Clonal Hematopoiesis of Intermediate Potential in Atrial Fibrillation: A Critical View of Current Knowledge as a Springboard for Future Research
Abstract
1. Introduction
2. Pathophysiologic Interconnections Between CHIP and AF
2.1. The Role of Aging
2.2. Inflammation: Macrophage Activity and Cytokine Storm Predisposing to Cardiovascular Risk and Thrombotic Events
2.3. Atrial Remodeling: Fibrotic Changes and Altered Calcium Handling
2.4. Other Secondary Potential Mechanisms (Thrombophilia, Elevated Red Cell Distribution Width)
3. Initial Observations Supporting the Association Between CHIP and AF and Shared Risk Factors
4. Clinical Studies and Real-World Data
5. Driver Mutations Involving CHIP and AF: A Brief Sum-Up of Their Potential Distinct Role
5.1. DNMT3A Mutation
5.2. TET2 Mutation
5.3. ASLX1 Mutation
5.4. Other Driver Mutations (JAK2, TP53, PPM1D, Spliceosome)
6. Discussion and Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.-H.; McAnulty, J.H., Jr.; Zheng, Z.-J. Worldwide Epidemiology of Atrial Fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C. AHA/ACC/HRS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelin. J. Am. Coll. Cardiol. 2018, 72, e91–e220. [Google Scholar] [PubMed]
- Berdowski, J.; Berg, R.A.; Tijssen, J.G.P.; Koster, R.W. Global Incidences of Out-of-Hospital Cardiac Arrest and Survival Rates: Systematic Review of 67 Prospective Studies. Resuscitation 2010, 81, 1479–1487. [Google Scholar] [CrossRef]
- Diederichsen, S.Z.; Xing, L.Y.; Frodi, D.M.; Kongebro, E.K.; Haugan, K.J.; Graff, C.; Højberg, S.; Krieger, D.; Brandes, A.; Køber, L. Prevalence and Prognostic Significance of Bradyarrhythmias in Patients Screened for Atrial Fibrillation vs Usual Care: Post Hoc Analysis of the LOOP Randomized Clinical Trial. JAMA Cardiol. 2023, 8, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Sajadieh, A.; Nielsen, O.W.; Rasmussen, V.; Hein, H.O.; Frederiksen, B.S.; Davanlou, M.; Hansen, J.F. Ventricular Arrhythmias and Risk of Death and Acute Myocardial Infarction in Apparently Healthy Subjects of Age≥ 55 Years. Am. J. Cardiol. 2006, 97, 1351–1357. [Google Scholar] [CrossRef]
- Wolf, P.A.; Mitchell, J.B.; Baker, C.S.; Kannel, W.B.; D’Agostino, R.B. Impact of Atrial Fibrillation on Mortality, Stroke, and Medical Costs. Arch. Intern. Med. 1998, 158, 229–234. [Google Scholar] [CrossRef]
- Khurshid, S.; Choi, S.H.; Weng, L.-C.; Wang, E.Y.; Trinquart, L.; Benjamin, E.J.; Ellinor, P.T.; Lubitz, S.A. Frequency of Cardiac Rhythm Abnormalities in a Half Million Adults. Circ. Arrhythm. Electrophysiol. 2018, 11, e006273. [Google Scholar] [CrossRef]
- Delaporta, P.; Chatzikalil, E.; Ladis, V.; Moraki, M.; Kattamis, A. Evolving Changes in the Characteristics of Death in Transfusion Dependent Thalassemia in Greece. Blood 2023, 142, 1103. [Google Scholar] [CrossRef]
- Myerburg, R.J.; Junttila, M.J. Sudden Cardiac Death Caused by Coronary Heart Disease. Circulation 2012, 125, 1043–1052. [Google Scholar] [CrossRef]
- Goldberger, J.J.; Buxton, A.E.; Cain, M.; Costantini, O.; Exner, D.V.; Knight, B.P.; Lloyd-Jones, D.; Kadish, A.H.; Lee, B.; Moss, A. Risk Stratification for Arrhythmic Sudden Cardiac Death: Identifying the Roadblocks. Circulation 2011, 123, 2423–2430. [Google Scholar] [CrossRef] [PubMed]
- Glezeva, N.; Baugh, J.A. Role of Inflammation in the Pathogenesis of Heart Failure with Preserved Ejection Fraction and Its Potential as a Therapeutic Target. Heart Fail. Rev. 2014, 19, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, T.; Lin, Y.; Ibrahim, A. Chronic Low-grade Inflammation in Heart Failure with Preserved Ejection Fraction. Aging Cell 2021, 20, e13453. [Google Scholar] [CrossRef]
- Scott, L., Jr.; Li, N.; Dobrev, D. Role of Inflammatory Signaling in Atrial Fibrillation. Int. J. Cardiol. 2019, 287, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Leventopoulos, G.; Koros, R.; Travlos, C.; Perperis, A.; Chronopoulos, P.; Tsoni, E.; Koufou, E.-E.; Papageorgiou, A.; Apostolos, A.; Kaouris, P.; et al. Mechanisms of Atrial Fibrillation: How Our Knowledge Affects Clinical Practice. Life 2023, 13, 1260. [Google Scholar] [CrossRef] [PubMed]
- Lagousi, T.; Papadatou, I.; Strempas, P.; Chatzikalil, E.; Spoulou, V. Paving the Way Towards Precision Vaccinology: The Paradigm of Myocarditis After Coronavirus Disease 2019 (COVID-19) Vaccines. Clin. Infect. Dis. 2022, 75, S18–S23. [Google Scholar] [CrossRef] [PubMed]
- Bhuiya, T.; Shah, P.P.; Lau, W.H.; Park, T.; Munshi, R.F.; Hai, O.; Zeltser, R.; Makaryus, A.N. Emergence of Atrial Fibrillation and Flutter in COVID-19 Patients: A Retrospective Cohort Study. Healthcare 2024, 12, 1682. [Google Scholar] [CrossRef]
- Papathanasiou, K.A.; Giotaki, S.G.; Vrachatis, D.A.; Siasos, G.; Lambadiari, V.; Iliodromitis, K.E.; Kossyvakis, C.; Kaoukis, A.; Raisakis, K.; Deftereos, G.; et al. Molecular Insights in Atrial Fibrillation Pathogenesis and Therapeutics: A Narrative Review. Diagnostics 2021, 11, 1584. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, B.; Qin, P.; Cheng, Y.; Zhang, Z.; Chen, Y. Research on Atrial Fibrillation Mechanisms and Prediction of Therapeutic Prospects: Focus on the Autonomic Nervous System Upstream Pathways. Front. Cardiovasc. Med. 2023, 10, 1270452. [Google Scholar] [CrossRef] [PubMed]
- Saadatagah, S.; Naderian, M.; Uddin, M.; Dikilitas, O.; Niroula, A.; Schuermans, A.; Selvin, E.; Hoogeveen, R.C.; Matsushita, K.; Nambi, V.; et al. Atrial Fibrillation and Clonal Hematopoiesis in TET2 and ASXL1. JAMA Cardiol. 2024, 9, 497–506. [Google Scholar] [CrossRef]
- Campuzano, O.; Perez-Serra, A.; Iglesias, A.; Brugada, R. Genetic Basis of Atrial Fibrillation. Genes Dis. 2016, 3, 257–262. [Google Scholar] [CrossRef]
- Feghaly, J.; Zakka, P.; London, B.; Macrae, C.A.; Refaat, M.M. Genetics of Atrial Fibrillation. J. Am. Heart Assoc. 2018, 7, e009884. [Google Scholar] [CrossRef]
- Marnell, C.S.; Bick, A.; Natarajan, P. Clonal Hematopoiesis of Indeterminate Potential (CHIP): Linking Somatic Mutations, Hematopoiesis, Chronic Inflammation and Cardiovascular Disease. J. Mol. Cell. Cardiol. 2021, 161, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Hoermann, G.; Greiner, G.; Griesmacher, A.; Valent, P. Clonal Hematopoiesis of Indeterminate Potential: A Multidisciplinary Challenge in Personalized Hematology. J. Pers. Med. 2020, 10, 94. [Google Scholar] [CrossRef]
- Mailankody, S.; Pfeiffer, R.M.; Kristinsson, S.Y.; Korde, N.; Bjorkholm, M.; Goldin, L.R.; Turesson, I.; Landgren, O. Risk of Acute Myeloid Leukemia and Myelodysplastic Syndromes after Multiple Myeloma and Its Precursor Disease (MGUS). Blood 2011, 118, 4086–4092. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.W.C.J.; Palumbo, A.; Johnsen, H.E.; Engelhardt, M.; Gay, F.; Gregersen, H.; Hajek, R.; Kleber, M.; Ludwig, H.; Morgan, G.; et al. The Clinical Relevance and Management of Monoclonal Gammopathy of Undetermined Significance and Related Disorders: Recommendations from the European Myeloma Network. Haematologica 2014, 99, 984–996. [Google Scholar] [CrossRef] [PubMed]
- Chatzikalil, E.; Arvanitakis, K.; Filippatos, F.; Diamantopoulos, P.T.; Koufakis, T.; Solomou, E.E. Diagnostic and Therapeutic Implications of the SUMOylation Pathway in Acute Myeloid Leukemia. Cancers 2025, 17, 631. [Google Scholar] [CrossRef]
- Senguttuvan, N.B.; Subramanian, V.; TR, M.; Sankaranarayanan, K.; Venkatesan, V.; Sadagopan, T. Clonal Hematopoiesis of Indeterminate Potential and Cardiovascular Diseases: A Review. Indian Heart J. 2025, 77, 51–57. [Google Scholar] [CrossRef]
- Reed, S.C.; Croessmann, S.; Park, B.H. CHIP Happens: Clonal Hematopoiesis of Indeterminate Potential and Its Relationship to Solid Tumors. Clin. Cancer Res. 2023, 29, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Kinzhebay, A.; Salybekov, A.A. The Role of Somatic Mutations in Ischemic Stroke: CHIP’s Impact on Vascular Health. Neurol. Int. 2025, 17, 19. [Google Scholar] [CrossRef]
- Papa, V.; Marracino, L.; Fortini, F.; Rizzo, P.; Campo, G.; Vaccarezza, M.; Vieceli Dalla Sega, F. Translating Evidence from Clonal Hematopoiesis to Cardiovascular Disease: A Systematic Review. J. Clin. Med. 2020, 9, 2480. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Sidlow, R.; Lin, A.E.; Gupta, D.; Jones, L.W.; Moslehi, J.; Zeiher, A.; Jaiswal, S.; Schulz, C.; Blankstein, R.; et al. Clonal Hematopoiesis: Crossroads of Aging, Cardiovascular Disease, and Cancer: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 567–577. [Google Scholar] [CrossRef]
- Triantafyllou, C.; Peitz, M.; Fleischmann, B.K.; Rieck, S. Generation of a homozygous DNMT3A knock-out hiPSC line for modeling of cardiovascular diseases associated with clonal hematopoiesis of indeterminate potential. Stem Cell Res. 2025, 86, 103707. [Google Scholar] [CrossRef]
- Watt, S.M.; Roubelakis, M.G. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. Int. J. Mol. Sci. 2025, 26, 671. [Google Scholar] [CrossRef]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef] [PubMed]
- Steensma, D.P.; Bejar, R.; Jaiswal, S.; Lindsley, R.C.; Sekeres, M.A.; Hasserjian, R.P.; Ebert, B.L. Clonal Hematopoiesis of Indeterminate Potential and Its Distinction from Myelodysplastic Syndromes. Blood 2015, 126, 9–16. [Google Scholar] [CrossRef]
- Jaiswal, S.; Natarajan, P.; Silver, A.J.; Gibson, C.J.; Bick, A.G.; Shvartz, E.; McConkey, M.; Gupta, N.; Gabriel, S.; Ardissino, D.; et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Roberts, M.B.; Raffield, L.M.; Zekavat, S.M.; Nguyen, N.Q.H.; Biggs, M.L.; Brown, M.R.; Griffin, G.; Desai, P.; Correa, A.; et al. Association of Clonal Hematopoiesis with Incident Heart Failure. J. Am. Coll. Cardiol. 2021, 78, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Dorsheimer, L.; Assmus, B.; Rasper, T.; Ortmann, C.A.; Ecke, A.; Abou-El-Ardat, K.; Schmid, T.; Brüne, B.; Wagner, S.; Serve, H.; et al. Association of Mutations Contributing to Clonal Hematopoiesis with Prognosis in Chronic Ischemic Heart Failure. JAMA Cardiol. 2019, 4, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Sega, F.V.D.; Palumbo, D.; Fortini, F.; D’aGostino, Y.; Cimaglia, P.; Marracino, L.; Severi, P.; Strianese, O.; Tarallo, R.; Nassa, G.; et al. Transcriptomic profiling of calcified aortic valves in clonal hematopoiesis of indeterminate potential carriers. Sci. Rep. 2022, 12, 20400. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xia, M.; Jin, Q.; Bendahhou, S.; Shi, J.; Chen, Y.; Liang, B.; Lin, J.; Liu, Y.; Liu, B.; et al. Identification of a KCNE2 Gain-of-Function Mutation in Patients with Familial Atrial Fibrillation. Am. J. Hum. Genet. 2004, 75, 899–905. [Google Scholar] [CrossRef]
- Gollob, M.H.; Jones, D.L.; Krahn, A.D.; Danis, L.; Gong, X.-Q.; Shao, Q.; Liu, X.; Veinot, J.P.; Tang, A.S.L.; Stewart, A.F.R.; et al. Somatic Mutations in the Connexin 40 Gene (GJA5) in Atrial Fibrillation. N. Engl. J. Med. 2006, 354, 2677–2688. [Google Scholar] [CrossRef]
- Gutierrez, A.; Chung, M.K. Genomics of Atrial Fibrillation. Curr. Cardiol. Rep. 2016, 18, 55. [Google Scholar] [CrossRef]
- Karakasis, P.; Theofilis, P.; Lefkou, E.; Antoniadis, A.P.; Patoulias, D.; Korantzopoulos, P.; Fragakis, N. Clonal Hematopoiesis of Indeterminate Potential and Atrial Fibrillation: Insights into Pathophysiology and Clinical Implications. Int. J. Mol. Sci. 2025, 26, 2739. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, N.; Teng, G.; Tse, G.; Bai, J.; Lip, G.Y.H.; Liu, T. Clonal Hematopoiesis of Indeterminate Potential and Atrial Fibrillation. Heart Rhythm. 2025, 25, 1547–5271. [Google Scholar] [CrossRef]
- de la Nava, A.M.; González Mansilla, A.; González-Torrecilla, E.; Ávila, P.; Datino, T.; Bermejo, J.; Arenal, Á.; Fernández-Avilés, F.; Atienza, F. Personalized Evaluation of Atrial Complexity of Patients Undergoing Atrial Fibrillation Ablation: A Clinical Computational Study. Biology 2021, 10, 838. [Google Scholar] [CrossRef]
- Chatzikalil, E.; Stergiou, I.E.; Papadakos, S.P.; Konstantinidis, I.; Theocharis, S. The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies. Int. J. Mol. Sci. 2024, 25, 3834. [Google Scholar] [CrossRef] [PubMed]
- Galeș, L.N.; Păun, M.-A.; Butnariu, I.; Simion, L.; Manolescu, L.S.C.; Trifănescu, O.G.; Anghel, R.M. Next-Generation Sequencing in Oncology—A Guiding Compass for Targeted Therapy and Emerging Applications. Int. J. Mol. Sci. 2025, 26, 3123. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.I. Risk Stratification of Cardiovascular Disease according to Age Groups in New Prevention Guidelines: A Review. J. Lipid Atheroscler. 2023, 12, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Heimlich, J.B.; Bick, A.G. Somatic Mutations in Cardiovascular Disease. Circ. Res. 2022, 130, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C.; Fu, D.; Huang, Y.; Li, J.; Yang, S.; Cheng, X.; Zhang, G.; Ma, T.; Peng, Q.; Tan, Y. Association of clonal hematopoiesis of indeterminate potential with cardiometabolic multimorbidity progression and mortality: A prospective study of UK Biobank. Eur. J. Med. Res. 2025, 30, 414. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.; Götze, K.S.; Hecker, J.S.; Metzeler, K.H.; Guezguez, B.; Woods, K.; Medyouf, H.; Schäffer, A.; Schmitz, M.; Wehner, R.; et al. Clonal hematopoiesis and its impact on the aging osteo-hematopoietic niche. Leukemia 2024, 38, 936–946. [Google Scholar] [CrossRef]
- Kallai, A.; Ungvari, A.; Csaban, D.; Orfi, Z.; Lehoczki, A.; Harasztdombi, J.; Yabluchanskiy, A.; Benyó, Z.; Szappanos, Á.; Tarantini, S.; et al. Clonal hematopoiesis of indeterminate potential (CHIP) in cerebromicrovascular aging: Implications for vascular contributions to cognitive impairment and dementia (VCID). GeroScience 2025, 47, 2739–2775. [Google Scholar] [CrossRef] [PubMed]
- Belizaire, R.; Wong, W.J.; Robinette, M.L.; Ebert, B.L. Clonal Haematopoiesis and Dysregulation of the Immune System. Nat. Rev. Immunol. 2023, 23, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, C.; Li, X. Clonal Hematopoiesis of Indeterminate Potential: Contribution to Disease and Promising Interventions. Mol. Cell. Biochem. 2025, 480, 4091–4106. [Google Scholar] [CrossRef]
- Castellon, X.; Bogdanova, V. Chronic Inflammatory Diseases and Endothelial Dysfunction. Aging Dis. 2016, 7, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Caiado, F.; Pietras, E.M.; Manz, M.G. Inflammation as a Regulator of Hematopoietic Stem Cell Function in Disease, Aging, and Clonal Selection. J. Exp. Med. 2021, 218, e20201541. [Google Scholar] [CrossRef]
- Bogeska, R.; Mikecin, A.-M.; Kaschutnig, P.; Fawaz, M.; Büchler-Schäff, M.; Le, D.; Ganuza, M.; Vollmer, A.; Paffenholz, S.V.; Asada, N.; et al. Inflammatory Exposure Drives Long-Lived Impairment of Hematopoietic Stem Cell Self-Renewal Activity and Accelerated Aging. Cell Stem Cell 2022, 29, 1273–1284.e8. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.-J.; An, H.Y.; Ryu, G.; Lim, J.; Sun, C.; Song, H.; Choi, S.-Y.; Lee, H.; Maurer, T.; Nachun, D.; et al. Clonal Haematopoiesis of Indeterminate Potential and Atrial Fibrillation: An East Asian Cohort Study. Eur. Heart J. 2024, 45, 778–790. [Google Scholar] [CrossRef]
- Mastrogeorgiou, M.; Chatzikalil, E.; Theocharis, S.; Papoudou-Bai, A.; Péoc’h, M.; Mobarki, M.; Karpathiou, G. The Immune Microenvironment of Cancer of the Uterine Cervix. Histol. Histopathol. 2024, 39, 1245–1271. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Hodel, F.; Naret, O.; Bonnet, C.; Brenner, N.; Bender, N.; Waterboer, T.; Marques-Vidal, P.; Vollenweider, P.; Fellay, J. The Combined Impact of Persistent Infections and Human Genetic Variation on C-Reactive Protein Levels. BMC Med. 2022, 20, 416. [Google Scholar] [CrossRef] [PubMed]
- Ninni, S.; Dombrowicz, D.; Kuznetsova, T.; Vicario, R.; Gao, V.; Molendi-Coste, O.; Haas, J.; Woitrain, E.; Coisne, A.; Neele, A.E.; et al. Hematopoietic Somatic Mosaicism Is Associated with an Increased Risk of Postoperative Atrial Fibrillation. J. Am. Coll. Cardiol. 2023, 81, 1263–1278. [Google Scholar] [CrossRef] [PubMed]
- Monnerat, G.; Lopez Alarcon, M.; Vasconcellos, L.; Hochman-Mendez, C.; Brasil, G.; Bassani, R.; Casis, O.; Malan, D.; Travassos, L.; Sepúlveda, M.; et al. Macrophage-Dependent IL-1b Production Induces Cardiac Arrhythmias in Diabetic Mice. Nat. Commun. 2016, 7, 13344. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Voskoboinik, A.; La Gerche, A.; Marwick, T.H.; McMullen, J.R. Prevention of Pathological Atrial Remodeling and Atrial Fibrillation. J. Am. Coll. Cardiol. 2021, 77, 2846–2864. [Google Scholar] [CrossRef] [PubMed]
- Tall, A.; Fuster, J. Clonal Hematopoiesis in Cardiovascular Disease and Therapeutic Implications. Nat. Cardiovasc. Res. 2022, 1, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Shi, H.; Yu, Y.; Yu, Y.; Li, M.; Chen, R. NLRP3 Inflammasome, an Immune-Inflammatory Target in Pathogenesis and Treatment of Cardiovascular Diseases. Clin. Transl. Med. 2020, 10, 91–106. [Google Scholar] [CrossRef]
- Guarnera, L.; Jha, B.K. TET2 Mutation as Prototypic Clonal Hematopoiesis Lesion. Semin. Hematol. 2024, 61, 51–60. [Google Scholar] [CrossRef]
- Sano, S.; Oshima, K.; Wang, Y.; MacLauchlan, S.; Katanasaka, Y.; Sano, M.; Zuriaga, M.A.; Yoshiyama, M.; Goukassian, D.; Cooper, M.A.; et al. Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through a Mechanism Involving the IL-1β/NLRP3 Inflammasome. J. Am. Coll. Cardiol. 2018, 71, 875–886. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Liu, J.; Yu, Y.; Liu, Y.; Peng, Q.; Liu, H.; Guan, X. A Feedback Loop: Interactions between Inflammatory Signals and Clonal Hematopoiesis in Cardiovascular Disease. Mol. Biol. Rep. 2021, 48, 3785–3798. [Google Scholar] [CrossRef]
- Zhang, S.; Meng, Y.; Zhou, L.; Qiu, L.; Wang, H.; Su, D.; Zhang, B.; Chan, K.-M.; Han, J. Targeting Epigenetic Regulators for Inflammation: Mechanisms and Intervention Therapy. MedComm 2022, 3, e173. [Google Scholar] [CrossRef]
- Fidler, T.P.; Xue, C.; Yalcinkaya, M.; Hardaway, B.; Abramowicz, S.; Xiao, T.; Liu, W.; Thomas, D.G.; Hajebrahimi, M.A.; Pircher, J.; et al. The AIM2 Inflammasome Exacerbates Atherosclerosis in Clonal Haematopoiesis. Nature 2021, 592, 296–301. [Google Scholar] [CrossRef]
- Bejarano-Arosemena, R.; Martínez-Sellés, M. Interatrial Block, Bayés Syndrome, Left Atrial Enlargement, and Atrial Failure. J. Clin. Med. 2023, 12, 7331. [Google Scholar] [CrossRef] [PubMed]
- Sagris, M.; Vardas, E.P.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Tousoulis, D. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int. J. Mol. Sci. 2022, 23, 6. [Google Scholar] [CrossRef] [PubMed]
- Pellman, J.; Lyon, R.C.; Sheikh, F. Extracellular Matrix Remodeling in Atrial Fibrosis: Mechanisms and Implications in Atrial Fibrillation. J. Mol. Cell. Cardiol. 2010, 48, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Hinderer, S.; Schenke-Layland, K. Cardiac Fibrosis—A Short Review of Causes and Therapeutic Strategies. Adv. Drug Deliv. Rev. 2019, 146, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, K.; Neupane, B.; Niehues, P.; Kirschner, M.; Beier, F.; Kuo, C.C.; Hilbold, E.A.; Bär, C.; Thoma, O.M.; Waldner, M.; et al. Telomere Length Is Associated with Adverse Atrial Remodeling in Patients with Atrial Fibrillation. J. Am. Heart Assoc. 2025, 14, e037512. [Google Scholar] [CrossRef] [PubMed]
- Dzeshka, M.S.; Lip, G.Y.H.; Snezhitskiy, V.; Shantsila, E. Cardiac Fibrosis in Patients with Atrial Fibrillation: Mechanisms and Clinical Implications. J. Am. Coll. Cardiol. 2015, 66, 943–959. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, H.; Tang, B.; Luo, Y.; Yang, Y.; Zhong, X.; Chen, S.; Xu, X.; Huang, S.; Liu, C. Macrophages in Cardiovascular Diseases: Molecular Mechanisms and Therapeutic Targets. Signal Transduct. Target. Ther. 2024, 9, 130. [Google Scholar] [CrossRef]
- Ninni, S.; Dombrowicz, D.; de Winther, M.; Staels, B.; Montaigne, D.; Nattel, S. Genetic Factors Altering Immune Responses in Atrial Fibrillation: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2024, 83, 1163–1176. [Google Scholar] [CrossRef]
- Han, H.; Ge, X.; Komakula, S.S.B.; Desert, R.; Das, S.; Song, Z.; Chen, W.; Athavale, D.; Gaskell, H.; Lantvit, D.; et al. Macrophage-Derived Osteopontin (SPP1) Protects from Nonalcoholic Steatohepatitis. Gastroenterology 2023, 165, 201–217. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Wang, C.-Y. Telomere Attrition and Clonal Hematopoiesis of Indeterminate Potential in Cardiovascular Disease. Int. J. Mol. Sci. 2021, 22, 9867. [Google Scholar] [CrossRef]
- Yao, C.; Veleva, T.; Scott, L.; Cao, S.; Li, L.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.; Abu-Taha, I.; et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation 2018, 138, 2227–2242. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.E.; Bapat, A.C.; Xiao, L.; Niroula, A.; Ye, J.; Wong, W.J.; Agrawal, M.; Farady, C.J.; Boettcher, A.; Hergott, C.B. Clonal Hematopoiesis of Indeterminate Potential with Loss of Tet2 Enhances Risk for Atrial Fibrillation through Nlrp3 Inflammasome Activation. Circulation 2024, 149, 1419–1434. [Google Scholar] [CrossRef] [PubMed]
- Nattel, S.; Harada, M. Atrial Remodeling and Atrial Fibrillation: Recent Advances and Translational Perspectives. J. Am. Coll. Cardiol. 2014, 63, 2335–2345. [Google Scholar] [CrossRef] [PubMed]
- Ihara, K.; Sugiyama, K.; Takahashi, K.; Yamazoe, M.; Sasano, T.; Furukawa, T. Electrophysiological Assessment of Murine Atria with High-Resolution Optical Mapping. J. Vis. Exp. Jove 2018, 132, 56478. [Google Scholar]
- Landstrom, A.P.; Dobrev, D.; Wehrens, X.H.T. Calcium Signaling and Cardiac Arrhythmias. Circ. Res. 2017, 120, 1969–1993. [Google Scholar] [CrossRef] [PubMed]
- Hove-Madsen, L.; Llach, A.; Bayes-Genís, A.; Roura, S.; Font, E.R.; Arís, A.; Cinca, J. Atrial Fibrillation Is Associated with Increased Spontaneous Calcium Release from the Sarcoplasmic Reticulum in Human Atrial Myocytes. Circulation 2004, 110, 1358–1363. [Google Scholar] [CrossRef]
- Lutsey, P.L.; Norby, F.L.; Alonso, A.; Cushman, M.; Chen, L.Y.; Michos, E.D.; Folsom, A.R. Atrial Fibrillation and Venous Thromboembolism: Evidence of Bidirectionality in the Atherosclerosis Risk in Communities Study. J. Thromb. Haemost. 2018, 16, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, C.M.; Manning, H.; Bennett, C.; Vasquez, L.; Severin, S.; Brain, L.; Mazharian, A.; Guerrero, J.A.; Li, J.; Soranzo, N. JAK2V617F Leads to Intrinsic Changes in Platelet Formation and Reactivity in a Knock-in Mouse Model of Essential Thrombocythemia. Blood J. Am. Soc. Hematol. 2013, 122, 3787–3797. [Google Scholar] [CrossRef]
- Arellano-Rodrigo, E.; Alvarez-Larrán, A.; Reverter, J.C.; Villamor, N.; Colomer, D.; Cervantes, F. Increased Platelet and Leukocyte Activation as Contributing Mechanisms for Thrombosis in Essential Thrombocythemia and Correlation with the JAK2 Mutational Status. Haematologica 2006, 91, 169–175. [Google Scholar]
- Liu, W.; Pircher, J.; Schuermans, A.; Ul Ain, Q.; Zhang, Z.; Honigberg, M.C.; Yalcinkaya, M.; Nakao, T.; Pournamadri, A.; Xiao, T. Jak2 V617F Clonal Hematopoiesis Promotes Arterial Thrombosis via Platelet Activation and Cross Talk. Blood 2024, 143, 1539–1550. [Google Scholar] [CrossRef] [PubMed]
- Sozer, S.; Fiel, M.I.; Schiano, T.; Xu, M.; Mascarenhas, J.; Hoffman, R. The Presence of JAK2V617F Mutation in the Liver Endothelial Cells of Patients with Budd-Chiari Syndrome. Blood J. Am. Soc. Hematol. 2009, 113, 5246–5249. [Google Scholar] [CrossRef] [PubMed]
- Esmon, C.T. The Interactions between Inflammation and Coagulation. Br. J. Haematol. 2005, 131, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Starikova, E.A.; Mammedova, J.T.; Rubinstein, A.A.; Sokolov, A.V.; Kudryavtsev, I.V. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr. Issues Mol. Biol. 2025, 47, 108. [Google Scholar] [CrossRef]
- García-Escobar, A.; Lázaro-García, R.; Goicolea-Ruigómez, J.; González-Casal, D.; Fontenla-Cerezuela, A.; Soto, N.; González-Panizo, J.; Datino, T.; Pizarro, G.; Moreno, R.; et al. Red Blood Cell Distribution Width Is a Biomarker of Red Cell Dysfunction Associated with High Systemic Inflammation and a Prognostic Marker in Heart Failure and Cardiovascular Disease: A Potential Predictor of Atrial Fibrillation Recurrence. High. Blood Press. Cardiovasc. Prev. 2024, 31, 437–449. [Google Scholar] [CrossRef]
- Altieri, C.; Pisano, C.; Labriola, V.; Ferrante, M.; Porreca, A.; Nardi, P.; Bassano, C.; Buioni, D.; Greco, E.; Ruvolo, G.; et al. Circulating Levels of Ferritin, RDW, PTLs as Predictive Biomarkers of Postoperative Atrial Fibrillation Risk after Cardiac Surgery in Extracorporeal Circulation. Int. J. Mol. Sci. 2022, 23, 14800. [Google Scholar] [CrossRef]
- Cha, M.-J.; Lee, H.S.; Kim, H.M.; Jung, J.-H.; Choi, E.-K.; Oh, S. Association between Red Cell Distribution Width and Thromboembolic Events in Patients with Atrial Fibrillation. Eur. J. Intern. Med. 2017, 46, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Weymann, A.; Ali-Hasan-Al-Saegh, S.; Sabashnikov, A.; Popov, A.F.; Mirhosseini, S.J.; Liu, T.; Lotfaliani, M.; Sá, M.P.B.O.; Baker, W.L.L.; Yavuz, S.; et al. Prediction of New-Onset and Recurrent Atrial Fibrillation by Complete Blood Count Tests: A Comprehensive Systematic Review with Meta-Analysis. Med. Sci. Monit. Basic Res. 2017, 12, 179–222. [Google Scholar] [CrossRef]
- Vucinic, V.; Ruhnke, L.; Sockel, K.; Röhnert, M.A.; Backhaus, D.; Brauer, D.; Franke, G.N.; Niederwieser, D.; Bornhäuser, M.; Röllig, C.; et al. The diagnostic red blood cell distribution width as a prognostic factor in acute myeloid leukemia. Blood Adv. 2021, 5, 5584–5587. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.P.; Quiros, P.M.; Gu, M.; Jiang, T.; Mitchell, J.; Langdon, R.; Iyer, V.; Barcena, C.; Vijayabaskar, M.S.; Fabre, M.A.; et al. Genome-Wide Analyses of 200,453 Individuals Yield New Insights into the Causes and Consequences of Clonal Hematopoiesis. Nat. Genet. 2022, 54, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Schuermans, A.; Vlasschaert, C.; Nauffal, V.; Cho, S.M.J.; Uddin, M.M.; Nakao, T.; Niroula, A.; Klarqvist, M.D.R.; Weeks, L.D.; Lin, A.E.; et al. Clonal Haematopoiesis of Indeterminate Potential Predicts Incident Cardiac Arrhythmias. Eur. Heart J. 2024, 45, 791–805. [Google Scholar] [CrossRef]
- Hecker, J.S.; Hartmann, L.; Rivière, J.; Buck, M.C.; van der Garde, M.; Rothenberg-Thurley, M.; Fischer, L.; Winter, S.; Ksienzyk, B.; Ziemann, F.; et al. CHIP and Hips: Clonal Hematopoiesis Is Common in Patients Undergoing Hip Arthroplasty and Is Associated with Autoimmune Disease. Blood 2021, 138, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.A.; Walsh, K. Clonal Hematopoiesis, Somatic Mosaicism, and Age-Associated Disease. Physiol. Rev. 2022, 103, 649–716. [Google Scholar] [CrossRef]
- Lueck, C.; Panagiota, V.; Dammann, E.; Gabdoulline, R.; Berliner, D.; Veltmann, C.; Heuser, M.; Beutel, G.; Ganser, A.; Eder, M. Increased Late Noncardiac Nonrelapse Mortality in Patients with Atrial Fibrillation Diagnosed During Their Hospital Stay for Allogeneic Stem Cell Transplantation. Transplant. Cell. Ther. 2022, 28, 609.e1–609.e8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, Y.; Wong, N.D.; Wang, J. Impact of Aging on Cardiovascular Diseases. JACC Asia 2024, 4, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef]
- Linz, D.; Gawalko, M.; Betz, K.; Hendriks, J.M.; Lip, G.Y.H.; Vinter, N.; Guo, Y.; Johnsen, S. Atrial Fibrillation: Epidemiology, Screening and Digital Health. Lancet Reg. Health-Eur. 2024, 37, 100786. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.J.; Papula, A.L.; Poon, G.Y.P.; Wong, W.H.; Young, A.L.; Druley, T.E.; Fisher, D.S.; Blundell, J.R. The Evolutionary Dynamics and Fitness Landscape of Clonal Hematopoiesis. Science 2020, 367, 1449–1454. [Google Scholar] [CrossRef] [PubMed]
- Ferrone, C.K.; Blydt-Hansen, M.; Rauh, M.J. Age-Associated TET2 Mutations: Common Drivers of Myeloid Dysfunction, Cancer and Cardiovascular Disease. Int. J. Mol. Sci. 2020, 21, 626. [Google Scholar] [CrossRef]
- Kar, R.; Batra, N.; Riquelme, M.A.; Jiang, J.X. Biological Role of Connexin Intercellular Channels and Hemichannels. Arch. Biochem. Biophys. 2012, 524, 2–15. [Google Scholar] [CrossRef]
- Nachun, D.; Lu, A.; Bick, A.; Natarajan, P.; Weinstock, J.; Szeto, M.; Kathiresan, S.; Abecasis, G.; Taylor, K.; Guo, X.; et al. Clonal Hematopoiesis Associated with Epigenetic Aging and Clinical Outcomes. Aging Cell 2021, 20, e13366. [Google Scholar] [CrossRef]
- Arvanitakis, K.; Chatzikalil, E.; Kalopitas, G.; Patoulias, D.; Popovic, D.S.; Metallidis, S.; Kotsa, K.; Germanidis, G.; Koufakis, T. Metabolic Dysfunction-Associated Steatotic Liver Disease and Polycystic Ovary Syndrome: A Complex Interplay. J. Clin. Med. 2024, 13, 4243. [Google Scholar] [CrossRef]
- Elliott, A.D.; Middeldorp, M.E.; Van Gelder, I.C.; Albert, C.M.; Sanders, P. Epidemiology and Modifiable Risk Factors for Atrial Fibrillation. Nat. Rev. Cardiol. 2023, 20, 404–417. [Google Scholar] [CrossRef]
- Levin, M.G.; Nakao, T.; Zekavat, S.M.; Koyama, S.; Bick, A.G.; Niroula, A.; Ebert, B.; Damrauer, S.M.; Natarajan, P. Genetics of Smoking and Risk of Clonal Hematopoiesis. Sci. Rep. 2022, 12, 7248. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Zekavat, S.; Uddin, M.; Pirruccello, J.; Niroula, A.; Gibson, C.; Griffin, G.; Libby, P.; Ebert, B.; Bick, A.; et al. Association of Diet Quality With Prevalence of Clonal Hematopoiesis and Adverse Cardiovascular Events. JAMA Cardiol. 2021, 6, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Coccina, F.; Pierdomenico, A.; Ianni, U.; Rosa, M.; Luca, A.; Pirro, D.; Pizzicannella, J.; Trubiani, O.; Cipollone, F.; Renda, G. Ambulatory Blood Pressure and Risk of New-onset Atrial Fibrillation in Treated Hypertensive Patients. J. Clin. Hypertens. 2020, 23, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Tobias, D.K.; Manning, A.K.; Wessel, J.; Raghavan, S.; Westerman, K.E.; Bick, A.G.; Dicorpo, D.; Whitsel, E.A.; Collins, J.; Correa, A.; et al. Clonal Hematopoiesis of Indeterminate Potential (CHIP) and Incident Type 2 Diabetes Risk. Diabetes Care 2023, 46, 1978–1985. [Google Scholar] [CrossRef] [PubMed]
- Vilariño-García, T.; Polonio-González, M.L.; Pérez-Pérez, A.; Ribalta, J.; Arrieta, F.; Aguilar, M.; Obaya, J.C.; Gimeno-Orna, J.A.; Iglesias, P.; Navarro, J.; et al. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 2338. [Google Scholar] [CrossRef] [PubMed]
- Challen, G.; Sun, D.; Jeong, M.; Luo, M.; Jelinek, J.; Vasanthakumar, A.; Meissner, A.; Issa, J.-P.; Godley, L.; Li, W.; et al. Dnmt3a Is Essential for Hematopoietic Stem Cell Differentiation. Blood 2011, 118, 386. [Google Scholar] [CrossRef]
- Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development. Cell 1999, 99, 247–257. [Google Scholar] [CrossRef]
- Russler-Germain, D.A.; Spencer, D.H.; Young, M.A.; Lamprecht, T.L.; Miller, C.A.; Fulton, R.; Meyer, M.R.; Erdmann-Gilmore, P.; Townsend, R.R.; Wilson, R.K.; et al. The R882H DNMT3A Mutation Associated with AML Dominantly Inhibits Wild-Type DNMT3A by Blocking Its Ability to Form Active Tetramers. Cancer Cell 2014, 25, 442–454. [Google Scholar] [CrossRef]
- Hormaechea-Agulla, D.; Matatall, K.; Le, D.; Kain, B.; Long, X.; Kuś, P.; Jaksik, R.; Challen, G.; Kimmel, M.; King, K. Chronic Infection Drives Dnmt3a-Loss-of-Function Clonal Hematopoiesis via IFNγ Signaling. Cell Stem Cell 2021, 28, 1428–1442.e6. [Google Scholar] [CrossRef] [PubMed]
- Gleitz, H.F.E.; Schneider, R.K. “ASXL1”-Erating Inflammation and Bone Marrow Fibrosis in Myeloproliferative Neoplasms. Haematologica 2023, 108, 1203–1204. [Google Scholar] [CrossRef]
- Shao, J.; Liu, J.; Zuo, S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022, 11, 2347. [Google Scholar] [CrossRef] [PubMed]
- Rauch, P.; Gopakumar, J.; Silver, A.; Nachun, D.; Ahmad, H.; McConkey, M.; Nakao, T.; Bossé, M.; Rentz, T.; Gonzalez, N.; et al. Loss-of-Function Mutations in Dnmt3a and Tet2 Lead to Accelerated Atherosclerosis and Concordant Macrophage Phenotypes. Nat. Cardiovasc. Res. 2023, 2, 805–818. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Kabata, M.; Tanaka, A.; Ukai, T.; Ohta, S.; Nakabayashi, K.; Shimizu, M.; Hata, K.; Meissner, A.; Yamamoto, T.; et al. Identification of Distinct Loci for de Novo DNA Methylation by DNMT3A and DNMT3B during Mammalian Development. Nat. Commun. 2020, 11, 3199. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Liu, X.; Li, Y.; Zhou, C. Abnormal Expressions of Plasma DNMT3A in Elderly Patients with Recurrent Atrial Fibrillation. Int. J. Clin. Exp. Med. 2021, 14, 1468–1477. [Google Scholar]
- Tulstrup, M.; Soerensen, M.; Hansen, J.W.; Gillberg, L.; Needhamsen, M.; Kaastrup, K.; Helin, K.; Christensen, K.; Weischenfeldt, J.; Grønbæk, K. TET2 Mutations Are Associated with Hypermethylation at Key Regulatory Enhancers in Normal and Malignant Hematopoiesis. Nat. Commun. 2021, 12, 6061. [Google Scholar] [CrossRef]
- Rasmussen, K.; Berest, I.; Kessler, S.; Nishimura, K.; Simón-Carrasco, L.; Vassiliou, G.; Pedersen, M.; Christensen, J.; Zaugg, J.; Helin, K. TET2 Binding to Enhancers Facilitates Transcription Factor Recruitment in Hematopoietic Cells. Genome Res. 2019, 29, 564–575. [Google Scholar] [CrossRef]
- Gao, Q.; Shen, K.; Xiao, M. TET2 Mutation in Acute Myeloid Leukemia: Biology, Clinical Significance, and Therapeutic Insights. Clin. Epigenet. 2024, 16, 155. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Chang, Y.-J.; Ruan, G.; Zhou, S.; Jiang, H.; Jiang, Q.; Huang, X.; Zhao, X. TET2 Mutations Contribute to Adverse Prognosis in Acute Myeloid Leukemia (AML): Results from a Comprehensive Analysis of 502 AML Cases and the Beat AML Public Database. Clin. Exp. Med. 2024, 24, 35. [Google Scholar] [CrossRef]
- Woo, J.; Lu, D.; Lewandowski, A.; Xu, H.; Serrano, P.; Healey, M.; Yates, D.P.; Beste, M.T.; Libby, P.; Ridker, P.M.; et al. Effects of IL-1β Inhibition on Anemia and Clonal Hematopoiesis in the Randomized CANTOS Trial. Blood Adv. 2023, 7, 7471–7484. [Google Scholar] [CrossRef] [PubMed]
- Asada, S.; Fujino, T.; Goyama, S.; Kitamura, T. The Role of ASXL1 in Hematopoiesis and Myeloid Malignancies. Cell. Mol. Life Sci. 2019, 76, 2511–2523. [Google Scholar] [CrossRef] [PubMed]
- Haring, B.; Wissel, S.; Manson, J.E. Somatic Mutations and Clonal Hematopoiesis as Drivers of Age-Related Cardiovascular Risk. Curr. Cardiol. Rep. 2022, 24, 1049–1058. [Google Scholar] [CrossRef]
- Florez, M.A.; Tran, B.T.; Wathan, T.K.; DeGregori, J.; Pietras, E.M.; King, K.Y. Clonal Hematopoiesis: Mutation-Specific Adaptation to Environmental Change. Cell Stem Cell 2022, 29, 882–904. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Polizio, A.; Kour, A.; Thel, M.; Walsh, K. Experimental ASXL1-Mediated Clonal Hematopoiesis Promotes Inflammation and Accelerates Heart Failure. J. Am. Heart Assoc. 2022, 11, e026154. [Google Scholar] [CrossRef]
- Bader, M.S.; Meyer, S.C. JAK2 in Myeloproliferative Neoplasms: Still a Protagonist. Pharmaceuticals 2022, 15, 160. [Google Scholar] [CrossRef]
- Perner, F.; Perner, C.; Ernst, T.; Heidel, F.H. Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells 2019, 8, 854. [Google Scholar] [CrossRef]
- Cordua, S.; Kjaer, L.; Skov, V.; Pallisgaard, N.; Hasselbalch, H.; Ellervik, C. Prevalence and Phenotypes of JAK2 V617F and Calreticulin Mutations in a Danish General Population. Blood 2019, 134, 469–479. [Google Scholar] [CrossRef]
- Bick, A.G.; Weinstock, J.S.; Nandakumar, S.K.; Fulco, C.P.; Bao, E.L.; Zekavat, S.M.; Szeto, M.D.; Liao, X.; Leventhal, M.J.; Nasser, J.; et al. Inherited Causes of Clonal Haematopoiesis in 97,691 Whole Genomes. Nature 2020, 586, 763–768. [Google Scholar] [CrossRef]
- Sano, S.; Wang, Y.; Ogawa, H.; Horitani, K.; Sano, M.; Polizio, A.H.; Kour, A.; Yura, Y.; Doviak, H.; Walsh, K. TP53-Mediated Therapy-Related Clonal Hematopoiesis Contributes to Doxorubicin-Induced Cardiomyopathy by Augmenting a Neutrophil-Mediated Cytotoxic Response. JCI Insight 2021, 6, e146076. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, Y.; Cai, L.; Yu, B.; Xiao, W.; Tan, X.; Wang, Y.; Lu, Y.; Wang, N. Clonal Hematopoiesis of Indeterminate Potential, Health Indicators, and Risk of Cardiovascular Diseases among Patients with Diabetes: A Prospective Cohort Study. Cardiovasc. Diabetol. 2025, 24, 72. [Google Scholar] [CrossRef]
- Nishida, A.; Andoh, A. The Role of Inflammation in Cancer: Mechanisms of Tumor Initiation, Progression, and Metastasis. Cells 2025, 14, 488. [Google Scholar] [CrossRef]
- Delaporta, P.; Chatzikalil, E.; Kyriakopoulou, D.; Berdalli, S.; Chouliara, V.; Hatzieleftheriou, M.-I.; Mylona, S.; Kattamis, A. Abrupt Increases in Ferritin Levels May Indicate a Malignant Process and Not Changes in Iron Overload in Thalassemic Patients. Blood 2024, 144, 3860. [Google Scholar] [CrossRef]
- Chatzikalil, E.; Arvanitakis, K.; Kalopitas, G.; Florentin, M.; Germanidis, G.; Koufakis, T.; Solomou, E.E. Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers 2025, 17, 392. [Google Scholar] [CrossRef]
- Cacciatore, S.; Andaloro, S.; Bernardi, M.; Oterino Manzanas, A.; Spadafora, L.; Figliozzi, S.; Asher, E.; Rana, J.S.; Ecarnot, F.; Gragnano, F.; et al. Chronic Inflammatory Diseases and Cardiovascular Risk: Current Insights and Future Strategies for Optimal Management. Int. J. Mol. Sci. 2025, 26, 3071. [Google Scholar] [CrossRef]
- Tan, H.; Jiang, H.; Wang, S. Biomarkers in Clonal Haematopoiesis of Indeterminate Potential (CHIP) Linking Cardiovascular Diseases, Myeloid Neoplasms and Inflammation. Ann. Hematol. 2025, 104, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Bulnes, J.F.; González, L.; Velásquez, L.; Orellana, M.P.; Venturelli, P.M.; Martínez, G. Role of Inflammation and Evidence for the Use of Colchicine in Patients with Acute Coronary Syndrome. Front. Cardiovasc. Med. 2024, 11, 1356023. [Google Scholar] [CrossRef] [PubMed]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.-F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
- Zuriaga, M.A.; Yu, Z.; Matesanz, N.; Truong, B.; Ramos-Neble, B.L.; Asensio-López, M.C.; Uddin, M.M.; Nakao, T.; Niroula, A.; Zorita, V.; et al. Colchicine Prevents Accelerated Atherosclerosis in TET2-Mutant Clonal Haematopoiesis. Eur. Heart J. 2024, 45, 4601–4615. [Google Scholar] [CrossRef] [PubMed]
- Bick, A.G.; Pirruccello, J.P.; Griffin, G.K.; Gupta, N.; Gabriel, S.; Saleheen, D.; Libby, P.; Kathiresan, S.; Natarajan, P. Genetic Interleukin 6 Signaling Deficiency Attenuates Cardiovascular Risk in Clonal Hematopoiesis. Circulation 2020, 141, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Devalaraja, M.; Baeres, F.M.M.; Engelmann, M.D.M.; Hovingh, G.K.; Ivkovic, M.; Lo, L.; Kling, D.; Pergola, P.; Raj, D.; et al. IL-6 Inhibition with Ziltivekimab in Patients at High Atherosclerotic Risk (RESCUE): A Double-Blind, Randomised, Placebo-Controlled, Phase 2 Trial. Lancet 2021, 397, 2060–2069. [Google Scholar] [CrossRef] [PubMed]
- Fedele, D.; Alvarez, M.C.; Maida, A.; Vasumini, N.; Amicone, S.; Canton, L.; Di Leo, M.; Basile, M.; Manaresi, T.; Angeli, F.; et al. Prevention of atrial fibrillation with SGLT2 inhibitors across the spectrum of cardiovascular disorders: A meta-analysis of randomised controlled trials. Eur. Heart J. Cardiovasc. Pharmacother. 2025, 7, 7471–7484. [Google Scholar] [CrossRef]
- Adamstein, N.H.; Cornel, J.H.; Davidson, M.; Libby, P.; De Remigis, A.; Jensen, C.; Ekström, K.; Ridker, P.M. Association of Interleukin 6 Inhibition with Ziltivekimab and the Neutrophil-Lymphocyte Ratio: A Secondary Analysis of the RESCUE Clinical Trial. JAMA Cardiol. 2023, 8, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Fennell, K.A.; Bell, C.C.; Dawson, M.A. Epigenetic Therapies in Acute Myeloid Leukemia: Where to from Here? Blood 2019, 134, 1891–1901. [Google Scholar] [CrossRef]
- Arvanitakis, K.; Papadakos, S.P.; Vakadaris, G.; Chatzikalil, E.; Stergiou, I.E.; Kalopitas, G.; Theocharis, S.; Germanidis, G. Shedding Light on the Role of LAG-3 in Hepatocellular Carcinoma: Unraveling Immunomodulatory Pathways. Hepatoma Res. 2024, 10, 20. [Google Scholar] [CrossRef]
- Papadakos, S.P.; Chatzikalil, E.; Arvanitakis, K.; Vakadaris, G.; Stergiou, I.E.; Koutsompina, M.-L.; Argyrou, A.; Lekakis, V.; Konstantinidis, I.; Germanidis, G.; et al. Understanding the Role of Connexins in Hepatocellular Carcinoma: Molecular and Prognostic Implications. Cancers 2024, 16, 1533. [Google Scholar] [CrossRef]
- Nakato, R.; Sakata, T. Methods for ChIP-Seq Analysis: A Practical Workflow and Advanced Applications. Methods 2021, 187, 44–53. [Google Scholar] [CrossRef]
- Zou, Z.; Iwata, M.; Yamanishi, Y.; Oki, S. Epigenetic Landscape of Drug Responses Revealed through Large-Scale ChIP-Seq Data Analyses. BMC Bioinform. 2022, 23, 51. [Google Scholar] [CrossRef]
References | Driver CHIP Mutations | Pathophysiology | Clinical Impact on AF |
---|---|---|---|
[124,125,126,127] | DNMT3 | CpG methylation, regulates HSC self-renewal and differentiation | No significant correlation. Worsening AF in special patient groups: the elderly, cases of chronic inflammation, and/or post-transplantation. |
[129,130,132] | TET2 | DNA methylation, regulates HSC self-renewal and differentiation at deficient state, promotes myeloid expansion | Strong correlation with AF development. Increased AF risk. |
[19,83,122,136] | ASXL1 | Regulates epigenetic processes via chromatin-binding proteins | Limited data for its association with AF pathogenesis. |
[139,140] | JAK2 | Tyrosine kinase activity | Mildly elevated risk for AF via the inflammasome pathway. |
[44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131] | TP53 | Regulates DNA damage repair | May elevate arrhythmias (including AF) in some cases. |
[40,130] | PPM1D | Regulates DNA damage repair | May elevate arrhythmias in some cases. |
[142] | SF3B1 | Regulates mRNA splicing | A study reports increased AF incidence in patients with SF3B1 mutations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzikalil, E.; Asvestas, D.; Tzeis, S.; Solomou, E.E. Clonal Hematopoiesis of Intermediate Potential in Atrial Fibrillation: A Critical View of Current Knowledge as a Springboard for Future Research. Diagnostics 2025, 15, 1915. https://doi.org/10.3390/diagnostics15151915
Chatzikalil E, Asvestas D, Tzeis S, Solomou EE. Clonal Hematopoiesis of Intermediate Potential in Atrial Fibrillation: A Critical View of Current Knowledge as a Springboard for Future Research. Diagnostics. 2025; 15(15):1915. https://doi.org/10.3390/diagnostics15151915
Chicago/Turabian StyleChatzikalil, Elena, Dimitris Asvestas, Stylianos Tzeis, and Elena E. Solomou. 2025. "Clonal Hematopoiesis of Intermediate Potential in Atrial Fibrillation: A Critical View of Current Knowledge as a Springboard for Future Research" Diagnostics 15, no. 15: 1915. https://doi.org/10.3390/diagnostics15151915
APA StyleChatzikalil, E., Asvestas, D., Tzeis, S., & Solomou, E. E. (2025). Clonal Hematopoiesis of Intermediate Potential in Atrial Fibrillation: A Critical View of Current Knowledge as a Springboard for Future Research. Diagnostics, 15(15), 1915. https://doi.org/10.3390/diagnostics15151915