Inverse Association of Longitudinal Variations in Fat Tissue Radiodensity and Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Study Population
2.3. Data Collection
2.4. CT Retrospective Analysis
2.5. Statistical Analyses
3. Results
3.1. Study Population
3.2. Fat Areas and Densities
3.3. Fat Area and Radiodensity Variations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AVEN | Area Vasta Emilia Nord |
BMI | Body Mass Index |
CI | Confidence Interval |
COPD | Chronic Obstructive Pulmonary Disease |
CT | Computed Tomography |
HU | Hounsfield Unit |
IMAT | Intermuscular Adipose Tissue |
SAT | Subcutaneous Adipose Tissue |
SD | Standard Deviation |
VAT | Visceral Adipose Tissue |
References
- Shahjehan, F.; Merchea, A.; Cochuyt, J.J.; Li, Z.; Colibaseanu, D.T.; Kasi, P.M. Body Mass Index and Long-Term Outcomes in Patients with Colorectal Cancer. Front. Oncol. 2018, 8, 620. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Fares, A.F.; Shepshelovich, D.; Yang, P.; Christiani, D.; Zhang, J.; Shiraishi, K.; Ryan, B.M.; Chen, C.; Schwartz, A.G.; et al. The relationship between body-mass index and overall survival in non-small cell lung cancer by sex, smoking status, and race: A pooled analysis of 20,937 International lung Cancer consortium (ILCCO) patients. Lung Cancer 2020, 152, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Cortellini, A.; Indini, A.; Tomasello, G.; Ghidini, M.; Nigro, O.; Salati, M.; Dottorini, L.; Iaculli, A.; Varricchio, A.; et al. Association of Obesity With Survival Outcomes in Patients With Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e213520. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, L.A.; Olaechea, S.; Gilmore, B.W.; Gannavarapu, B.S.; Alvarez, C.M.; Ahn, C.; Iyengar, P.; Infante, R.E. A preponderance of gastrointestinal cancer patients transition into cachexia syndrome. J. Cachexia Sarcopenia Muscle 2022, 13, 2920–2931. [Google Scholar] [CrossRef]
- Flegal, K.M.; Graubard, B.I.; Williamson, D.F.; Cooper, R.S. Reverse Causation and Illness-related Weight Loss in Observational Studies of Body Weight and Mortality. Am. Epidemiol. 2011, 173, 1–9. [Google Scholar] [CrossRef]
- Malietzis, G.; Aziz, O.; Bagnall, N.M.; Johns, N.; Fearon, K.C.; Jenkins, J.T. The role of body composition evaluation by computerized tomography in determining colorectal cancer treatment outcomes: A systematic review. Eur. J. Surg. Oncol. 2015, 41, 186–196. [Google Scholar] [CrossRef]
- Nicholson, J.M.; Orsso, C.E.; Nourouzpour, S.; Elangeswaran, B.; Chohan, K.; Orchanian-Cheff, A.; Fidler, L.; Mathur, S.; Rozenberg, D. Computed tomography-based body composition measures in COPD and their association with clinical outcomes: A systematic review. Chron. Respir. Dis. 2022, 19, 14799731221133387. [Google Scholar] [CrossRef]
- Saravana-Bawan, B.; Goplen, M.; Alghamdi, M.; Khadaroo, R.G. The Relationship Between Visceral Obesity and Post-operative Complications: A Meta-Analysis. Surg. Res. 2021, 267, 71–81. [Google Scholar] [CrossRef]
- Machado, M.A.D.; Moraes, T.F.; Anjos, B.H.L.; Alencar, N.R.G.; Chang, T.C.; Santana, B.C.R.F.; Menezes, V.O.; Vieira, L.O.; Brandão, S.C.S.; Salvino, M.A.; et al. Association between increased Subcutaneous Adipose Tissue Radioradiodensity and cancer mortality: Automated computation, comparison of cancer types, gender, and scanner bias. Appl. Radiat. Isot. 2024, 205, 111181. [Google Scholar] [CrossRef]
- Kapoor, N.D.; Twining, P.K.; Groot, O.Q.; Pielkenrood, B.J.; Bongers, M.E.R.; Newman, E.T.; Verlaan, J.J.; Schwab, J.H. Adipose tissue radiodensity on CT as a prognostic factor in patients with cancer: A systematic review. Acta Oncol. 2020, 59, 1488–1495. [Google Scholar] [CrossRef]
- Shah, R.V.; Allison, M.A.; Lima, J.A.; Abbasi, S.A.; Eisman, A.; Lai, C.; Jerosch-Herold, M.; Budoff, M.; Murthy, V.L. Abdominal fat radioradiodensity, quantity and cardiometabolic risk: The Multi-Ethnic Study of Atherosclerosis. Nutr Metab Cardiovasc. Dis. 2016, 26, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Rosenquist, K.J.; Pedley, A.; Massaro, J.M.; Therkelsen, K.E.; Murabito, J.M.; Hoffmann, U.; Fox, C.S. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc. Imaging 2013, 6, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Zoabi, A.; Bentov-Arava, E.; Sultan, A.; Elia, A.; Shalev, O.; Orevi, M.; Gofrit, O.N.; Margulis, K. Adipose tissue composition determines its computed tomography radioradiodensity. Eur. Radiol. 2023, 34, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Laurencikiene, J.; Skurk, T.; Kulyté, A.; Hedén, P.; Aström, G.; Sjölin, E.; Rydén, M.; Hauner, H.; Arner, P. Regulation of lipolysis in small and large fat cells of the same subject. J. Clin. Endocrinol Metab. 2011, 96, E2045–E2049. [Google Scholar] [CrossRef]
- Anciaux, M.; Van Gossum, A.; Wenglinski, C.; Ameye, L.; Guiot, T.; Flamen, P.; Demetter, P.; Deleporte, A.; Sclafani, F.; Donckier, V.; et al. Fat radiodensity is a novel prognostic marker in patients with esophageal cancer. Clin. Nutr. ESPEN 2020, 39, 124–130. [Google Scholar] [CrossRef]
- Bates, D.D.B.; Pickhardt, P.J. CT-Derived Body Composition Assessment as a Prognostic Tool in Oncologic Patients: From Opportunistic Research to Artificial Intelligence-Based Clinical Implementation. Am. J. Roentgenol. 2022, 219, 671–680. [Google Scholar] [CrossRef]
- Besutti, G.; Pellegrini, M.; Ottone, M.; Bonelli, E.; Monelli, F.; Farì, R.; Milic, J.; Dolci, G.; Fasano, T.; Canovi, S.; et al. Modifications of Chest CT Body Composition Parameters at Three and Six Months after Severe COVID-19 Pneumonia: A Retrospective Cohort Study. Nutrients 2022, 14, 3764. [Google Scholar] [CrossRef]
- Besutti, G.; Giorgi Rossi, P.; Ottone, M.; Spaggiari, L.; Canovi, S.; Monelli, F.; Bonelli, E.; Fasano, T.; Sverzellati, N.; Caruso, A.; et al. Inflammatory burden and persistent CT lung abnormalities in COVID-19 patients. Sci. Rep. 2022, 12, 4270. [Google Scholar] [CrossRef]
- Anyene, I.; Caan, B.; Williams, G.R.; Popuri, K.; Lenchik, L.; Giri, S.; Chow, V.; Beg, M.F.; Cespedes Feliciano, E.M. Body composition from single versus multi-slice abdominal computed tomography: Concordance and associations with colorectal cancer survival. J. Cachexia Sarcopenia Muscle 2022, 13, 2974–2984. [Google Scholar] [CrossRef]
- Besutti, G.; Pellegrini, M.; Ottone, M.; Cantini, M.; Milic, J.; Bonelli, E.; Dolci, G.; Cassone, G.; Ligabue, G.; Spaggiari, L.; et al. The impact of chest CT body composition parameters on clinical outcomes in COVID-19 patients. PLoS ONE 2021, 16, e0251768. [Google Scholar] [CrossRef]
- Tong, Y.; Udupa, J.K.; Torigian, D.A.; Odhner, D.; Wu, C.; Pednekar, G.; Palmer, S.; Rozenshtein, A.; Shirk, M.A.; Newell, J.D.; et al. Chest Fat Quantification via CT Based on Standardized Anatomy Space in Adult Lung Transplant Candidates. PLoS ONE 2017, 12, e0168932. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Besutti, G.; Ottone, M.; Canovi, S.; Bonelli, E.; Venturelli, F.; Farì, R.; Damato, A.; Bonelli, C.; Pinto, C.; et al. Abdominal Fat Characteristics and Mortality in Rectal Cancer: A Retrospective Study. Nutrients 2023, 15, 374. [Google Scholar] [CrossRef] [PubMed]
- Feliciano, E.M.C.; Winkels, R.M.; Meyerhardt, J.A.; Prado, C.M.; Afman, L.A.; Caan, B.J. Abdominal adipose tissue radioradiodensity is associated with survival after colorectal cancer. Am. J. Clin. Nutr. 2021, 114, 1917–1924. [Google Scholar] [CrossRef] [PubMed]
- Pischon, T.; Boeing, H.; Hoffmann, K.; Bergmann, M.; Schulze, M.B.; Overvad, K.; Van Der Schouw, Y.T.; Spencer, E.; Moons, K.G.M.; Tjønneland, A.; et al. General and Abdominal Adiposity and Risk of Death in Europe. N. Engl. J. Med. 2008, 359, 2105–2120. [Google Scholar] [CrossRef]
- Dey, D.; Nakazato, R.; Li, D.; Berman, D.S. Epicardial and thoracic fat-Noninvasive measurement and clinical implications. Cardiovasc. Diagn. Ther. 2012, 2, 85–93. [Google Scholar] [CrossRef]
Missing | Study Population (n = 196) | ||
---|---|---|---|
Age (Years); Mean (SD) | 65 (11.0) | ||
Sex; n (%) | Females | 62 (31.6%) | |
Males | 134 (68.4%) | ||
Smoking habit | Never | 6 | 160 (84.2%) |
Previous | 27 (14.2%) | ||
Current | 3 (1.6%) | ||
Comorbidities; n (%) | 6 | ||
COPD | 8 (4.2%) | ||
Asthma | 9 (4.7%) | ||
Cardiovascular diseases | 47 (24.7%) | ||
Previous cancer | 20 (10.5%) | ||
Diabetes | 44 (23.2%) | ||
Hypertension | 114 (60.0%) | ||
Chronic kidney failure | 7 (3.7%) | ||
Cerebrovascular disease | 9 (4.7%) | ||
Liver diseases | 6 (3.2%) | ||
Baseline BMI (kg/m2); mean (SD) | 138 | 30.2 (6.5) | |
Acute kidney failure during COVID-19, n (%) | 10 (5,1%) |
Missing | Baseline (n = 196) | Follow-Up (n = 196) | |
---|---|---|---|
VAT area (cm2), mean (SD) | 2 | 40.9 (19.4) | 38.6 (18.4) |
VAT radiodensity (HU), mean (SD) | - | −83.4 (5.7) | −84.1 (5.1) |
SAT area (cm2), mean (SD) | 4 | 204.1 (118.1) | 204.8 (129.4) |
SAT radiodensity (HU), mean (SD) | 1 | −96.9 (8.0) | −93.1 (8.7) |
IMAT area (cm2), mean (SD) | 3 | 32.7 (16.9) | 31.4 (16.1) |
IMAT radiodensity (HU), mean (SD) | - | −70.3 (7.8) | −68.3 (7.7) |
Coeff (Spearman’s Rho) | p-Value | |
---|---|---|
Baseline VAT area and radiodensity | −0.52 | <0.001 |
Baseline SAT area and radiodensity | −0.68 | <0.001 |
Baseline IMAT area and radiodensity | −0.57 | <0.001 |
Follow-up VAT area and radiodensity | −0.44 | <0.001 |
Follow-up SAT area and radiodensity | −0.73 | <0.001 |
Follow-up IMAT area and radiodensity | −0.56 | <0.001 |
Univariate Models | Models Adjusted by Age and Sex | ||||||
---|---|---|---|---|---|---|---|
n | Coeff | 95% CI | p | Coeff | 95% CI | p | |
VAT area variation (STD) | 194 | −0.38 | −1.07; 0.30 | 0.27 | −0.33 | −1.02; 0.37 | 0.35 |
SAT area variation (STD) | 190 | −0.91 | −1.70; −0.12 | 0.02 | −0.89 | −1.70; −0.09 | 0.03 |
IMAT area variation (STD) | 192 | −2.12 | −3.02; −1.21 | <0.001 | −2.12 | −3.06; −1.19 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besutti, G.; Ottone, M.; Bonelli, E.; Canovi, S.; Farì, R.; Farioli, F.; Pecchi, A.; Ligabue, G.; Pellegrini, M.; Pattacini, P.; et al. Inverse Association of Longitudinal Variations in Fat Tissue Radiodensity and Area. Diagnostics 2025, 15, 1662. https://doi.org/10.3390/diagnostics15131662
Besutti G, Ottone M, Bonelli E, Canovi S, Farì R, Farioli F, Pecchi A, Ligabue G, Pellegrini M, Pattacini P, et al. Inverse Association of Longitudinal Variations in Fat Tissue Radiodensity and Area. Diagnostics. 2025; 15(13):1662. https://doi.org/10.3390/diagnostics15131662
Chicago/Turabian StyleBesutti, Giulia, Marta Ottone, Efrem Bonelli, Simone Canovi, Roberto Farì, Francesco Farioli, Annarita Pecchi, Guido Ligabue, Massimo Pellegrini, Pierpaolo Pattacini, and et al. 2025. "Inverse Association of Longitudinal Variations in Fat Tissue Radiodensity and Area" Diagnostics 15, no. 13: 1662. https://doi.org/10.3390/diagnostics15131662
APA StyleBesutti, G., Ottone, M., Bonelli, E., Canovi, S., Farì, R., Farioli, F., Pecchi, A., Ligabue, G., Pellegrini, M., Pattacini, P., & Giorgi Rossi, P. (2025). Inverse Association of Longitudinal Variations in Fat Tissue Radiodensity and Area. Diagnostics, 15(13), 1662. https://doi.org/10.3390/diagnostics15131662