with congenital or acquired anosmia. Brain Struct. Funct. 2022, 227, 177–202. [Google Scholar] [CrossRef]
- Jiang, R.S.; Liang, K.L. Establishment of olfactory diagnosis for the traditional Chinese version of the University of Pennsylvania Smell Identification Test. Int. Forum Allergy Rhinol. 2016, 6, 1308–1314. [Google Scholar] [CrossRef]
- Goodkin, O.; Prados, F.; Vos, S.B.; Pemberton, H.; Collorone, S.; Hagens, M.H.J.; Cardoso, M.J.; Yousry, T.A.; Thornton, J.S.; Sudre, C.H.; et al. FLAIR-only joint volumetric analysis of brain lesions and atrophy in clinically isolated syndrome (CIS) suggestive of multiple sclerosis. Neuroimage Clin. 2021, 29, 102542. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Morgan, P.S.; Ashburner, J.; Smith, J.; Rorden, C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 2016, 264, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Barnes, G.; Chen, C.-C.; Daunizeau, J.; Flandin, G.; Friston, K.; Gitelman, D.; Glauche, V.; Henson, R.; Hutton, C.; et al. SPM12 Manual. The FIL Methods Group 2021. Available online: https://www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf (accessed on 15 October 2021).
- Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef]
- Tudorascu, D.L.; Karim, H.T.; Maronge, J.M.; Alhilali, L.; Fakhran, S.; Aizenstein, H.J.; Muschelli, J.; Crainiceanu, C.M. Reproducibility and Bias in Healthy Brain Segmentation: Comparison of Two Popular Neuroimaging Platforms. Front. Neurosci. 2016, 10, 503. [Google Scholar] [CrossRef]
- Chen, H.M.; Chen, H.C.; Chen, C.C.; Chang, Y.C.; Wu, Y.Y.; Chen, W.H.; Sung, C.C.; Chai, J.W.; Lee, S.K. Comparison of Multispectral Image-Processing Methods for Brain Tissue Classification in BrainWeb Synthetic Data and Real MR Images. Biomed. Res. Int. 2021, 2021, 9820145. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.W.; Repovš, G.; Anticevic, A. The frontoparietal control system: A central role in mental health. Neuroscientist 2014, 20, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.M. From sensation to cognition. Brain 1998, 121 Pt 6, 1013–1052. [Google Scholar] [CrossRef]
- Lewis, J.W.; Van Essen, D.C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 2000, 428, 112–137. [Google Scholar] [CrossRef]
- Yao, L.; Yi, X.; Pinto, J.M.; Yuan, X.; Guo, Y.; Liu, Y.; Wei, Y. Olfactory cortex and Olfactory bulb volume alterations in patients with post-infectious Olfactory loss. Brain Imaging Behav. 2018, 12, 1355–1362. [Google Scholar] [CrossRef]
- Bitter, T.; Brüderle, J.; Gudziol, H.; Burmeister, H.P.; Gaser, C.; Guntinas-Lichius, O. Gray and white matter reduction in hyposmic subjects--A voxel-based morphometry study. Brain Res. 2010, 1347, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Bridge, H.; Cowey, A.; Ragge, N.; Watkins, K. Imaging studies in congenital anophthalmia reveal preservation of brain architecture in ‘visual’ cortex. Brain 2009, 132 Pt 12, 3467–3480. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, J.D.; Kim, E.Y.; Park, B.; Oh, M.K.; Lee, S.; Kim, J.J. Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Neuroimage 2009, 47, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Hasson, U.; Andric, M.; Atilgan, H.; Collignon, O. Congenital blindness is associated with large-scale reorganization of anatomical networks. Neuroimage 2016, 128, 362–372. [Google Scholar] [CrossRef]
- Tierney, A.L.; Nelson, C.A., 3rd. Brain Development and the Role of Experience in the Early Years. Zero Three 2009, 30, 9–13. [Google Scholar]
- Willems, R.M.; Peelen, M.V.; Hagoort, P. Cerebral lateralization of face-selective and body-selective visual areas depends on handedness. Cereb. Cortex 2010, 20, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
Patients with CA | Controls | p-Value | |
---|---|---|---|
Volume | |||
Whole brain | 1104.9 ± 114.4 (cc) | 1184.8 ± 158.4 (cc) | 0.071 |
Gray matter | 560.6 ± 114.7 (cc) | 693.7 ± 96.3 (cc) | <0.001 |
White matter | 554.2 ± 75.4 (cc) | 491.1 ± 79.7 (cc) | 0.015 |
Percentage | |||
Gray matter | 50.45 ± 7.22 (%) | 58.60 ± 3.14 (%) | <0.001 |
White matter | 49.55 ± 7.22 (%) | 41.4 ± 3.14 (%) | <0.001 |
Area | Patients with CA (cc) | Controls (cc) | Effect Size | p-Value | Adjusted p-Value † |
---|---|---|---|---|---|
Frontal | 131.9 ± 33.7 | 173.7 ± 27.0 | 0.56 | <0.001 | <0.001 |
Temporal | 81.1 ± 18.4 | 96.5 ± 14.1 | 0.43 | 0.001 | 0.002 |
Limbic | 59.3 ± 8.9 | 61.9 ± 9.1 | 0.11 | 0.422 | 0.464 |
Parietal | 52.4 ± 15.2 | 77.2 ± 12.4 | 0.69 | <0.001 | <0.001 |
Sub-lobar | 57.8 ± 9.7 | 68.2 ± 10.2 | 0.46 | 0.001 | 0.002 |
Occipital | 39.1 ± 13.0 | 57.8 ± 8.9 | 0.65 | <0.001 | <0.001 |
Midbrain | 2.0 ± 0.5 | 2.3 ± 0.4 | 0.37 | 0.006 | 0.011 |
Frontal–Temporal | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.05 | 0.731 | 0.731 |
Cerebellum–Anterior | 30.7 ± 4.5 | 32.3 ± 4.6 | 0.14 | 0.287 | 0.395 |
Cerebellum–Posterior | 37.1 ± 6.1 | 39.0 ± 5.1 | 0.12 | 0.376 | 0.460 |
Pons | 0.6 ± 0.3 | 0.8 ± 0.2 | 0.22 | 0.098 | 0.154 |
Area | Hemisphere | Patients with CA (cc) | Controls (cc) | Effect Size | p-Value | Adjusted p-Value † |
---|---|---|---|---|---|---|
Frontal | R | 66.5 ± 16.7 | 86.8 ± 13.2 | 0.56 | <0.001 | <0.001 |
L | 64.8 ± 16.9 | 85.8 ± 13.8 | 0.56 | <0.001 | <0.001 | |
Temporal | R | 39.6 ± 8.5 | 46.6 ± 7.5 | 0.39 | 0.004 | 0.008 |
L | 41.5 ± 10.0 | 49.9 ± 6.8 | 0.44 | 0.001 | 0.002 | |
Limbic | R | 29.3 ± 4.6 | 30.6 ± 4.7 | 0.13 | 0.342 | 0.443 |
L | 28.4 ± 4.0 | 29.3 ± 4.3 | 0.07 | 0.611 | 0.707 | |
Parietal | R | 27.0 ± 7.4 | 39.0 ± 6.2 | 0.68 | <0.001 | <0.001 |
L | 25.1 ± 7.7 | 37.9 ± 6.3 | 0.69 | <0.001 | <0.001 | |
Sub-lobar | R | 29.7 ± 5.4 | 35.2 ± 5.3 | 0.47 | <0.001 | <0.001 |
L | 27.6 ± 4.4 | 32.2 ± 4.9 | 0.39 | 0.004 | 0.008 | |
Occipital | R | 18.5 ± 6.7 | 27.7 ± 3.9 | 0.64 | <0.001 | <0.001 |
L | 19.9 ± 6.6 | 29.3 ± 5.2 | 0.65 | <0.001 | <0.001 | |
Midbrain | R | 1.0 ± 0.2 | 1.2 ± 0.2 | 0.43 | 0.001 | 0.002 |
L | 0.7 ± 0.2 | 0.8 ± 0.2 | 0.27 | 0.045 | 0.083 | |
Frontal–Temporal | R | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.12 | 0.371 | 0.453 |
L | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.05 | 0.718 | 0.790 | |
Cerebellum–Anterior | R | 15.4 ± 2.5 | 16.6 ± 2.5 | 0.22 | 0.105 | 0.165 |
L | 14.6 ± 2.1 | 14.9 ± 2.1 | 0.02 | 0.870 | 0.911 | |
Cerebellum–Posterior | R | 17.8 ± 2.9 | 18.3 ± 2.3 | 0.01 | 0.954 | 0.954 |
L | 18.7 ± 3.4 | 20.1 ± 3.1 | 0.20 | 0.128 | 0.188 | |
Pons | R | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.15 | 0.258 | 0.355 |
L | 0.3 ± 0.2 | 0.4 ± 0.1 | 0.25 | 0.064 | 0.108 |
Area | Patients with CA (cc) | Controls (cc) | Effect Size | p-Value | Adjusted p-Value † |
---|---|---|---|---|---|
Frontal | 152 ± 19.9 | 139.2 ± 24 | 0.30 | 0.027 | 0.074 |
Temporal | 71.5 ± 11.5 | 60.8 ± 9.5 | 0.45 | 0.001 | 0.004 |
Limbic | 48.3 ± 7 | 48.3 ± 7.9 | 0.03 | 0.831 | 0.831 |
Parietal | 75.8 ± 12.4 | 61.9 ± 11.5 | 0.50 | <0.001 | <0.001 |
Sub-lobar | 79.6 ± 10.3 | 77.9 ± 13 | 0.10 | 0.441 | 0.485 |
Occipital | 58.7 ± 10.3 | 41.9 ± 7.9 | 0.69 | <0.001 | <0.001 |
Midbrain | 9.7 ± 1.6 | 10.6 ± 2 | 0.22 | 0.106 | 0.167 |
Frontal–Temporal | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.22 | 0.106 | 0.167 |
Cerebellum–Anterior | 7.3 ± 1.9 | 7.7 ± 1.4 | 0.12 | 0.372 | 0.455 |
Cerebellum–Posterior | 9.8 ± 2.7 | 8.5 ± 2.7 | 0.22 | 0.098 | 0.167 |
Pons | 9 ± 1.2 | 9.3 ± 2 | 0.13 | 0.33 | 0.454 |
Area | Hemisphere | Patients with CA (cc) | Controls (cc) | Effect Size | p-Value | Adjusted p-Value † |
---|---|---|---|---|---|---|
Frontal | R | 75.8 ± 9.8 | 69.1 ± 12.4 | 0.30 | 0.024 | 0.072 |
L | 76.2 ± 10.4 | 70.0 ± 11.8 | 0.28 | 0.033 | 0.081 | |
Temporal | R | 32.9 ± 5.3 | 28.3 ± 4.5 | 0.41 | 0.002 | 0.007 |
L | 38.6 ± 6.4 | 32.5 ± 5.2 | 0.46 | 0.001 | 0.004 | |
Limbic | R | 27.8 ± 4.1 | 27.6 ± 4.6 | 0.03 | 0.819 | 0.858 |
L | 20.3 ± 3.2 | 20.3 ± 3.4 | 0.00 | 0.974 | 0.974 | |
Parietal | R | 36.0 ± 6.6 | 29.4 ± 5.3 | 0.48 | <0.001 | <0.001 |
L | 39.8 ± 6.1 | 32.6 ± 6.4 | 0.49 | <0.001 | <0.001 | |
Sub-lobar | R | 40.5 ± 5.4 | 39.1 ± 6.5 | 0.15 | 0.272 | 0.427 |
L | 38.4 ± 5.2 | 37.8 ± 6.4 | 0.09 | 0.502 | 0.575 | |
Occipital | R | 28.6 ± 4.8 | 20.1 ± 3.9 | 0.70 | <0.001 | <0.001 |
L | 29.9 ± 5.7 | 21.6 ± 4.1 | 0.65 | <0.001 | <0.001 | |
Midbrain | R | 4.9 ± 0.9 | 5.4 ± 1.1 | 0.19 | 0.154 | 0.308 |
L | 4.5 ± 0.8 | 4.9 ± 0.9 | 0.19 | 0.145 | 0.308 | |
Frontal–Temporal | R | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.13 | 0.317 | 0.453 |
L | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.17 | 0.199 | 0.365 | |
Cerebellum–Anterior | R | 3.8 ± 1.1 | 4.0 ± 0.7 | 0.09 | 0.523 | 0.575 |
L | 3.4 ± 0.9 | 3.6 ± 0.8 | 0.13 | 0.334 | 0.453 | |
Cerebellum–Posterior | R | 4.2 ± 1.4 | 3.8 ± 1.4 | 0.12 | 0.35 | 0.453 |
L | 5.6 ± 1.7 | 4.7 ± 1.6 | 0.30 | 0.026 | 0.072 | |
Pons | R | 4.4 ± 0.7 | 4.5 ± 1.0 | 0.16 | 0.245 | 0.415 |
L | 4.2 ± 0.5 | 4.3 ± 0.9 | 0.10 | 0.441 | 0.539 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-H.; Chen, H.-M.; Jiang, R.-S. Structural Brain Changes in Patients with Congenital Anosmia: MRI-Based Analysis of Gray- and White-Matter Volumes. Diagnostics 2025, 15, 1927. https://doi.org/10.3390/diagnostics15151927
Lin S-H, Chen H-M, Jiang R-S. Structural Brain Changes in Patients with Congenital Anosmia: MRI-Based Analysis of Gray- and White-Matter Volumes. Diagnostics. 2025; 15(15):1927. https://doi.org/10.3390/diagnostics15151927
Chicago/Turabian StyleLin, Shun-Hung, Hsian-Min Chen, and Rong-San Jiang. 2025. "Structural Brain Changes in Patients with Congenital Anosmia: MRI-Based Analysis of Gray- and White-Matter Volumes" Diagnostics 15, no. 15: 1927. https://doi.org/10.3390/diagnostics15151927
APA StyleLin, S.-H., Chen, H.-M., & Jiang, R.-S. (2025). Structural Brain Changes in Patients with Congenital Anosmia: MRI-Based Analysis of Gray- and White-Matter Volumes. Diagnostics, 15(15), 1927. https://doi.org/10.3390/diagnostics15151927