Unlocking the Potential of Liquid Biopsy: A Paradigm Shift in Endometrial Cancer Care
Abstract
1. Introduction
2. Methods
3. Biological Components of Liquid Biopsy
3.1. Circulating Tumor Cells
3.2. Circulating Tumor DNA and Cell-Free DNA
3.3. Circulating Tumor RNA and Cell-Free RNA
3.4. Extracellular Vesicles
3.5. Proteomics
3.6. Metabolomics
4. Application of Liquid Biopsy in EC
4.1. Blood-Based Liquid Biopsy in EC
4.1.1. Early Diagnosis
4.1.2. Recurrence Monitoring
4.1.3. Prognostic Prediction
4.1.4. Treatment Guidance
4.2. Non-Blood-Based Liquid Biopsy in EC
4.2.1. Urine Samples
4.2.2. Uterine Lavage Fluid and Uterine Aspirates
4.2.3. Cervicovaginal Fluid and Cervicovaginal Lavage Fluid
4.2.4. Tampons
4.2.5. Cervical Scrapings and Vaginal Swabs
4.2.6. Peritoneal Surgical Lavage Fluid and Peritoneal Fluid
5. Future Directions and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial cancer. Lancet 2022, 399, 1412–1428. [Google Scholar] [CrossRef]
- Yamagami, W.; Mikami, M.; Nagase, S.; Tabata, T.; Kobayashi, Y.; Kaneuchi, M.; Kobayashi, H.; Yamada, H.; Hasegawa, K.; Fujiwara, H.; et al. Japan Society of Gynecologic Oncology 2018 guidelines for treatment of uterine body neoplasms. J. Gynecol. Oncol. 2020, 31, e18. [Google Scholar] [CrossRef]
- Berek, J.S.; Matias-Guiu, X.; Creutzberg, C.; Fotopoulou, C.; Gaffney, D.; Kehoe, S.; Lindemann, K.; Mutch, D.; Concin, N. FIGO staging of endometrial cancer: 2023. Int. J. Gynaecol. Obs. 2023, 162, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Papathemelis, T.; Ortmann, O.; Kohl, C.; Neuser, P.; Tol, K.K.; Klinkhammer-Schalke, M.; Ugocsai, P.; Walter, C.B.; Rottmann, M.; Real, C.; et al. Treatment of endometrial cancer from 2000 to 2020 in Germany: A retrospective population based cohort study. J. Cancer Res. Clin. Oncol. 2024, 150, 279. [Google Scholar] [CrossRef]
- Vermij, L.; Jobsen, J.J.; León-Castillo, A.; Brinkhuis, M.; Roothaan, S.; Powell, M.E.; de Boer, S.M.; Khaw, P.; Mileshkin, L.R.; Fyles, A.; et al. Prognostic refinement of NSMP high-risk endometrial cancers using oestrogen receptor immunohistochemistry. Br. J. Cancer 2023, 128, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, A.; Huvila, J.; Chiu, D.; Thompson, E.F.; Scott, S.; Salvador, S.; Vicus, D.; Helpman, L.; Gotlieb, W.; Kean, S.; et al. Grade and Estrogen Receptor Expression Identify a Subset of No Specific Molecular Profile Endometrial Carcinomas at a Very Low Risk of Disease-Specific Death. Mod. Pathol. 2023, 36, 100085. [Google Scholar] [CrossRef]
- León-Castillo, A.; De Boer, S.M.; Powell, M.E.; Mileshkin, L.R.; Mackay, H.J.; Leary, A.; Nijman, H.W.; Singh, N.; Pollock, P.M.; Bessette, P. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: Impact on prognosis and benefit from adjuvant therapy. J. Clin. Oncol. 2020, 38, 3388–3397. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef]
- Yu, W.; Hurley, J.; Roberts, D.; Chakrabortty, S.K.; Enderle, D.; Noerholm, M.; Breakefield, X.O.; Skog, J.K. Exosome-based liquid biopsies in cancer: Opportunities and challenges. Ann. Oncol. 2021, 32, 466–477. [Google Scholar] [CrossRef]
- Dache, Z.A.A.; Otandault, A.; Tanos, R.; Pastor, B.; Meddeb, R.; Sanchez, C.; Arena, G.; Lasorsa, L.; Bennett, E.A.; Grange, T. Blood contains circulating cell free respiratory competent mitochondria. FASEB J. 2020, 34, 3616–3630. [Google Scholar] [CrossRef]
- Ao, Z.; Shah, S.H.; Machlin, L.M.; Parajuli, R.; Miller, P.C.; Rawal, S.; Williams, A.J.; Cote, R.J.; Lippman, M.E.; Datar, R.H. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res. 2015, 75, 4681–4687. [Google Scholar] [CrossRef]
- Łukasiewicz, M.; Pastuszak, K.; Łapińska-Szumczyk, S.; Różański, R.; Veld, S.; Bieńkowski, M.; Stokowy, T.; Ratajska, M.; Best, M.G.; Würdinger, T.; et al. Diagnostic Accuracy of Liquid Biopsy in Endometrial Cancer. Cancers 2021, 13, 5731. [Google Scholar] [CrossRef] [PubMed]
- Alix-Panabières, C.; Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014, 14, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Tripathy, D.; Frenkel, E.P.; Shete, S.; Naftalis, E.Z.; Huth, J.F.; Beitsch, P.D.; Leitch, M.; Hoover, S.; Euhus, D.; et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 2004, 10, 8152–8162. [Google Scholar] [CrossRef]
- Kulasinghe, A.; Kenny, L.; Perry, C.; Thiery, J.-P.; Jovanovic, L.; Vela, I.; Nelson, C.; Punyadeera, C. Impact of label-free technologies in head and neck cancer circulating tumour cells. Oncotarget 2016, 7, 71223. [Google Scholar] [CrossRef]
- Gires, O.; Stoecklein, N.H. Dynamic EpCAM expression on circulating and disseminating tumor cells: Causes and consequences. Cell. Mol. Life Sci. 2014, 71, 4393–4402. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, C.; Miao, J.; Dolce, E.M.; Darga, E.P.; Repollet, M.I.; Doyle, G.V.; Gralow, J.R.; Hortobagyi, G.N.; Smerage, J.B.; Barlow, W.E.; et al. Circulating Tumor Cell Clusters in Patients with Metastatic Breast Cancer: A SWOG S0500 Translational Medicine Study. Clin. Cancer Res. 2019, 25, 6089–6097. [Google Scholar] [CrossRef]
- Bidard, F.C.; Jacot, W.; Kiavue, N.; Dureau, S.; Kadi, A.; Brain, E.; Bachelot, T.; Bourgeois, H.; Gonçalves, A.; Ladoire, S.; et al. Efficacy of Circulating Tumor Cell Count-Driven vs Clinician-Driven First-line Therapy Choice in Hormone Receptor-Positive, ERBB2-Negative Metastatic Breast Cancer: The STIC CTC Randomized Clinical Trial. JAMA Oncol. 2021, 7, 34–41. [Google Scholar] [CrossRef]
- Aranda, E.; Viéitez, J.M.; Gómez-España, A.; Gil Calle, S.; Salud-Salvia, A.; Graña, B.; Garcia-Alfonso, P.; Rivera, F.; Quintero-Aldana, G.A.; Reina-Zoilo, J.J.; et al. FOLFOXIRI plus bevacizumab versus FOLFOX plus bevacizumab for patients with metastatic colorectal cancer and ≥3 circulating tumour cells: The randomised phase III VISNÚ-1 trial. ESMO Open 2020, 5, e000944. [Google Scholar] [CrossRef] [PubMed]
- Cabel, L.; Berger, F.; Cottu, P.; Loirat, D.; Rampanou, A.; Brain, E.; Cyrille, S.; Bourgeois, H.; Kiavue, N.; Deluche, E.; et al. Clinical utility of circulating tumour cell-based monitoring of late-line chemotherapy for metastatic breast cancer: The randomised CirCe01 trial. Br. J. Cancer 2021, 124, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.; Allard, W.J.; Terstappen, L.W.; et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004, 351, 781–791. [Google Scholar] [CrossRef]
- Negin, B.P.; Cohen, S.J. Circulating tumor cells in colorectal cancer: Past, present, and future challenges. Curr. Treat. Options Oncol. 2010, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Folkersma, L.R.; Gómez, C.O.; Manso, L.S.J.; De Castro, S.V.; Romo, I.G.; Lázaro, M.V.; De La Orden, G.V.; Fernández, M.A.; Diaz-Rubio, E.; Moyano, A.S.; et al. Immunomagnetic quantification of circulating tumoral cells in patients with prostate cancer: Clinical and pathological correlation. Arch. Esp. Urol. 2010, 63, 23–31. [Google Scholar]
- Miller, M.C.; Robinson, P.S.; Wagner, C.; O’Shannessy, D.J. The Parsortix™ Cell Separation System-A versatile liquid biopsy platform. Cytom. A 2018, 93, 1234–1239. [Google Scholar] [CrossRef]
- Cohen, E.N.; Jayachandran, G.; Moore, R.G.; Cristofanilli, M.; Lang, J.E.; Khoury, J.D.; Press, M.F.; Kim, K.K.; Khazan, N.; Zhang, Q.; et al. A Multi-Center Clinical Study to Harvest and Characterize Circulating Tumor Cells from Patients with Metastatic Breast Cancer Using the Parsortix(®) PC1 System. Cancers 2022, 14, 5238. [Google Scholar] [CrossRef]
- Lustberg, M.; Jatana, K.R.; Zborowski, M.; Chalmers, J.J. Emerging technologies for CTC detection based on depletion of normal cells. Recent Results Cancer Res. 2012, 195, 97–110. [Google Scholar]
- Smith, K.J.; Jana, J.A.; Kaehr, A.; Purcell, E.; Opdycke, T.; Paoletti, C.; Cooling, L.; Thamm, D.H.; Hayes, D.F.; Nagrath, S. Inertial focusing of circulating tumor cells in whole blood at high flow rates using the microfluidic CTCKey™ device for CTC enrichment. Lab Chip 2021, 21, 3559–3572. [Google Scholar] [CrossRef]
- Dhar, M.; Wong, J.; Karimi, A.; Che, J.; Renier, C.; Matsumoto, M.; Triboulet, M.; Garon, E.B.; Goldman, J.W.; Rettig, M.B.; et al. High efficiency vortex trapping of circulating tumor cells. Biomicrofluidics 2015, 9, 064116. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, D.; Napoleon, J.V.; Srinivasarao, M.; Singhal, S.; Savran, C.A.; Low, P.S. Efficient capture of circulating tumor cells with low molecular weight folate receptor-specific ligands. Sci. Rep. 2022, 12, 8555. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, C.; Xu, L.; Zhang, Z.; Li, X.; Hu, H.; Cheng, S.; Zhou, W.; Huang, M.; Fong, A.; et al. Enhanced and Differential Capture of Circulating Tumor Cells from Lung Cancer Patients by Microfluidic Assays Using Aptamer Cocktail. Small 2016, 12, 1072–1081. [Google Scholar] [CrossRef]
- Lao, Z.; Ren, X.; Zhuang, D.; Xie, L.; Zhang, Y.; Li, W.; Chen, Y.; Li, P.; Tong, L.; Chu, P.K.; et al. A phenotype-independent “label-capture-release” process for isolating viable circulating tumor cells in real-time drug susceptibility testing. Innovation 2025, 6, 100805. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Y.; Zhang, Z.; Zhang, C.; Huang, X.; Yuan, Z. Clinical significance of pancreatic circulating tumor cells using combined negative enrichment and immunostaining-fluorescence in situ hybridization. J. Exp. Clin. Cancer Res. 2016, 35, 66. [Google Scholar] [CrossRef]
- Obermayr, E.; Sanchez-Cabo, F.; Tea, M.K.; Singer, C.F.; Krainer, M.; Fischer, M.B.; Sehouli, J.; Reinthaller, A.; Horvat, R.; Heinze, G.; et al. Assessment of a six gene panel for the molecular detection of circulating tumor cells in the blood of female cancer patients. BMC Cancer 2010, 10, 666. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Ren, J.; Zhou, T.; Wang, Z.; Li, C.; Qiu, L.; Gao, T.; Ding, P.; Ding, Z.; et al. Purification of Circulating Tumor Cells Based on Multiantibody-Modified Magnetic Nanoparticles and Molecular Analysis toward Epithelial Ovarian Cancer Detection. ACS Sens. 2023, 8, 3744–3753. [Google Scholar] [CrossRef] [PubMed]
- Lohr, J.G.; Adalsteinsson, V.A.; Cibulskis, K.; Choudhury, A.D.; Rosenberg, M.; Cruz-Gordillo, P.; Francis, J.M.; Zhang, C.Z.; Shalek, A.K.; Satija, R.; et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 2014, 32, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, J.; Sun, Y. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 2012, 12, 1753–1767. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Vendrell, J.P.; Slijper, M.; Pellé, O.; Barbotte, E.; Mercier, G.; Jacot, W.; Fabbro, M.; Pantel, K. Full-length cytokeratin-19 is released by human tumor cells: A potential role in metastatic progression of breast cancer. Breast Cancer Res. 2009, 11, R39. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Vendrell, J.P.; Pellé, O.; Rebillard, X.; Riethdorf, S.; Müller, V.; Fabbro, M.; Pantel, K. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin. Chem. 2007, 53, 537–539. [Google Scholar] [CrossRef]
- Yu, M.; Bardia, A.; Aceto, N.; Bersani, F.; Madden, M.W.; Donaldson, M.C.; Desai, R.; Zhu, H.; Comaills, V.; Zheng, Z.; et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 2014, 345, 216–220. [Google Scholar] [CrossRef]
- Mandel, P.; Metais, P. Les acides nucléiques du plasma sanguin chez l’Homme. C. R. Seances Soc. Biol. Fil. 1948, 142, 241–243. [Google Scholar]
- Alix-Panabières, C.; Pantel, K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016, 6, 479–491. [Google Scholar] [CrossRef]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Underhill, H.R.; Kitzman, J.O.; Hellwig, S.; Welker, N.C.; Daza, R.; Baker, D.N.; Gligorich, K.M.; Rostomily, R.C.; Bronner, M.P.; Shendure, J. Fragment length of circulating tumor DNA. PLoS Genet. 2016, 12, e1006162. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, M.; Seong, M.W.; Kim, H.S.; Lee, Y.K.; Kang, H.J. Plasma vs. serum in circulating tumor DNA measurement: Characterization by DNA fragment sizing and digital droplet polymerase chain reaction. Clin. Chem. Lab Med. 2020, 58, 527–532. [Google Scholar] [CrossRef]
- Galimberti, S.; Balducci, S.; Guerrini, F.; Del Re, M.; Cacciola, R. Digital Droplet PCR in Hematologic Malignancies: A New Useful Molecular Tool. Diagnostics 2022, 12, 1305. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.M.; Bratman, S.V.; To, J.; Wynne, J.F.; Eclov, N.C.; Modlin, L.A.; Liu, C.L.; Neal, J.W.; Wakelee, H.A.; Merritt, R.E.; et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 2014, 20, 548–554. [Google Scholar] [CrossRef]
- Hanash, S.M.; Pitteri, S.J.; Faca, V.M. Mining the plasma proteome for cancer biomarkers. Nature 2008, 452, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.G.; Graff, J.R.; Myöhänen, S.; Nelkin, B.D.; Baylin, S.B. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 1996, 93, 9821–9826. [Google Scholar] [CrossRef]
- Uehiro, N.; Sato, F.; Pu, F.; Tanaka, S.; Kawashima, M.; Kawaguchi, K.; Sugimoto, M.; Saji, S.; Toi, M. Circulating cell-free DNA-based epigenetic assay can detect early breast cancer. Breast Cancer Res. 2016, 18, 129. [Google Scholar] [CrossRef]
- Beltran, H.; Romanel, A.; Conteduca, V.; Casiraghi, N.; Sigouros, M.; Franceschini, G.M.; Orlando, F.; Fedrizzi, T.; Ku, S.Y.; Dann, E.; et al. Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. J. Clin. Investig. 2020, 130, 1653–1668. [Google Scholar] [CrossRef]
- Liu, Y.; Siejka-Zielińska, P.; Velikova, G.; Bi, Y.; Yuan, F.; Tomkova, M.; Bai, C.; Chen, L.; Schuster-Böckler, B.; Song, C.X. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat. Biotechnol. 2019, 37, 424–429. [Google Scholar] [CrossRef]
- Wang, J.; Xia, Y.; Li, L.; Gong, D.; Yao, Y.; Luo, H.; Lu, H.; Yi, N.; Wu, H.; Zhang, X.; et al. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genom. 2013, 14, 11. [Google Scholar] [CrossRef]
- Pidsley, R.; Zotenko, E.; Peters, T.J.; Lawrence, M.G.; Risbridger, G.P.; Molloy, P.; Van Djik, S.; Muhlhausler, B.; Stirzaker, C.; Clark, S.J. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016, 17, 208. [Google Scholar] [CrossRef] [PubMed]
- Galardi, F.; Luca, F.; Romagnoli, D.; Biagioni, C.; Moretti, E.; Biganzoli, L.; Leo, A.D.; Migliaccio, I.; Malorni, L.; Benelli, M. Cell-Free DNA-Methylation-Based Methods and Applications in Oncology. Biomolecules 2020, 10, 1677. [Google Scholar] [CrossRef] [PubMed]
- Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011, 39, 7223–7233. [Google Scholar] [CrossRef]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef] [PubMed]
- Fleischhacker, M.; Schmidt, B. Circulating nucleic acids (CNAs) and cancer—A survey. Biochim. Biophys Acta 2007, 1775, 181–232. [Google Scholar] [CrossRef]
- Cheung, K.W.E.; Choi, S.R.; Lee, L.T.C.; Lee, N.L.E.; Tsang, H.F.; Cheng, Y.T.; Cho, W.C.S.; Wong, E.Y.L.; Wong, S.C.C. The potential of circulating cell free RNA as a biomarker in cancer. Expert Rev. Mol. Diagn. 2019, 19, 579–590. [Google Scholar] [CrossRef]
- Larson, M.H.; Pan, W.; Kim, H.J.; Mauntz, R.E.; Stuart, S.M.; Pimentel, M.; Zhou, Y.; Knudsgaard, P.; Demas, V.; Aravanis, A.M.; et al. A comprehensive characterization of the cell-free transcriptome reveals tissue- and subtype-specific biomarkers for cancer detection. Nat. Commun. 2021, 12, 2357. [Google Scholar] [CrossRef]
- Lee, I.; Baxter, D.; Lee, M.Y.; Scherler, K.; Wang, K. The Importance of Standardization on Analyzing Circulating RNA. Mol. Diagn. Ther. 2017, 21, 259–268. [Google Scholar] [CrossRef]
- Yoluç, Y.; Ammann, G.; Barraud, P.; Jora, M.; Limbach, P.A.; Motorin, Y.; Marchand, V.; Tisné, C.; Borland, K.; Kellner, S. Instrumental analysis of RNA modifications. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 178–204. [Google Scholar] [CrossRef]
- Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 2012, 149, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Bonucci, E. Fine structure of early cartilage calcification. J. Ultrastruct. Res. 1967, 20, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Im, H.; Castro, C.M.; Breakefield, X.; Weissleder, R.; Lee, H. New Technologies for Analysis of Extracellular Vesicles. Chem. Rev. 2018, 118, 1917–1950. [Google Scholar] [CrossRef] [PubMed]
- Melo, S.A.; Sugimoto, H.; O’Connell, J.T.; Kato, N.; Villanueva, A.; Vidal, A.; Qiu, L.; Vitkin, E.; Perelman, L.T.; Melo, C.A. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014, 26, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Matei, I.; Kim, H.S.; Lyden, D. Unshielding exosomal RNA unleashes tumor growth and metastasis. Cell 2017, 170, 223–225. [Google Scholar] [CrossRef]
- Qin, Y.; Sun, R.; Wu, C.; Wang, L.; Zhang, C. Exosome: A novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. Int. J. Mol. Sci. 2016, 17, 712. [Google Scholar] [CrossRef]
- Wendler, F.; Favicchio, R.; Simon, T.; Alifrangis, C.; Stebbing, J.; Giamas, G. Extracellular vesicles swarm the cancer microenvironment: From tumor–stroma communication to drug intervention. Oncogene 2017, 36, 877–884. [Google Scholar] [CrossRef]
- Hoshino, A.; Costa-Silva, B.; Shen, T.-L.; Rodrigues, G.; Hashimoto, A.; Mark, M.T.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S. Tumour exosome integrins determine organotropic metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Milman, N.; Ginini, L.; Gil, Z. Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist. Updat. 2019, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gopal, S.K.; Greening, D.W.; Rai, A.; Chen, M.; Xu, R.; Shafiq, A.; Mathias, R.A.; Zhu, H.-J.; Simpson, R.J. Extracellular vesicles: Their role in cancer biology and epithelial—Mesenchymal transition. Biochem. J. 2017, 474, 21–45. [Google Scholar] [CrossRef]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Logozzi, M.; De Milito, A.; Lugini, L.; Borghi, M.; Calabrò, L.; Spada, M.; Perdicchio, M.; Marino, M.L.; Federici, C.; Iessi, E.; et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS ONE 2009, 4, e5219. [Google Scholar] [CrossRef]
- Sódar, B.W.; Kittel, Á.; Pálóczi, K.; Vukman, K.V.; Osteikoetxea, X.; Szabó-Taylor, K.; Németh, A.; Sperlágh, B.; Baranyai, T.; Giricz, Z.; et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci. Rep. 2016, 6, 24316. [Google Scholar] [CrossRef]
- He, F.; Liu, H.; Guo, X.; Yin, B.C.; Ye, B.C. Direct Exosome Quantification via Bivalent-Cholesterol-Labeled DNA Anchor for Signal Amplification. Anal. Chem. 2017, 89, 12968–12975. [Google Scholar] [CrossRef]
- Zhu, S.; Ma, L.; Wang, S.; Chen, C.; Zhang, W.; Yang, L.; Hang, W.; Nolan, J.P.; Wu, L.; Yan, X. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano 2014, 8, 10998–11006. [Google Scholar] [CrossRef]
- Nolan, J.P. Flow cytometry of extracellular vesicles: Potential, pitfalls, and prospects. Curr. Protoc. Cytom. 2015, 73, 13.14.1–13.14.16. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, L.; Zhou, G.; Liu, W.; Cui, H.; Cao, Y.; Zuo, X.; Zhao, J. Proximity labeling-assisted click conjugation for electrochemical analysis of specific subpopulations in circulating extracellular vesicles. Biosens. Bioelectron. 2024, 255, 116245. [Google Scholar] [CrossRef]
- Pan, B.-T.; Teng, K.; Wu, C.; Adam, M.; Johnstone, R.M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 1985, 101, 942–948. [Google Scholar] [CrossRef]
- Dragovic, R.A.; Gardiner, C.; Brooks, A.S.; Tannetta, D.S.; Ferguson, D.J.; Hole, P.; Carr, B.; Redman, C.W.; Harris, A.L.; Dobson, P.J. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 780–788. [Google Scholar] [CrossRef]
- Huang, X.; Li, A.; Xu, P.; Yu, Y.; Li, S.; Hu, L.; Feng, S. Current and prospective strategies for advancing the targeted delivery of CRISPR/Cas system via extracellular vesicles. J. Nanobiotechnology 2023, 21, 184. [Google Scholar] [CrossRef]
- Su, J. Label-free single exosome detection using frequency-locked microtoroid optical resonators. Acs Photonics 2015, 2, 1241–1245. [Google Scholar] [CrossRef]
- Tyers, M.; Mann, M. From genomics to proteomics. Nature 2003, 422, 193–197. [Google Scholar] [CrossRef]
- Cui, M.; Cheng, C.; Zhang, L. High-throughput proteomics: A methodological mini-review. Lab Investig. 2022, 102, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.B.; Nelson, P.S. From genomics to proteomics: Techniques and applications in cancer research. Trends Cell Biol. 2001, 11, S60–S65. [Google Scholar] [CrossRef] [PubMed]
- Macklin, A.; Khan, S.; Kislinger, T. Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research. Clin. Proteom. 2020, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Payne, K.; Brooks, J.; Batis, N.; Khan, N.; El-Asrag, M.; Nankivell, P.; Mehanna, H.; Taylor, G. Feasibility of mass cytometry proteomic characterisation of circulating tumour cells in head and neck squamous cell carcinoma for deep phenotyping. Br. J. Cancer 2023, 129, 1590–1598. [Google Scholar] [CrossRef]
- Descamps, L.; Le Roy, D.; Deman, A.-L. Microfluidic-based technologies for CTC isolation: A review of 10 years of intense efforts towards liquid biopsy. Int. J. Mol. Sci. 2022, 23, 1981. [Google Scholar] [CrossRef]
- Abdulla, A.; Zhang, T.; Li, S.; Guo, W.; Warden, A.R.; Xin, Y.; Maboyi, N.; Lou, J.; Xie, H.; Ding, X. Integrated microfluidic single-cell immunoblotting chip enables high-throughput isolation, enrichment and direct protein analysis of circulating tumor cells. Microsyst. Nanoeng. 2022, 8, 13. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef]
- Hu, L.; Liu, J.; Zhang, W.; Wang, T.; Zhang, N.; Lee, Y.H.; Lu, H. Functional metabolomics decipher biochemical functions and associated mechanisms underlie small-molecule metabolism. Mass Spectrom. Rev. 2020, 39, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [Google Scholar] [CrossRef]
- Keun, H.C.; Beckonert, O.; Griffin, J.L.; Richter, C.; Moskau, D.; Lindon, J.C.; Nicholson, J.K. Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal. Chem. 2002, 74, 4588–4593. [Google Scholar] [CrossRef] [PubMed]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, X.; Wang, W.; Hu, P.; Jiang, J. An LC-MS/MS method for quantification of AC0010, a novel mutant-selective epidermal growth factor receptor (EGFR) inhibitor, and its metabolites in human plasma and the application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2017, 141, 9–18. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, Y.; Hu, C.; Du, L.; Du, Y.A.; Zhang, Y.; Qin, J.; Liu, W.; Wang, R.; Yang, S.; et al. Efficient plasma metabolic fingerprinting as a novel tool for diagnosis and prognosis of gastric cancer: A large-scale, multicentre study. Gut 2023, 72, 2051–2067. [Google Scholar] [CrossRef]
- Jiang, X.H.; Yao, Z.Y.; He, X.; Zhang, J.B.; Xie, K.; Chen, J.; Cao, M.; Zhang, J.; Yie, S.M. Clinical significance of plasma anti-TOPO48 autoantibody and blood survivin-expressing circulating cancer cells in patients with early stage endometrial carcinoma. Arch. Gynecol. Obstet. 2019, 299, 229–237. [Google Scholar] [CrossRef]
- Herrero, C.; Brea, J.; Pérez-Díaz, A.; Cuadrado, E.; Ferreño, N.; Moiola, C.P.; Colás, E.; Gil-Moreno, A.; López-López, R.; Loza, M.I.; et al. Modeling ANXA2-overexpressing circulating tumor cells homing and high throughput screening for metastasis impairment in endometrial carcinomas. Biomed. Pharmacother. 2021, 140, 111744. [Google Scholar] [CrossRef]
- Francini, S.; Duraes, M.; Rathat, G.; Macioce, V.; Mollevi, C.; Pages, L.; Ferrer, C.; Cayrefourcq, L.; Alix-Panabières, C. Circulating Tumor Cell Detection by Liquid Biopsy during Early-Stage Endometrial Cancer Surgery: A Pilot Study. Biomolecules 2023, 13, 428. [Google Scholar] [CrossRef]
- Law, K.S.; Huang, C.E.; Chen, S.W. Detection of Circulating Tumor Cell-Related Markers in Gynecologic Cancer Using Microfluidic Devices: A Pilot Study. Int. J. Mol. Sci. 2023, 24, 2300. [Google Scholar] [CrossRef]
- Bolivar, A.M.; Luthra, R.; Mehrotra, M.; Chen, W.; Barkoh, B.A.; Hu, P.; Zhang, W.; Broaddus, R.R. Targeted next-generation sequencing of endometrial cancer and matched circulating tumor DNA: Identification of plasma-based, tumor-associated mutations in early stage patients. Mod. Pathol. 2019, 32, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Benati, M.; Montagnana, M.; Danese, E.; Mazzon, M.; Paviati, E.; Garzon, S.; Laganà, A.S.; Casarin, J.; Giudici, S.; Raffaelli, R.; et al. Aberrant Telomere Length in Circulating Cell-Free DNA as Possible Blood Biomarker with High Diagnostic Performance in Endometrial Cancer. Pathol. Oncol. Res. 2020, 26, 2281–2289. [Google Scholar] [CrossRef]
- Gressel, G.M.; Maggi, E.C.; Harmon, B.E.; Ye, K.Q.; Kuo, D.Y.S.; Dolan, S.M.; Montagna, C. Low molecular weight serum cell-free DNA concentration is associated with clinicopathologic indices of poor prognosis in women with uterine cancer. J. Transl. Med. 2020, 18, 323. [Google Scholar] [CrossRef]
- Shintani, D.; Hihara, T.; Ogasawara, A.; Sato, S.; Yabuno, A.; Tai, K.; Fujiwara, K.; Watanabe, K.; Hasegawa, K. Tumor-related mutations in cell-free DNA in pre-operative plasma as a prognostic indicator of recurrence in endometrial cancer. Int. J. Gynecol. Cancer 2020, 30, 1340–1346. [Google Scholar] [CrossRef]
- Feng, W.; Jia, N.; Jiao, H.; Chen, J.; Chen, Y.; Zhang, Y.; Zhu, M.; Zhu, C.; Shen, L.; Long, W. Circulating tumor DNA as a prognostic marker in high-risk endometrial cancer. J. Transl. Med. 2021, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Grassi, T.; Harris, F.R.; Smadbeck, J.B.; Murphy, S.J.; Block, M.S.; Multinu, F.; Schaefer Klein, J.L.; Zhang, P.; Karagouga, G.; Liu, M.C.; et al. Personalized tumor-specific DNA junctions to detect circulating tumor in patients with endometrial cancer. PLoS ONE 2021, 16, e0252390. [Google Scholar] [CrossRef] [PubMed]
- Beinse, G.; Borghese, B.; Métairie, M.; Just, P.A.; Poulet, G.; Garinet, S.; Parfait, B.; Didelot, A.; Bourreau, C.; Agueeff, N.; et al. Highly Specific Droplet-Digital PCR Detection of Universally Methylated Circulating Tumor DNA in Endometrial Carcinoma. Clin. Chem. 2022, 68, 782–793. [Google Scholar] [CrossRef]
- Kodada, D.; Hyblova, M.; Krumpolec, P.; Janostiakova, N.; Barath, P.; Grendar, M.; Blandova, G.; Petrovic, O.; Janega, P.; Repiska, V.; et al. The Potential of Liquid Biopsy in Detection of Endometrial Cancer Biomarkers: A Pilot Study. Int. J. Mol. Sci. 2023, 24, 7811. [Google Scholar] [CrossRef] [PubMed]
- Ashley, C.W.; Selenica, P.; Patel, J.; Wu, M.; Nincevic, J.; Lakhman, Y.; Zhou, Q.; Shah, R.H.; Berger, M.F.; Da Cruz Paula, A.; et al. High-Sensitivity Mutation Analysis of Cell-Free DNA for Disease Monitoring in Endometrial Cancer. Clin. Cancer Res. 2023, 29, 410–421. [Google Scholar] [CrossRef]
- Recio, F.; Scalise, C.B.; Loar, P.; Lumish, M.; Berman, T.; Peddada, A.; Kalashnikova, E.; Rivero-Hinojosa, S.; Beisch, T.; Nicosia, B.; et al. Post-surgical ctDNA-based molecular residual disease detection in patients with stage I uterine malignancies. Gynecol. Oncol. 2024, 182, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Blanc-Durand, F.; Camilleri, G.M.; Bayle, A.; Aldea, M.; Vasseur, D.; Ouali, K.; Michels, J.; Pautier, P.; Nicotra, C.; Ngo-Camus, M.; et al. Clinical utility of comprehensive liquid molecular profiling in patients with advanced endometrial cancer. Cancer 2024, 130, 3311–3320. [Google Scholar] [CrossRef]
- Pina, P.S.; Clemens, K.; Bubie, A.; Grant, B.; Haynes, G.; Zhang, N.; Drusbosky, L.; Lheureux, S. Genomic Landscape of ctDNA and Real-World Outcomes in Advanced Endometrial Cancer. Clin. Cancer Res. 2024, 30, 5657–5665. [Google Scholar] [CrossRef]
- Casas-Arozamena, C.; Vilar, A.; Cueva, J.; Arias, E.; Sampayo, V.; Diaz, E.; Oltra, S.S.; Moiola, C.P.; Cabrera, S.; Cortegoso, A.; et al. Role of cfDNA and ctDNA to improve the risk stratification and the disease follow-up in patients with endometrial cancer: Towards the clinical application. J. Exp. Clin. Cancer Res. 2024, 43, 264. [Google Scholar] [CrossRef]
- Jamieson, A.; McConechy, M.K.; Lum, A.; Senz, J.; Dowhy, T.; Huntsman, D.G.; McAlpine, J.N. Selective utilization of circulating tumor DNA testing enables disease monitoring in endometrial and ovarian carcinomas. J. Gynecol. Oncol. 2025, 36, e5. [Google Scholar] [CrossRef]
- Shan, L.; Zhao, T.; Wang, Y. Upregulation of Serum lncRNA DLEU1 Predicts Progression of Premalignant Endometrial Lesion and Unfavorable Clinical Outcome of Endometrial Cancer. Technol. Cancer Res. Treat. 2020, 19, 1533033820965589. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zou, X.; Liu, C.; Cheng, W.; Zhang, S.; Geng, X.; Zhu, W. MicroRNA expression profile in serum reveals novel diagnostic biomarkers for endometrial cancer. Biosci. Rep. 2021, 41, BSR20210111. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, X.; Li, J.; Xiao, R.; Xin, H.; Dai, L.; Zhu, Y.; Bao, W. Serum miRNA-204–5p as a potential non-invasive biomarker for the diagnosis of endometrial cancer with sentinel lymph node mapping. Oncol. Lett. 2022, 24, 248. [Google Scholar] [CrossRef]
- Salim, E.I.; Beltagy, D.M.; Elmashad, N.M.; Abodonia, M.A. Prognostic Role of Oncogenic and Tumor-Suppressing miRNA Types in Egyptian Uterine Cancer Patients. Asian Pac. J. Cancer Prev. 2022, 23, 2607–2615. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Sharma, I.; Saha, S.C.; Srinivasan, R.; Bhardwaj, P. Role of serum microRNAs as biomarkers for endometriosis, endometrioid carcinoma of ovary & endometrioid endometrial cancer. Indian J. Med. Res. 2022, 156, 516–523. [Google Scholar]
- Rostami, S.; Rounge, T.B.; Pestarino, L.; Lyle, R.; Fortner, R.T.; Haaland, Ø.A.; Lie, R.T.; Wiklund, F.; Bjørge, T.; Langseth, H. Differential levels of circulating RNAs prior to endometrial cancer diagnosis. Int. J. Cancer 2024, 155, 946–956. [Google Scholar] [CrossRef]
- Song, Y.; Wang, M.; Tong, H.; Tan, Y.; Hu, X.; Wang, K.; Wan, X. Plasma exosomes from endometrial cancer patients contain LGALS3BP to promote endometrial cancer progression. Oncogene 2021, 40, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, W.; Wang, F.; Yang, S.; Hu, J.; Lu, B.; Pan, Z.; Ma, Y.; Zheng, M.; Zhou, L.; et al. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol. Cancer 2021, 20, 57. [Google Scholar] [CrossRef]
- Sommella, E.; Capaci, V.; Aloisio, M.; Salviati, E.; Campiglia, P.; Molinario, G.; Licastro, D.; Di Lorenzo, G.; Romano, F.; Ricci, G.; et al. A Label-Free Proteomic Approach for the Identification of Biomarkers in the Exosome of Endometrial Cancer Serum. Cancers 2022, 14, 6262. [Google Scholar] [CrossRef]
- Tarney, C.M.; Wang, G.; Bateman, N.W.; Conrads, K.A.; Zhou, M.; Hood, B.L.; Loffredo, J.; Tian, C.; Darcy, K.M.; Hamilton, C.A.; et al. Biomarker panel for early detection of endometrial cancer in the Prostate, Lung, Colorectal, and Ovarian cancer screening trial. Am. J. Obstet. Gynecol. 2019, 221, 472.e1–472.e10. [Google Scholar] [CrossRef]
- Ura, B.; Biffi, S.; Monasta, L.; Arrigoni, G.; Battisti, I.; Di Lorenzo, G.; Romano, F.; Aloisio, M.; Celsi, F.; Addobbati, R.; et al. Two Dimensional-Difference in Gel Electrophoresis (2D-DIGE) Proteomic Approach for the Identification of Biomarkers in Endometrial Cancer Serum. Cancers 2021, 13, 3639. [Google Scholar] [CrossRef]
- Ura, B.; Capaci, V.; Aloisio, M.; Di Lorenzo, G.; Romano, F.; Ricci, G.; Monasta, L. A Targeted Proteomics Approach for Screening Serum Biomarkers Observed in the Early Stage of Type I Endometrial Cancer. Biomedicines 2022, 10, 1857. [Google Scholar] [CrossRef] [PubMed]
- Celsi, F.; Monasta, L.; Arrigoni, G.; Battisti, I.; Licastro, D.; Aloisio, M.; Di Lorenzo, G.; Romano, F.; Ricci, G.; Ura, B. Gel-Based Proteomic Identification of Suprabasin as a Potential New Candidate Biomarker in Endometrial Cancer. Int. J. Mol. Sci. 2022, 23, 2076. [Google Scholar] [CrossRef]
- Mujammami, M.; Rafiullah, M.; Akkour, K.; Alfadda, A.A.; Masood, A.; Joy, S.S.; Alhalal, H.; Arafah, M.; Alshehri, E.; Alanazi, I.O.; et al. Plasma Proteomic Signature of Endometrial Cancer in Patients with Diabetes. ACS Omega 2024, 9, 4721–4732. [Google Scholar] [CrossRef]
- Strand, E.; Tangen, I.L.; Fasmer, K.E.; Jacob, H.; Halle, M.K.; Hoivik, E.A.; Delvoux, B.; Trovik, J.; Haldorsen, I.S.; Romano, A.; et al. Blood Metabolites Associate with Prognosis in Endometrial Cancer. Metabolites 2019, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Troisi, J.; Raffone, A.; Travaglino, A.; Belli, G.; Belli, C.; Anand, S.; Giugliano, L.; Cavallo, P.; Scala, G.; Symes, S.; et al. Development and Validation of a Serum Metabolomic Signature for Endometrial Cancer Screening in Postmenopausal Women. JAMA Netw. Open 2020, 3, e2018327. [Google Scholar] [CrossRef] [PubMed]
- Forsse, D.; Tangen, I.L.; Fasmer, K.E.; Halle, M.K.; Viste, K.; Almås, B.; Bertelsen, B.E.; Trovik, J.; Haldorsen, I.S.; Krakstad, C. Blood steroid levels predict survival in endometrial cancer and reflect tumor estrogen signaling. Gynecol. Oncol. 2020, 156, 400–406. [Google Scholar] [CrossRef]
- Kozar, N.; Kruusmaa, K.; Dovnik, A.; Bitenc, M.; Argamasilla, R.; Adsuar, A.; Goswami, N.; Takač, I.; Arko, D. Identification of novel diagnostic biomarkers in endometrial cancer using targeted metabolomic profiling. Adv. Med. Sci. 2021, 66, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Njoku, K.; Campbell, A.E.; Geary, B.; MacKintosh, M.L.; Derbyshire, A.E.; Kitson, S.J.; Sivalingam, V.N.; Pierce, A.; Whetton, A.D.; Crosbie, E.J. Metabolomic Biomarkers for the Detection of Obesity-Driven Endometrial Cancer. Cancers 2021, 13, 718. [Google Scholar] [CrossRef]
- Dossus, L.; Kouloura, E.; Biessy, C.; Viallon, V.; Siskos, A.P.; Dimou, N.; Rinaldi, S.; Merritt, M.A.; Allen, N.; Fortner, R.; et al. Prospective analysis of circulating metabolites and endometrial cancer risk. Gynecol. Oncol. 2021, 162, 475–481. [Google Scholar] [CrossRef]
- Trabert, B.; Geczik, A.M.; Bauer, D.C.; Buist, D.S.M.; Cauley, J.A.; Falk, R.T.; Gierach, G.L.; Hue, T.F.; Lacey, J.V., Jr.; LaCroix, A.Z.; et al. Association of Endogenous Pregnenolone, Progesterone, and Related Metabolites with Risk of Endometrial and Ovarian Cancers in Postmenopausal Women: The B∼FIT Cohort. Cancer Epidemiol. Biomark. Prev. 2021, 30, 2030–2037. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, W.; Wei, J.; Yao, Y.; Sun, G.; Wang, L.; Zhang, W.; Chen, S.; Zhou, W.; Zhao, H.; et al. A serum lipidomics study for the identification of specific biomarkers for endometrial polyps to distinguish them from endometrial cancer or hyperplasia. Int. J. Cancer 2022, 150, 1549–1559. [Google Scholar] [CrossRef]
- Roškar, L.; Pušić, M.; Roškar, I.; Kokol, M.; Pirš, B.; Smrkolj, Š.; Rižner, T.L. Models including preoperative plasma levels of angiogenic factors, leptin and IL-8 as potential biomarkers of endometrial cancer. Front. Oncol. 2022, 12, 972131. [Google Scholar] [CrossRef]
- Breeur, M.; Ferrari, P.; Dossus, L.; Jenab, M.; Johansson, M.; Rinaldi, S.; Travis, R.C.; His, M.; Key, T.J.; Schmidt, J.A.; et al. Pan-cancer analysis of pre-diagnostic blood metabolite concentrations in the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2022, 20, 351. [Google Scholar] [CrossRef]
- Cheng, F.; Fan, W.; Gui, L.; Liu, Y.; Ling, Y.; Huang, R.; Wen, Z.; Chen, Y. Serum lipidomic profiling by UHPLC-MS/MS may be able to detect early-stage endometrial cancer. Anal. Bioanal. Chem. 2023, 415, 1841–1854. [Google Scholar] [CrossRef]
- Dahmani, C.; Caron, P.; Simonyan, D.; Turcotte, V.; Grégoire, J.; Plante, M.; Guillemette, C. Circulating adrenal 11-oxygenated androgens are associated with clinical outcome in endometrial cancer. Front. Endocrinol. 2023, 14, 1156680. [Google Scholar] [CrossRef]
- Hishinuma, E.; Shimada, M.; Matsukawa, N.; Shima, Y.; Li, B.; Motoike, I.N.; Shibuya, Y.; Hagihara, T.; Shigeta, S.; Tokunaga, H.; et al. Identification of predictive biomarkers for endometrial cancer diagnosis and treatment response monitoring using plasma metabolome profiling. Cancer Metab. 2023, 11, 16. [Google Scholar] [CrossRef]
- Benabdelkamel, H.; Jaber, M.A.; Akkour, K.; AlMalki, R.H.; Alfadda, A.A.; Masood, A.; Joy, S.S.; Alhalal, H.; Alwehaibi, M.A.; Arafah, M.; et al. Metabolomic Profiling of Blood Plasma in Females with Hyperplasia and Endometrial Cancer. Metabolites 2024, 14, 109. [Google Scholar] [CrossRef]
- Hao, C.; Lin, S.; Liu, P.; Liang, W.; Li, Z.; Li, Y. Potential serum metabolites and long-chain noncoding RNA biomarkers for endometrial cancer tissue. J. Obs. Gynaecol. Res. 2023, 49, 725–743. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tian, Y.; Ding, J.; Chen, Z.; Zhao, R.; Lu, Y.; Li, L.; Zhang, H.; Wu, H.; Li, X.; et al. Unravelling the molecular landscape of endometrial cancer subtypes: Insights from multi-omics analysis. Int. J. Surg. 2024, 110, 5385–5395. [Google Scholar] [CrossRef]
- Ding, H.; Wang, J.; Zhao, X.; Xiu, S.; Cai, H.; Ma, J.; Fu, L.; Zhou, J.; Shen, F.; Zhang, H.; et al. Combination of circulating tumor cells, lncRNAs and DNA methylation for the diagnosis of endometrial carcinoma. Oncol. Lett. 2024, 28, 545. [Google Scholar] [CrossRef] [PubMed]
- Troisi, J.; Mollo, A.; Lombardi, M.; Scala, G.; Richards, S.M.; Symes, S.J.K.; Travaglino, A.; Neola, D.; de Laurentiis, U.; Insabato, L.; et al. The Metabolomic Approach for the Screening of Endometrial Cancer: Validation from a Large Cohort of Women Scheduled for Gynecological Surgery. Biomolecules 2022, 12, 1229. [Google Scholar] [CrossRef]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Costas, L.; Frias-Gomez, J.; Guardiola, M.; Benavente, Y.; Pineda, M.; Pavón, M.; Martínez, J.M.; Climent, M.; Barahona, M.; Canet, J.; et al. New perspectives on screening and early detection of endometrial cancer. Int. J. Cancer 2019, 145, 3194–3206. [Google Scholar] [CrossRef]
- Kacírová, M.; Bober, P.; Alexovič, M.; Tomková, Z.; Tkáčiková, S.; Talian, I.; Mederová, L.; Bérešová, D.; Tóth, R.; Andrašina, I.; et al. Differential Urinary Proteomic Analysis of Endometrial Cancer. Physiol. Res. 2019, 68, S483–S490. [Google Scholar] [CrossRef]
- Ritter, A.; Hirschfeld, M.; Berner, K.; Jaeger, M.; Grundner-Culemann, F.; Schlosser, P.; Asberger, J.; Weiss, D.; Noethling, C.; Mayer, S.; et al. Discovery of potential serum and urine-based microRNA as minimally-invasive biomarkers for breast and gynecological cancer. Cancer Biomark. 2020, 27, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Costas, L.; Onieva, I.; Pelegrina, B.; Marin, F.; Carmona, Á.; López-Querol, M.; Frias-Gomez, J.; Peremiquel-Trillas, P.; Martínez, J.M.; Dorca, E.; et al. Evaluation of Somatic Mutations in Urine Samples as a Noninvasive Method for the Detection and Molecular Classification of Endometrial Cancer. Clin. Cancer Res. 2023, 29, 3681–3690. [Google Scholar] [CrossRef] [PubMed]
- Njoku, K.; Pierce, A.; Geary, B.; Campbell, A.E.; Kelsall, J.; Reed, R.; Armit, A.; Da Sylva, R.; Zhang, L.; Agnew, H.; et al. Quantitative SWATH-based proteomic profiling of urine for the identification of endometrial cancer biomarkers in symptomatic women. Br. J. Cancer 2023, 128, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, J.; Cao, D. Urine metabolomics for assessing fertility-sparing treatment efficacy in endometrial cancer: A non-invasive approach using ultra-performance liquid chromatography mass spectrometry. BMC Womens Health 2023, 23, 583. [Google Scholar] [CrossRef]
- Chen, J.; Lu, H.; Cao, D.; Sun, J.; Qi, F.; Liu, X.; Liu, J.; Yang, J.; Yu, M.; Zhou, H.; et al. Urine and serum metabolomic analysis of endometrial cancer diagnosis and classification based on ultra-performance liquid chromatography mass spectrometry. Metabolomics 2024, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wang, C.; Wu, Z.; Zhang, X.; Liu, Y.; Wang, X.; Liu, F.; Chen, Y.; Zhang, Y.; Zhao, H.; et al. Discovery of the potential biomarkers for early diagnosis of endometrial cancer via integrating metabolomics and transcriptomics. Comput. Biol. Med. 2024, 173, 108327. [Google Scholar] [CrossRef]
- Casas-Arozamena, C.; Díaz, E.; Moiola, C.P.; Alonso-Alconada, L.; Ferreirós, A.; Abalo, A.; Gil, C.L.; Oltra, S.S.; de Santiago, J.; Cabrera, S.; et al. Genomic Profiling of Uterine Aspirates and cfDNA as an Integrative Liquid Biopsy Strategy in Endometrial Cancer. J. Clin. Med. 2020, 9, 585. [Google Scholar] [CrossRef]
- Casas-Arozamena, C.; Moiola, C.P.; Vilar, A.; Bouso, M.; Cueva, J.; Cabrera, S.; Sampayo, V.; Arias, E.; Abalo, A.; García, Á.; et al. Noninvasive detection of microsatellite instability in patients with endometrial cancer. Int. J. Cancer 2023, 152, 2206–2217. [Google Scholar] [CrossRef]
- Yang, J.; Barkley, J.E.; Bhattarai, B.; Firouzi, K.; Monk, B.J.; Coonrod, D.V.; Zenhausern, F. Identification of Endometrial Cancer-Specific microRNA Biomarkers in Endometrial Fluid. Int. J. Mol. Sci. 2023, 24, 8683. [Google Scholar] [CrossRef]
- Cheng, S.C.; Chen, K.; Chiu, C.Y.; Lu, K.Y.; Lu, H.Y.; Chiang, M.H.; Tsai, C.K.; Lo, C.J.; Cheng, M.L.; Chang, T.C.; et al. Metabolomic biomarkers in cervicovaginal fluid for detecting endometrial cancer through nuclear magnetic resonance spectroscopy. Metabolomics 2019, 15, 146. [Google Scholar] [CrossRef] [PubMed]
- O’Flynn, H.; Ryan, N.A.J.; Narine, N.; Shelton, D.; Rana, D.; Crosbie, E.J. Diagnostic accuracy of cytology for the detection of endometrial cancer in urine and vaginal samples. Nat. Commun. 2021, 12, 952. [Google Scholar] [CrossRef]
- Łaniewski, P.; Cui, H.; Mahnert, N.D.; Mourad, J.; Borst, M.P.; Willmott, L.; Chase, D.M.; Roe, D.J.; Herbst-Kralovetz, M.M. Protein biomarkers in cervicovaginal lavages for detection of endometrial cancer. Biomark. Res. 2022, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Yi, R.; Xie, L.; Wang, X.; Shen, C.; Chen, X.; Qiao, L. Multi-Omic Profiling of Multi-Biosamples Reveals the Role of Amino Acid and Nucleotide Metabolism in Endometrial Cancer. Front. Oncol. 2022, 12, 861142. [Google Scholar] [CrossRef]
- Pelegrina, B.; Paytubi, S.; Marin, F.; Martínez, J.M.; Carmona, Á.; Frias-Gomez, J.; Peremiquel-Trillas, P.; Dorca, E.; Zanca, A.; López-Querol, M.; et al. Evaluation of somatic mutations in cervicovaginal samples as a non-invasive method for the detection and molecular classification of endometrial cancer. EBioMedicine 2023, 94, 104716. [Google Scholar] [CrossRef]
- Evans, I.; Reisel, D.; Jones, A.; Bajrami, A.; Nijjar, S.; Solangon, S.A.; Arora, R.; Redl, E.; Schreiberhuber, L.; Ishaq-Parveen, I.; et al. Performance of the WID-qEC test versus sonography to detect uterine cancers in women with abnormal uterine bleeding (EPI-SURE): A prospective, consecutive observational cohort study in the UK. Lancet Oncol. 2023, 24, 1375–1386. [Google Scholar] [CrossRef]
- Martinez-Garcia, E.; Coll-de la Rubia, E.; Lesur, A.; Dittmar, G.; Gil-Moreno, A.; Cabrera, S.; Colas, E. Cervical Fluids Are a Source of Protein Biomarkers for Early, Non-Invasive Endometrial Cancer Diagnosis. Cancers 2023, 15, 911. [Google Scholar] [CrossRef]
- Illah, O.; Scott, M.; Redl, E.; Barrett, J.E.; Schreiberhuber, L.; Herzog, C.; Vavourakis, C.D.; Jones, A.; Evans, I.; Reisel, D.; et al. High performance of the DNA methylation-based WID-qEC test for detecting uterine cancers independent of sampling modalities. Int. J. Cancer 2024, 155, 800–806. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, Y.; Fu, Y.; Lv, W.; Xu, D. DNA methylation detection is a significant biomarker for screening endometrial cancer in premenopausal women with abnormal uterine bleeding. Int. J. Gynecol. Cancer 2024, 34, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Du, J.; Wang, Y.; Liu, Z.; Wang, Y.; Li, L.; Liu, P.; Wang, L.; Liu, Q.; Meng, Z. The endometrial cancer detection using non-invasive hypermethylation of CDO1 and CELF4 genes in women with postmenopausal bleeding in Northwest China. Cytojournal 2024, 21, 15. [Google Scholar] [CrossRef] [PubMed]
- Njoku, K.; Pierce, A.; Chiasserini, D.; Geary, B.; Campbell, A.E.; Kelsall, J.; Reed, R.; Geifman, N.; Whetton, A.D.; Crosbie, E.J. Detection of endometrial cancer in cervico-vaginal fluid and blood plasma: Leveraging proteomics and machine learning for biomarker discovery. EBioMedicine 2024, 102, 105064. [Google Scholar] [CrossRef]
- Harris, H.J.; Łaniewski, P.; Cui, H.; Roe, D.J.; Chase, D.M.; Herbst-Kralovetz, M.M. Cervicovaginal lavages uncover growth factors as key biomarkers for early diagnosis and prognosis of endometrial cancer. Mol. Biomed. 2024, 5, 55. [Google Scholar] [CrossRef] [PubMed]
- Lorentzen, G.M.; Laniewski, P.; Cui, H.; Mahnert, N.D.; Mourad, J.; Borst, M.P.; Willmott, L.; Chase, D.M.; Roe, D.J.; Herbst-Kralovetz, M.M. Cervicovaginal metabolome and tumor characteristics for endometrial cancer detection and risk stratification. Clin. Cancer Res. 2024, 30, 3073–3087. [Google Scholar] [CrossRef]
- Bakkum-Gamez, J.N.; Sherman, M.E.; Slettedahl, S.W.; Mahoney, D.W.; Lemens, M.A.; Laughlin-Tommaso, S.K.; Hopkins, M.R.; VanOosten, A.; Shridhar, V.; Staub, J.K.; et al. Detection of endometrial cancer using tampon-based collection and methylated DNA markers. Gynecol. Oncol. 2023, 174, 11–20. [Google Scholar] [CrossRef]
- Kim, N.; Kim, Y.N.; Lee, K.; Park, E.; Lee, Y.J.; Hwang, S.Y.; Park, J.; Choi, Z.; Kim, S.W.; Kim, S.; et al. Feasibility and clinical applicability of genomic profiling based on cervical smear samples in patients with endometrial cancer. Front. Oncol. 2022, 12, 942735. [Google Scholar] [CrossRef]
- Wen, K.C.; Huang, R.L.; Chen, L.Y.; Wu, T.I.; Lu, C.H.; Chu, T.Y.; Ou, Y.C.; Wu, C.H.; Hsu, S.T.; Ding, D.C.; et al. Endometrial Cancer Detection Using a Cervical DNA Methylation Assay (MPap) in Women with Abnormal Uterine Bleeding: A Multicenter Hospital-Based Validation Study. Cancers 2022, 14, 4343. [Google Scholar] [CrossRef]
- Herzog, C.; Marín, F.; Jones, A.; Evans, I.; Reisel, D.; Redl, E.; Schreiberhuber, L.; Paytubi, S.; Pelegrina, B.; Carmona, Á.; et al. A Simple Cervicovaginal Epigenetic Test for Screening and Rapid Triage of Women with Suspected Endometrial Cancer: Validation in Several Cohort and Case/Control Sets. J. Clin. Oncol. 2022, 40, 3828–3838. [Google Scholar] [CrossRef]
- Wever, B.M.M.; van den Helder, R.; van Splunter, A.P.; van Gent, M.; Kasius, J.C.; Trum, J.W.; Verhoeve, H.R.; van Baal, W.M.; Hulbert, A.; Verhoef, L.; et al. DNA methylation testing for endometrial cancer detection in urine, cervicovaginal self-samples and cervical scrapes. Int. J. Cancer 2023, 153, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Du, C.Y.; Li, M.; Wen, B.; Shen, Q.J.; Ma, F.; Zhang, L.; Deng, H. Endometrial Cancer Detection by DNA Methylation Analysis in Cervical Papanicolaou Brush Samples. Technol. Cancer Res. Treat. 2024, 23, 15330338241242637. [Google Scholar] [CrossRef]
- Mayo-de-Las-Casas, C.; Velasco, A.; Sanchez, D.; Martínez-Bueno, A.; Garzón-Ibáñez, M.; Gatius, S.; Ruiz-Miró, M.; Gonzalez-Tallada, X.; Llordella, I.; Tresserra, F.; et al. Detection of somatic mutations in peritoneal lavages and plasma of endometrial cancer patients: A proof-of-concept study. Int. J. Cancer 2020, 147, 277–284. [Google Scholar] [CrossRef]
- Ayyagari, V.N.; Li, M.; Diaz-Sylvester, P.; Groesch, K.; Wilson, T.; Pasman, Z.; Shah, E.M.; Braundmeier-Fleming, A.; Brard, L. Evaluation of sterol-o-acyl transferase 1 and cholesterol ester levels in plasma, peritoneal fluid and tumor tissue of patients with endometrial cancer: A pilot study. Oncol. Lett. 2023, 25, 231. [Google Scholar] [CrossRef]
- Njoku, K.; Chiasserini, D.; Jones, E.R.; Barr, C.E.; O’Flynn, H.; Whetton, A.D.; Crosbie, E.J. Urinary Biomarkers and Their Potential for the Non-Invasive Detection of Endometrial Cancer. Front. Oncol. 2020, 10, 559016. [Google Scholar] [CrossRef]
- Maritschnegg, E.; Wang, Y.; Pecha, N.; Horvat, R.; Van Nieuwenhuysen, E.; Vergote, I.; Heitz, F.; Sehouli, J.; Kinde, I.; Diaz, L.A.; et al. Lavage of the Uterine Cavity for Molecular Detection of Müllerian Duct Carcinomas: A Proof-of-Concept Study. J. Clin. Oncol. 2015, 33, 4293–4300. [Google Scholar] [CrossRef] [PubMed]
- Nair, N.; Camacho-Vanegas, O.; Rykunov, D.; Dashkoff, M.; Camacho, S.C.; Schumacher, C.A.; Irish, J.C.; Harkins, T.T.; Freeman, E.; Garcia, I.; et al. Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study. PLoS Med. 2016, 13, e1002206. [Google Scholar] [CrossRef] [PubMed]
- Bagaria, M.; Shields, E.; Bakkum-Gamez, J.N. Novel approaches to early detection of endometrial cancer. Curr. Opin. Obs. Gynecol. 2017, 29, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Fiegl, H.; Gattringer, C.; Widschwendter, A.; Schneitter, A.; Ramoni, A.; Sarlay, D.; Gaugg, I.; Goebel, G.; Müller, H.M.; Mueller-Holzner, E.; et al. Methylated DNA collected by tampons—A new tool to detect endometrial cancer. Cancer Epidemiol. Biomark. Prev. 2004, 13, 882–888. [Google Scholar] [CrossRef]
- Bakkum-Gamez, J.N.; Wentzensen, N.; Maurer, M.J.; Hawthorne, K.M.; Voss, J.S.; Kroneman, T.N.; Famuyide, A.O.; Clayton, A.C.; Halling, K.C.; Kerr, S.E.; et al. Detection of endometrial cancer via molecular analysis of DNA collected with vaginal tampons. Gynecol. Oncol. 2015, 137, 14–22. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, C.; Zhou, S. Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology. Semin. Cancer Biol. 2023, 96, 82–99. [Google Scholar] [CrossRef]
- Rafanan, J.; Ghani, N.; Kazemeini, S.; Nadeem-Tariq, A.; Shih, R.; Vida, T.A. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. Int. J. Mol. Sci. 2025, 26, 917. [Google Scholar] [CrossRef]
- Thalambedu, N.; Balla, M.; Sivasubramanian, B.P.; Sadaram, P.; Malla, K.P.; Vasipalli, K.P.; Kakadia, S. Integrating artificial intelligence with circulating tumor DNA for non-small cell lung cancer: Opportunities, challenges, and future directions. Front. Med. 2025, 12, 1612376. [Google Scholar] [CrossRef]
- Tsui, W.H.A.; Ding, S.C.; Jiang, P.; Lo, Y.M.D. Artificial intelligence and machine learning in cell-free-DNA-based diagnostics. Genome Res. 2025, 35, 1–19. [Google Scholar] [CrossRef]
- Price, W.N., II; Cohen, I.G. Privacy in the age of medical big data. Nat. Med. 2019, 25, 37–43. [Google Scholar] [CrossRef]
- Van’t Erve, I.; Medina, J.E.; Leal, A.; Papp, E.; Phallen, J.; Adleff, V.; Chiao, E.J.; Arun, A.S.; Bolhuis, K.; Simmons, J.K.; et al. Metastatic Colorectal Cancer Treatment Response Evaluation by Ultra-Deep Sequencing of Cell-Free DNA and Matched White Blood Cells. Clin. Cancer Res. 2023, 29, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Malorni, L.; Bianchini, G.; Caputo, R.; Zambelli, A.; Puglisi, F.; Bianchi, G.V.; Del Mastro, L.; Paris, I.; Montemurro, F.; Allegrini, G.; et al. Serum thymidine kinase activity in patients with HR-positive/HER2-negative advanced breast cancer treated with ribociclib plus letrozole: Results from the prospective BioItaLEE trial. Eur. J. Cancer 2023, 186, 1–11. [Google Scholar] [CrossRef]
- Leal, T.; Kotecha, R.; Ramlau, R.; Zhang, L.; Milanowski, J.; Cobo, M.; Roubec, J.; Petruzelka, L.; Havel, L.; Kalmadi, S.; et al. Tumor Treating Fields therapy with standard systemic therapy versus standard systemic therapy alone in metastatic non-small-cell lung cancer following progression on or after platinum-based therapy (LUNAR): A randomised, open-label, pivotal phase 3 study. Lancet Oncol. 2023, 24, 1002–1017. [Google Scholar] [CrossRef] [PubMed]
- Hedayat, S.; Cascione, L.; Cunningham, D.; Schirripa, M.; Lampis, A.; Hahne, J.C.; Tunariu, N.; Hong, S.P.; Marchetti, S.; Khan, K.; et al. Circulating microRNA Analysis in a Prospective Co-clinical Trial Identifies MIR652–3p as a Response Biomarker and Driver of Regorafenib Resistance Mechanisms in Colorectal Cancer. Clin. Cancer Res. 2024, 30, 2140–2159. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.; Camacho-Vanegas, O.; Anand, S.; Sebra, R.; Catalina Camacho, S.; Garnar-Wortzel, L.; Nair, N.; Moshier, E.; Wooten, M.; Uzilov, A.; et al. Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival in Gynecologic Cancers. PLoS ONE 2015, 10, e0145754. [Google Scholar] [CrossRef]
- Dameri, M.; Cirmena, G.; Ravera, F.; Ferrando, L.; Cuccarolo, P.; Stabile, M.; Fanelli, G.N.; Nuzzo, P.V.; Calabrese, M.; Tagliafico, A.; et al. Standard Operating Procedures (SOPs) for non-invasive multiple biomarkers detection in an academic setting: A critical review of the literature for the RENOVATE study protocol. Crit. Rev. Oncol. Hematol. 2023, 185, 103963. [Google Scholar] [CrossRef]
- Goodsaid, F.M. The Labyrinth of Product Development and Regulatory Approvals in Liquid Biopsy Diagnostics. Clin. Transl. Sci. 2019, 12, 431–439. [Google Scholar] [CrossRef]
- Zheng, W. Molecular Classification of Endometrial Cancer and the 2023 FIGO Staging: Exploring the Challenges and Opportunities for Pathologists. Cancers 2023, 15, 4101. [Google Scholar] [CrossRef] [PubMed]
Biomarkers | Detection Method | No. of Participants (EC/Control) | Clinical Significance/Findings/Accuracy | Author and Year | |
---|---|---|---|---|---|
CTCs | |||||
TOPO48 AAb, Survivin-expressing CCC | ELISA, RT-PCR–ELISA | 80/80 | The combination of TOPO48 AAb and survivin-expressing CCC improves early diagnosis (93.3% sensitivity) and prognostic stratification (survival outcomes) in early-stage EC. AUC: 0.927 (0.871–0.984) for combined biomarkers; Sensitivity: 74.5% (TOPO48 AAb); specificity: 100% (TOPO48 AAb) | Jiang et al., 2019 [100] | |
ANXA2 | qPCR and high-throughput screening | 57 EC | ANXA2 expression in CTCs predicts EC recurrence and progression. Daunorubicin was identified as inhibiting ANXA2+ tumor cells. | Herrero et al., 2021 [101] | |
ER | CellSearch® System | 10 Stage I–II EC | CTCs were detected in ovarian vein samples (8/10 patients) during surgery but not in peripheral blood samples. The potential prognostic value for recurrence risk requires validation in a larger cohort. | Francini et al., 2023 [102] | |
Pan-CK, GATA3, HER2, HE4, CD13 | V-BioChip microfluidic device | 8 EC/9 other cancers | EC patients had preoperative expressions of all four markers. CD13 was identified as an alternative prognostic marker for both cervical and CE. | Law et al., 2023 [103] | |
cfDNA or ctDNA | |||||
PTEN, KRAS, CTNNB1, PIK3CA | NGS | 48 EC | Mutations in plasma were significantly associated with advanced stage, deep myometrial invasion, lymphatic/vascular invasion, and larger tumor size. | Bolivar et al., 2019 [104] | |
CfDNA, RTL | qRT-PCR | 40/31 | cfDNA RTL analysis may be a diagnostic tool for EC detection at an early stage, while its diagnostic performance seems unsatisfactory for cancer progression, staging, and grading. AUC (95% CI): 0.87 (0.79–0.95); sensitivity (95% CI): 80.0% (64.35–90.95%); specificity (95% CI): 80.65% (62.53–92.55%) | Benati et al., 2020 [105] | |
Low-molecular-weight cfDNA | Fluorometric quantification | 91/22 | The concentration of LMW cfDNA was significantly higher in women with uterine cancer and associated with advanced stage, aggressive histology, and worse OS. | Gressel et al., 2020 [106] | |
PIK3CA, KRAS | ddPCR | 199 EC | ctDNA detection in pre-operative plasma was linked to advanced FIGO stage, aggressive histology, LVSI, and shorter RFS and OS. | Shintani et al., 2020 [107] | |
TEPs RNA, ctDNA | RNA-Seq and DNA sequencing | 53 EC, 38 benign gynecologic conditions, 204 healthy | ctDNA and TEPs presented the potential for EC diagnosis and tumor histology evaluation preoperatively. TEPs AUC: 97.5% (vs. healthy), 84.1% (vs. benign); ctDNA AUC: 96% (tumor tissue); 69.8% (blood). CtDNA sensitivity: 77.8%; CtDNA specificity: 58% | Łukasiewicz et al., 2021 [14] | |
PTEN, TP53, FAT4, ARID1A, ZFHX3, ATM, FBXW7 | ddPCR | 9 EC | Post-operative ctDN A detection predicted tumor relapse. DFS was shorter for ctDNA-positive cases. AUC: N/A; sensitivity: 100%; specificity: 83.3 | Feng et al., 2021 [108] | |
Tumor-specific DNA junctions | qPCR | 11 EC | Pre-surgical ctDNA was detected in 60% (6/10) and correlated with advanced stage and aggressive disease features. Post-surgical ctDNA detected in 27% (3/11), 2/3 experienced recurrence. | Grassi et al., 2021 [109] | |
ZSCAN12, OXT | Methylation-specific ddPCR | Retrospective: 108 tumor tissues; prospective: 33/55 | ZSCAN12 and OXT methylation in plasma offered high specificity and sensitivity for EC prediction. AUC: 0.99; sensitivity: 98%; specificity: 97% | Beinse et al., 2022 [110] | |
DNMT3A, TET2, and others | NGS | 21 EC | A poorer prognosis may be correlated with mutations related to ARCH (DNMT3A and TET2). | Kodada et al., 2023 [111] | |
129 genes with molecular barcoding | NGS | 44 EC | Presence of ctDNA at baseline or post-surgery was significantly associated with reduced PFS. Correlation with disease stage, progression, and treatment response. | Ashley et al., 2023 [112] | |
16 somatic single nucleotide variants (SNVs) | mPCR-NGS | 101 Stage I uterine malignancies (88% EC) | Post-surgical ctDNA detection is prognostic of poor RFSin patients with Stage I EC. | Recio et al., 2024 [113] | |
TP53, DNMT3A, PIK3CA, PTEN, ERBB2, CTNNB1, PPP2R1A | NGS | 61 EC | cfDNA sequencing in advanced EC provided 90% informative results and 87.5% accuracy in molecular subclassification. | Blanc-Durand et al., 2024 [114] | |
TP53, PIK3CA, PTEN, ARID1A, KRAS, CCNE1, ERBB2, FBXW7 | Hybrid-capture NGS for SNVs, indels, CNVs, fusions, MSI, bTMB | 1988 advanced/recurrent EC | TP53 mutations associated with worse OS. | Pina et al., 2024 [115] | |
PTEN, PIK3CA, TP53, ARID1A, KRAS, CTNNB1, PIK3R1, FBXW7, PPP2R1A, FGFR2 | ddPCR, targeted sequencing, qubit fluorometry | 198 EC | High pre-surgery cfDNA and detectable ctDNA correlate with poor DFS and DSS. | Casas-Arozamena et al., 2024 [116] | |
TP53, PIK3CA, PTEN, KRAS, CTNNB1, AKT1, BRAF, ERBB2 | NGS | 24 EC, 17 OC, 2 synchronous endometrial/ovarian carcinomas, 1 endocervical adenocarcinoma | Preoperative ctDNA detection was associated with advanced stage, elevated CA125, and recurrence. | Jamieson et al., 2025 [117] | |
cfRNA or ctRNA | |||||
lncRNA DLEU1 | RT-qPCR | 128/50 endometrial hyperplasia/50 controls | Higher lncRNA DLEU1 levels were associated with advanced clinicopathological features and worse overall and DFS in EC patients. AUC (95% CI): [EC vs. controls: 0.883 (0.826–0.926), EC vs. hyperplasia: 0.766 (0.697–0.826)]; sensitivity: [EC vs. controls: 77.3%, EC vs. hyperplasia: 60.9%]; specificity: [EC vs. controls: 92.0%, EC vs. hyperplasia: 90.0%] | Shan et al., 2020 [118] | |
miR-20b-5p, miR-143-3p, miR-195-5p, miR-204-5p, miR-423-3p, miR-484 | qRT-PCR | 92/102 | The 6-miRNA signature demonstrated very consistent diagnostic performance in three datasets across cohorts. AUC: [training: 0.748, testing: 0.833, external validation: 0.967]; sensitivity: [training: 78.4%, testing: 77.1%, external validation: 83.3%]; specificity: [training: 63.0%, testing: 66.7%, external validation: 100%] | Fan et al., 2021 [119] | |
miR-204-5p | RT-qPCR | 52/60 | Metastasis of lymph nodes was associated with downregulation of serum miR-204-5p. AUC (95% CI): 0.923 (0.847–1.000); sensitivity: 87.2%; specificity: 80% | Wu et al., 2022 [120] | |
miRNA133a-2, miRNA-21, miRNA-205 | qRT-PCR | 36/15 | These miRNAs could serve as potential prognostic biomarkers for endometrial carcinoma. | Salim et al., 2022 [121] | |
miR-16, miR-99b, miR-20a, miR-145, miR-143, miR-125a | qRT-PCR | 10/10 | miR-16, miR-99b, miR-125a, and miR-145 could serve as diagnostic indicators for endometrioid EC. AUC: 0.957 (miR-145); sensitivity: 90% (miR-145); specificity: 100% (miR-145) | Kumari et al., 2023 [122] | |
miR-155-5p, miR-200b-3p, miR-589-5p, and others | Small RNA sequencing | 316/316 | These RNAs hold potential as early biomarkers for EC, which could facilitate timely interventions. Relationships between EC and miRNAs were modified by body mass index, physical activity, and smoking status. | Rostami et al., 2024 [123] | |
EVs | |||||
LGALS3BP | TMT labelling, ELISA | 87 EC/12 AEH/42 controls | Plasma exosomal LGALS3BP levels correlated with EC progression and poor prognosis. AUC (95% CI): 0.7406 (0.6506–0.8305) | Song et al., 2020 [124] | |
miR-15a-5p, miR-106b-5p, miR-107 | ddPCR | 115/87 | Exosomal miR-15a-5p was highly predictive of the aggressiveness and p53 mutation status of EC tumors and markedly elevated in early-stage EC. AUC: 0.813 (miR-15a-5p); 0.899 miR-15a-5p combined serum tumor markers (CEA and CA125) | Zhou et al., 2021 [125] | |
APOA1, HBB, CA1, HBD, LPA, SAA4, PF4V1, APOE | LFQ-MS | 36/36 | Eight significantly upregulated proteins were identified in serum exosomes, indicating potential as early-stage EC biomarkers. AUC (95% CI): 0.98 (0.95–1) (Stage 1 EC); sensitivity: 100% (Stage 1 EC); specificity: 86.11% (Stage 1 EC) | Sommella et al., 2022 [126] | |
Proteomics | |||||
CFB, TF, CAT, PSMB6, B2M, PCDH18 | HPLC-MS/MS | 112/112 | Six proteins could distinguish EC cases from the control group, with the strongest performance ≤ 2 years pre-diagnosis. AUC (95% CI): 0.72–0.88; sensitivity: 45.2% (cutoff: 0.5); specificity: 96.4% (cutoff: 0.5) | Tarney CM et al., 2019 [127] | |
CLU, SERPINC1, ITIH4, C1RL, APOC3, DSG1 | 2D-DIGE, WB, LC-MS/MS | 15/15 | The study identified 16 proteins with diagnostic potential for EC. Validation showed upregulation of CLU, ITIH4, SERPINC1, and C1RL in EC serum and exosomes. AUC: 0.9289; sensitivity: 100%; specificity: 86.67% | Ura et al., 2021 [128] | |
Gal-1, Gal-9, MMP7, FASLG, COL9A1 | Proximity extension assay (PEA) | 44/44 | Combined proteins from the Immuno-oncology panel and the Target 96 Oncology III panel showed differential expression in early-stage Type I EC with high diagnostic accuracy AUC (95% CI): 0.969 (0.939–0.999); sensitivity: 97.67%; specificity: 83.72% | Ura et al., 2022 [129] | |
Suprabasin (SBSN) (isoforms 1 & 2) | 2D-DIGE and MS, validated by WB | Proteomic: 10/10, validation: 30/30 (serum), 30/30 (tissue) | In serum or tissue, SBSN, particularly isoform 2, may be a novel biomarker for EC. AUC: [isoform 2 (serum): 0.75, (tissue): 0.79] | Celsi et al., 2022 [130] | |
FABP-1, α-2 macroglobulin, ZAG, Ero1-α, haptoglobin, and others | 2D-DIGE, MALDI-TOF-MS | 8 diabetic EC/8 non-diabetic EC | Downregulation of FABP-1 and haptoglobin, and upregulation of ERO1-α, α-2-macroglobulin, and ZAG in EC with diabetes indicated severe disease and poor prognosis. | Mujammami et al., 2024 [131] | |
Metabolomics | |||||
183 metabolites | LC-MS | 40 EC | Metabolite patterns were associated with survival. Methionine sulfoxide elevation was linked to poor prognosis. AUC: [Model 3: 0.965 (0.913–1)] | Strand et al., 2019 [132] | |
268 serum metabolites | GC-MS | Training: 120 (50/70), validation: 1430 | The EC screening of postmenopausal women using an ensemble EML algorithm achieved an accuracy rate of > 99%. Sensitivity: 100%; specificity: 99.86% | Troisi et al., 2020 [133] | |
17-OHP, 11-DOC, A4, E1, E2 | LC-MS/MS | 100 EC | Low levels of 17-OHP, 11-DOC, and A4 were associated with aggressive EC phenotypes and poor disease-specific survival. | Forsse et al., 2020 [134] | |
Ceramides, acylcarnitines, 1-methyladenosine | HPLC-TQ/MS | 15/21 | The combined panel was identified as superior to individual biomarkers for early disease detection. AUC (95% CI): 0.925 (0.905–0.945); sensitivity: 94%; specificity: 75% | Kozar et al., 2021 [135] | |
Phospholipids, sphingolipids | MS | 67/69 | Lipid metabolites were effectively discriminated EC in women with BMI ≥ 30 kg/m2. AUC: 0.95 | Njoku et al., 2021 [136] | |
Amino acids, sphingolipids, carnitine | LC-MS/MS | 853/853 | Identified metabolites were associated with EC risk. | Dossus et al., 2021 [137] | |
Pregnenolone, progesterone, 17-hydroxypregnenolone, and others | LC-MS/MS | EC: 65/345; OC: 67/413 | 17-Hydroxypregnenolone was inversely associated with EC risk and positively associated with ovarian cancer risk. | Trabert et al., 2021 [138] | |
6-keto-PGF1α, PA (37:4), LysoPC (20:1), PS (36:0) | UPLC-Q-TOF/MS | 326/225 | Specific biomarkers for endometrial polyps were identified to distinguish them from EC or hyperplasia. AUC: [EP vs. EC: 0.915; EP vs. EH: 1.000]; sensitivity: [EP vs. EC: 100%; EP vs. EH: 100%]; specificity: [EP vs. EC: 72.41%; EP vs. EH: 100%] | Yan et al., 2022 [139] | |
Leptin, IL-8, sTie-2, follistatin, neuropilin-1, G-CSF | Luminex xMAP™ Multiplexing Technology | 91/111 | Leptin was significantly higher in EC patients, especially in Type 1 EC. IL-8 levels were elevated in Type 2 EC and poorly differentiated G3 tumors and those with vascular invasion. AUC: [training: 0.94; testing: 0.81] | Roškar et al., 2022 [140] | |
117 metabolites | LC-MS/MS, FIA-MS/MS | 1706 EC | An inverse association between EC risk and a glycine/serine metabolite cluster was found. | Breeur et al., 2022 [141] | |
Ursodeoxycholic acid, PC (O-14:0_20:4), Cer (d18:1/18:0) | UHPLC-MS/MS | Discovery: 18/20, validation: 20 EC/20 atypical endometrial hyperplasia | Lipid biomarkers differentiated early-stage EC from healthy controls and AEH patients. AUC: [discovery: 0.903; validation: 0.928]; sensitivity: [discovery: 83.3%; validation: 85%]; specificity: [discovery: 85%; validation: 85%] | Cheng et al., 2023 [142] | |
11-oxygenated androgens (11KAST, 11OHAST, etc.) | LC-MS/MS | 272 EC | Higher preoperative free 11KAST and postoperative 11OHAST levels were associated with increased risk of recurrence and poor DFS. | Dahmani et al., 2023 [143] | |
LysoPC, TGs, amino acids | UHPLC-MS/MS | 142/154 | Histidine and tryptophan levels decreased with disease progression and recurrence risk. AUC: [top 5 metabolites: 0.997 (0.986–1)] | Hishinuma et al., 2023 [144] | |
338 metabolites | LC-HRMS | 20 EC, 20 hyperplasia, 19 controls | Plasma metabolic signatures distinguished EC and hyperplasia from healthy controls. AUC: 0.821 [15 metabolic variations] | Benabdelkamel et al., 2024 [145] | |
Multi-omics | |||||
Metabolites and lncRNAs | LC-MS/MS, LncRNA sequencing | Endometrial dysplasia: 4, Stage I EC: 4, Stage III EC: 4, controls: 4 | Metabolites and lncRNAs correlated with EC progression. AUC: 2,3-pyridinedicarboxylic acid: 0.69, hematommic acid, ethyl ester: 0.69, maltitol: 0.69, 13 (S)-HODE: 0.88, D-mannitol: 0.69 | Hao et al., 2023 [146] | |
Various metabolites and proteins | GWAS and Mendelian randomization | 121,885 participants (12,906 EC) | Key metabolites and proteins influenced EC subtypes. | Shen et al., 2024 [147] | |
CTCs, lncRNAs, and DNA methylation markers | Microfluidic CTC isolation, RT-qPCR, MSP/qMSP | 71/14 | Combined biomarkers improved diagnostic accuracy for EC compared to individual biomarkers alone. AUC (95% CI): 0.94 (0.89–0.98); sensitivity (95% CI): 89% (82–94%); specificity (95% CI): 92% (85–96%) | Ding et al., 2024 [148] |
Category of Liquid Biopsy | Biomarkers | Detection Method | No. of Participants (EC/Control) | Clinical Significance/Findings/Accuracy | Author and Year |
---|---|---|---|---|---|
Proteomics | CDH1, VTN, HSPG2 | Nano HPLC-ESI-MS/MS | 5/7 | Downregulation of key proteins suggested potential urinary biomarkers for early detection of EC. | Kacírová et al., 2019 [152] |
miRNA | miR-3973; -4426; -5089-5p and -6841 | RT-qPCR | 10/30 | These biomarkers served as promising candidates for urine-based liquid biopsies in detecting EC. | Ritter et al., 2020 [153] |
cfDNA | 47-gene panel (POLE, TP53) | NGS | 19/20 | Evaluating urine for somatic mutations offered a non-invasive, accurate approach for detecting EC and molecular classification. AUC: 0.99; sensitivity (95% CI): 100.0% (82.4–100.0%); specificity (95% CI): 95.0% (75.1–99.9%) | Costas et al., 2023 [154] |
Proteomics | SPRR1B, CRNN, CALML3, TXN, FABP5, C1RL, MMP9, ECM1, S100A7, CFI | SWATH-MS with ML | 50/54 | EC patients discriminated from symptomatic controls suggested its potential as a non-invasive diagnostic tool. AUC (95% CI): 0.92 (0.86–0.97); sensitivity: 83.7%; specificity: 83.9% | Njoku et al., 2023 [155] |
Metabolomics | Baicalin, 5beta-1,3,7 (11)-eudesmatrien-8-one, indolylacryloylglycine, edulitine, physapubenolide | UPLC-MS | 42 EC (22 PT/20 CR) | The predictive biomarkers presented great potential diagnostic value in fertility-sparing treatments for EC patients. AUC: [training: 0.982, validation: 0.851]; sensitivity: [training: 97.5%, validation: 86.4%]; specificity: [training: 96.7%, validation: 90.0%] | Chen et al., 2023 [156] |
Metabolomics | ADP-mannose, docosatrienoic acid, hippuric acid | UPLC-MS | 146/59 | Combined urine–serum metabolomics effectively distinguished EC from controls, high-risk from low-risk EC, and Type I vs. II EC. AUC: [training: 0.953; validation: 0.972]; sensitivity: [training: 0.857; validation: 0.846]; specificity: [training: 0.876; validation: 0.974] | Chen et al., 2024 [157] |
Metabolomics and transcriptomics | 10 metabolites (histamine, 1-methylhistamine, methylimidazole acetaldehyde, etc.) and 3 hub genes (RRM2, TYMS, TK1) | LC-MS | 110/110 | The combination of these biomarkers demonstrated enhanced diagnostic accuracy compared to individual markers. AUC: combined: 0.90; sensitivity: combined: >0.85; specificity: combined: >0.85 | Fu et al., 2024 [158] |
Category of Liquid Biopsy | Biomarkers | Detection Method | No. of Participants (EC/Control) | Clinical Significance/Findings/Accuracy | Author and Year |
---|---|---|---|---|---|
Uterine lavage fluid/uterine aspirates | |||||
cfDNA, CTCs | PTEN, PIK3CA, TP53, CTNNB1, KRAS, etc. | NGS, ddPCR, CellSearch system | 60 EC | Genetic alterations were detected in 93% of EC through UAs. ctDNA was associated with high-risk tumors and disease progression. | Casas-Arozamena et al., 2020 [159] |
cfDNA | BAT26, BAT25, NR24, NR21, Mono27 | ddPCR | 90 EC | A high concordance (96.67%) between MSI determinations in cfDNA and the standard of care was confirmed. | Casas-Arozamena et al., 2023 [160] |
cfRNA | miR-146a-5p, miR-183-5p, miR-429 | Real-time PCR | 42/40 | miR-146a-5p, miR-183-5p, and miR-429 were significantly upregulated in EC. AUC: miR-183-5p: 0.675, miR-429: 0.709, miR-146a-5p: 0.685 | Yang et al., 2023 [161] |
Cervicovaginal fluid/cervicovaginal lavage | |||||
Metabonomics | Phosphocholine, malate, asparagine | NMR spectroscopy | 21/33 | Metabolomic biomarkers in CVF for non-invasive detection of EC were identified and validated using ML algorithms. AUC: [training: 0.88–0.92; test: 0.75–0.80]; sensitivity (95% CI): forests: 0.75 (0.19–0.99); specificity (95% CI): forests: 0.80 (0.28–1.00) | Cheng et al., 2019 [162] |
Cytology | Malignant endometrial cells | Cytological analysis | 103/113 | Vaginal cytology demonstrated higher sensitivity (90.2%) compared to urine cytology (72.0%) but lower specificity. Sensitivity: [vaginal: 90.2%, urine: 72.0%, combined: 91.7%]; specificity: [vaginal: 88.7%, urine: 94.9%, combined: 88.8%] | O’Flynn et al., 2021 [163] |
Proteomics | 72 proteins (TIM-3, VEGF, TGF-α, IL-10, CA19–9, CA125, etc.) | Multiplex immunoassays | 66/126 | Identified lavage proteins could discriminate EC from benign conditions. AUC (95% CI): combined: 0.91 (0.78–0.97) Sensitivity: 86.1% (combined); specificity: 87.9% (combined) | Łaniewski et al., 2022 [164] |
Metabolomics and proteomics | Amino acid and nucleotide metabolism biomarkers | LC-MS/MS | 44/43 | Urine/intrauterine brushing metabolites correlate with tissue pathways (amino acid/nucleotide metabolism). AUC: 0.808 (urine) 0.847 (intrauterine brushing); Sensitivity: urine: 74.7% (top 5 metabolites) | Yi et al., 2022 [165] |
Somatic mutations | 47 genes panel (POLE, TP53, PTEN, etc.) | NGS | 139/107 | POLE mutations indicated excellent prognosis; TP53 mutations were associated with significant DFS differences among molecular subtypes. AUC: 0.83 (self-collected); sensitivity: 73% (clinician and self-collected); specificity: [80% (clinician-collected), 90% (self-collected)] | Pelegrina et al., 2023 [166] |
DNA methylation | ZSCAN12, GYPC | WID-qEC | 12/375 | WID-qEC test demonstrated superior diagnostic accuracy compared to transvaginal ultrasound in detecting uterine cancers. AUC (95% CI): 0.943 (0.847–1.000); sensitivity (95% CI):90.9% (62.3–98.4); specificity (95% CI): 92.1% (88.9–94.4) | Evans et al., 2023 [167] |
Proteomics | SERPINH1, VIM, TAGLN, PPIA, CSE1L, CTNNB1 | MS | 22/19 | Six protein biomarkers in cervical fluids were identified to distinguish women with abnormal uterine bleeding who are EC and those who are non-EC. AUC: [UF: > 0.71, LDHA, ENO1, PKM: > 0.9; M1: up to 0.83 (SERPINH1); M3: up to 0.84 (TAGLN)]; sensitivity: [M1: up to 83%; M3: up to 89%]; specificity: [M1: up to 81%; M3: up to 78%] | Martinez-Garcia et al., 2023 [168] |
DNA methylation | ZSCAN12, GYPC | WID-qEC | 28/74 | The WID-qEC test reliably detected uterine cancers (endometrial and cervical) across sampling devices and collection methods (gyn. vs. patient self-sampling). AUC (95% CI): 0.96 (0.91–1.00); sensitivity: 92.9% (gyn), 75.0% (self); specificity: 98.6% (gyn), 100.0% (self) | Illah et al., 2024 [169] |
DNA methylation | CDO1m, CELF4m | qMSP | 21/275 | Dual-gene methylation showed high sensitivity (85.7%) and specificity (87.6%) for EC screening. AUC (95% CI): 0.867 (0.788–0.946) for dual methylation; sensitivity (95% CI): 85.7% (0.707–1.000); specificity: 87.6% (0.837–0.915) | Zhao et al., 2024 [170] |
DNA methylation | CDO1, CELF4 | qPCR | 40/98 | Combined test specificity (95.9%) outperformed transvaginal ultrasound (ET) and CA125 and detected all Type II EC cases. AUC (95% CI): 0.917 (0.853–0.91) for combined test; sensitivity (95% CI): 87.5% (73.2–95.8); specificity: 95.9% (89.9–98.9) | Cai et al., 2024 [171] |
Proteomics | HPT, LG3BP, FGA, LY6D, IGHM | SWATH-MS | 53/65 | Cervico-vaginal fluid protein signatures showed superior accuracy over plasma in detecting Stage I EC and advanced tumors effectively. AUC (95% CI): [cervico-vaginal: 0.95 (0.91–0.98), plasma: 0.87 (0.81–0.93)]; sensitivity: [cervico-vaginal: 91% (83–98%), plasma: 75% (64–86%)]; specificity: [cervico-vaginal: 86% (78–95%), plasma: 84% (75–93%)] | Njoku et al., 2024 [172] |
Proteomics | Angiopoietin-2, endoglin, FAP, MIA, VEGF-A | Multiplex immunoassays | 66 EC/108 benign | Five key biomarkers were significantly elevated in EC. The multivariate model showed prognostic value for tumor grade, size, invasion, and MMR status. AUC: 0.918; sensitivity: 87.8%; specificity: 90.7% | Harris et al., 2024 [173] |
Metabolomics | Lipids, amino acids, and other metabolites | UPLC-MS | 66/108 | Metabolic dysregulation was linked to tumor characteristics (size, myometrial invasion); noninvasive detection and risk stratification improved; multivariate models achieved high diagnostic accuracy. AUC: 0.800–0.951 (25-feature model); sensitivity: 78.6% (for EC); specificity: 83.3% for EC, 79.6% for benign | Lorentzen et al., 2024 [174] |
Tampons | |||||
DNA methylation | 28 Methylated DNA markers | qMSP | 100/92 | The sensitivity to detecting EC was high even when vaginal fluid samples were collected before endometrial sampling. AUC (95% CI): 0.91 (0.85–0.97); sensitivity (95% CI):82% (70–91%); specificity (95% CI): 96% (87–99%) | Bakkum-Gamez et al., 2023 [175] |
Cervical scrapings and vaginal swabs | |||||
Genomic DNA | 100 EC-related genes | NGS | 39/11 | Cervical swab-based gDNA genomic data demonstrated enhanced detection ability and enabled patient classification. Sensitivity: 67%; specificity: 100% | Kim et al., 2022 [176] |
DNA methylation | BHLHE22, CDO1 | MPap | 494 EC | MPap test showed high sensitivity and specificity for EC detection. AUC (95% CI): [Stage 1: 0.91 (0.87–0.94), Stage 2: 0.90 (0.84–0.95)]; sensitivity (95% CI): [Stage 1: 92.9% (80.5–98.5%), Stage 2: 92.5% (82.9–100.0%)]; specificity (95% CI): [Stage 1: 71.5% (64.8–77.5%), Stage 2: 73.8% (67.6–79.4%)] | Wen et al., 2022 [177] |
DNA methylation | GYPC, ZSCAN12 | qPCR | 562 (various groups) | The WID-qEC test offered a non-invasive EC screening and triage with high sensitivity and specificity. AUC: 0.94 (Barcelona); sensitivity: [97.2% (FORECEE), 90.1% (Barcelona), 100% (PMB cohort)]; specificity: [75.8% (FORECEE), 86.7% (Barcelona), 89.1% (PMB cohort)] | Herzog et al., 2022 [178] |
DNA methylation | ADCYAP1, BHLHE22, CDH13, CDO1, GALR1, GHSR, HAND2, SST, ZIC1 | qMSP | 103/317 | DNA methylation marker analysis in urine, cervicovaginal self-samples, and clinician-taken cervical scrapes achieved high diagnostic accuracy for EC detection. AUC: [urine: 0.95, self-samples: 0.94, scrapes: 0.97]; sensitivity: [urine: 90%, self-samples: 89%, scrapes: 93%]; specificity: [urine: 90%, self-samples: 92%, scrapes: 90%] | Wever et al., 2023 [179] |
DNA methylation | RASSF1A, HIST1H4F | qPCR | 19/75 | Methylation levels of RASSF1A/HIST1H4F increased with endometrial lesion severity. AUC: RASSF1A: 0.938; HIST1H4F: 0.951 | Wang et al., 2024 [180] |
Other samples | |||||
cfDNA | KRAS, PIK3CA | NGS, qPCR | 50/7 | KRAS/PIK3CA mutations were detected in 47.4% of peritoneal lavages and correlated with tumor tissue. | Mayo-de-las-Casas et al., 2020 [181] |
Metabolomics and proteomics | SOAT1, CE | ELISA, colorimetric assay, RT-qPCR, IHC | 32/16 | SOAT1 and CE may be associated with malignancy, aggressiveness, and poor prognosis. AUC: peritoneal fluid SOAT1: 0.767; sensitivity: 80%; specificity: 67% | Ayyagari et al., 2023 [182] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, N.; Cheewakriangkrai, C.; Chaiyawat, P.; Udomruk, S. Unlocking the Potential of Liquid Biopsy: A Paradigm Shift in Endometrial Cancer Care. Diagnostics 2025, 15, 1916. https://doi.org/10.3390/diagnostics15151916
Gui N, Cheewakriangkrai C, Chaiyawat P, Udomruk S. Unlocking the Potential of Liquid Biopsy: A Paradigm Shift in Endometrial Cancer Care. Diagnostics. 2025; 15(15):1916. https://doi.org/10.3390/diagnostics15151916
Chicago/Turabian StyleGui, Nannan, Chalong Cheewakriangkrai, Parunya Chaiyawat, and Sasimol Udomruk. 2025. "Unlocking the Potential of Liquid Biopsy: A Paradigm Shift in Endometrial Cancer Care" Diagnostics 15, no. 15: 1916. https://doi.org/10.3390/diagnostics15151916
APA StyleGui, N., Cheewakriangkrai, C., Chaiyawat, P., & Udomruk, S. (2025). Unlocking the Potential of Liquid Biopsy: A Paradigm Shift in Endometrial Cancer Care. Diagnostics, 15(15), 1916. https://doi.org/10.3390/diagnostics15151916