A Refined Vestibular Romberg Test to Differentiate Somatosensory from Vestibular-Induced Disequilibrium
Abstract
1. Introduction
2. Methods
2.1. Study and Participants
- i.
- Patients with peripheral unilateral or bilateral vestibulopathy: these individuals were referred to the Outpatient Clinic for Vertigo and Balance Disorders at our hospital.
- ii.
- Patients with pure sensory neuropathy: these individuals were recruited from the electromyography laboratory of the Department of Clinical Neurophysiology.
- iii.
- Age-matched healthy adults: this control group consisted of individuals with no documented history of neurological or vestibular disorders.
2.2. Static Posturography
- Firm surface, eyes open, fixating on a target 100 cm away (“condition 1”);
- Firm surface, eyes closed (“condition 2”);
- Foam pad, eyes open, fixating on a target 100 cm away (“condition 3”);
- Foam pad, eyes closed (“condition 4”).
2.3. Postural Sway Parameters
- Area of the COP sway: this is the surface of the ellipse that contains 90% of the points of the COP excursion.
- AP and ML standard deviation: the standard deviation is the mean deviation with respect to the mean position on the platform.
- AP and ML spectral content: Each 40 s epoch was analyzed by means of a Fast Fourier Transform (FFT), and the resulting spectra were binned into three bands: low frequency (LF) 0–0.5 Hz, middle frequency (MF) 0.5–2 Hz and high frequency (HF) 2–20 Hz). The percentage of energy in each frequency band was taken for further analysis.
- Individual entropy of ML and AP: to obtain discrete ML and AP states, continuous data were min–max normalized and subsequently discretized into an alphabet of ν = 50 bins [10].
- Joint entropy of AP and ML [10].
- The Romberg quotient (RQ): In analogy to the clinical Romberg test, the ratio of the COP sway area, AP, and ML standard deviation of eyes closed to eyes open was calculated while standing on a firm surface (time domain RQ, tRQ). Similarly, the ratio of spectral energy of eyes closed to eyes open defined the frequency domain RQ (fRQ), which was calculated separately for each frequency band. The entropy RQ (eRQ) was also calculated for individual and joint entropies.
- The vestibular Romberg quotient (VRQ) [4,11,12]: While standing on foam, the ratio of the COP sway area, AP, and ML as well as the LF, MF, and HF spectral energy and the individual and joint sway entropies of eyes closed to eyes open was calculated, defining the time domain (tVRQ), the frequency domain (fVRQ), and the entropy (eVRQ) vestibular Romberg quotient.
- The refined vestibular Romberg quotient (rVRQ): This metric was first introduced in the present study to enhance the sensitivity of the foam sway conditions. The rVRQ represents the ratio of the two eyes-closed conditions: eyes closed while standing on foam to eyes closed while standing on firm support.
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, M.R. Romberg’s test no longer stands up. Pract. Neurol. 2016, 16, 316. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, E.; Kouvli, M.; Karagianni, E.; Gamvroula, A.; Kalamatianos, T.; Stranjalis, G.; Skoularidou, M. Romberg’s test revisited: Changes in classical and advanced sway metrics in patients with pure sensory neuropathy. Neurophysiol. Clin. 2024, 54, 102999. [Google Scholar] [CrossRef] [PubMed]
- Black, F.O.; Wall, C., 3rd; Nashner, L.M. Effects of visual and support surface orientation references upon postural control in vestibular deficient subjects. Acta Otolaryngol. 1983, 95, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, C.; Murofushi, T.; Chihara, Y.; Ushio, M.; Sugasawa, K.; Yamaguchi, T.; Yamasoba, T.; Iwasaki, S. Assessment of diagnostic accuracy of foam posturography for peripheral vestibular disorders: Analysis of parameters related to visual and somatosensory dependence. Clin. Neurophysiol. 2009, 120, 1408–1414. [Google Scholar] [CrossRef]
- Hong, S.K.; Park, J.H.; Kwon, S.Y.; Kim, J.-S.; Koo, J.-W. Clinical efficacy of the Romberg test using a foam pad to identify balance problems: A comparative study with the sensory organization test. Eur. Arch. Otorhinolaryngol. 2015, 272, 2741–2747. [Google Scholar] [CrossRef]
- Allum, J.H.; Adkin, A.L.; Carpenter, M.G.; Held-Ziolkowska, M.; Honegger, F.; Pierchala, K. Trunk sway measures of postural stability during clinical balance tests: Effects of a unilateral vestibular deficit. Gait Posture 2001, 14, 227–237. [Google Scholar] [CrossRef]
- Baloh, R.W.; Jacobson, K.M.; Beykirch, K.; Honrubia, V. Static and dynamic posturography in patients with vestibular and cerebellar lesions. Arch. Neurol. 1998, 55, 649–654. [Google Scholar] [CrossRef]
- Strupp, M.; Kim, J.S.; Murofushi, T.; Straumann, D.; Jen, J.C.; Rosengren, S.M.; Della Santina, C.C.; Kingma, H. Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Barany Society. J. Vestib. Res. 2017, 27, 177–189. [Google Scholar] [CrossRef]
- Strupp, M.; Bisdorff, A.; Furman, J.; Hornibrook, J.; Jahn, K.; Maire, R.; Newman-Toker, D.; Magnusson, M. Acute unilateral vestibulopathy/vestibular neuritis: Diagnostic criteria. J. Vestib. Res. 2022, 32, 389–406. [Google Scholar] [CrossRef]
- Anagnostou, E.; Karagianni, E.; Skoularidou, M. Joint entropy analysis of anterior-posterior and medial-lateral body sway. Med. Eng. Phys. 2022, 106, 103842. [Google Scholar] [CrossRef]
- Anagnostou, E.; Gerakoulis, S.; Voskou, P.; Kararizou, E. Postural instability during attacks of migraine without aura. Eur. J. Neurol. 2019, 26, 319-e21. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, E.; Zachou, A.; Breza, M.; Kladi, A.; Karadima, G.; Koutsis, G. Disentangling balance impairments in spinal and bulbar muscular atrophy. Neurosci. Lett. 2019, 705, 94–98. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
- Halmagyi, G.M.; Curthoys, I.S. A clinical sign of canal paresis. Arch. Neurol. 1988, 45, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Bartl, K.; Lehnen, N.; Kohlbecher, S.; Schneider, E. Head impulse testing using videooculography. Ann. N. Y. Acad. Sci. 2009, 1164, 331–333. [Google Scholar] [CrossRef]
- Halmagyi, G.M.; Aw, S.T.; Cremer, P.D.; Curthoys, I.S.; Todd, M.J. Impulsive testing of individual semicircular canal function. Ann. N. Y. Acad. Sci. 2001, 942, 192–200. [Google Scholar] [CrossRef]
- Black, F.O.; Wall, C., 3rd. Comparison of vestibulo-ocular and vestibulospinal screening tests. Otolaryngol. Head Neck Surg. 1981, 89, 811–817. [Google Scholar] [CrossRef]
- Crawford, J. Living without a balancing mechanism. N. Engl. J. Med. 1952, 246, 458–460. [Google Scholar] [CrossRef]
- Bienias, K. Postural control in patients with hereditary motor and sensory neuropathy. Literature review. Adv. Rehabil. 2020, 34, 42–47. [Google Scholar] [CrossRef]
- Simoneau, G.G.; Ulbrecht, J.S.; Derr, J.A.; Becker, M.B.; Cavanagh, P.R. Postural instability in patients with diabetic sensory neuropathy. Diabetes Care 1994, 17, 1411–1421. [Google Scholar] [CrossRef]
- Mustapa, A.; Justine, M.; Mohd Mustafah, N.; Jamil, N.; Manaf, H. Postural Control and Gait Performance in the Diabetic Peripheral Neuropathy: A Systematic Review. Biomed. Res. Int. 2016, 2016, 9305025. [Google Scholar] [CrossRef] [PubMed]
- Onursal Kilinç, Ö.; Ayvat, E.; Ayvat, F.; Kilinç, M. Association of posturography with clinical measures in balance rehabilitation of ataxic patients. Int. J. Rehabil. Res. 2021, 44, 256–261. [Google Scholar] [CrossRef]
- Riva, N.; Faccendini, S.; Lopez, I.D.; Fratelli, A.; Velardo, D.; Quattrini, A.; Gatti, R.; Comi, G.; Comola, M.; Fazio, R. Balance exercise in patients with chronic sensory ataxic neuropathy: A pilot study. J. Peripher. Nerv. Syst. 2014, 19, 145–151. [Google Scholar] [CrossRef]
- Paxton, R.J.; Feldman-Kothe, C.; Trabert, M.K.; Hitchcock, L.N.; Reiser, R.F., II; Tracy, B.L. Postural Steadiness and Ankle Force Variability in Peripheral Neuropathy. Mot. Control 2016, 20, 266–284. [Google Scholar] [CrossRef] [PubMed]
- Soames, R.W.; Atha, J. The spectral characteristics of postural sway behavior. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Powell, G.M.; Dzendolet, E. Power spectral density analysis of lateral human standing sway. J. Mot. Behav. 1984, 16, 424–441. [Google Scholar] [CrossRef]
- Fujimoto, C.; Egami, N.; Demura, S.; Yamasoba, T.; Iwasaki, S. The effect of aging on the center-of-pressure power spectrum in foam posturography. Neurosci. Lett. 2015, 585, 92–97. [Google Scholar] [CrossRef]
- Anagnostou, E.; Stavropoulou, G.; Zachou, A.; Kararizou, E. Spectral Composition of Body Sway in Persistent Postural-Perceptual Dizziness. Otol. Neurotol. 2021, 42, e1318–e1326. [Google Scholar] [CrossRef]
- Mauritz, K.; Dietz, V. Characteristics of postural instability by ischemic blocking of leg afferents. Exp. Brain Res. 1980, 38, 117–119. [Google Scholar] [CrossRef]
- Winter, D.A.; Prince, F.; Frank, J.S.; Powell, C.; Zabjek, K.F. Unified theory regarding A/P and M/L balance in quiet stance. J. Neurophysiol. 1996, 75, 2334–2343. [Google Scholar] [CrossRef]
- Diener, H.C.; Dichgans, J.; Bacher, M.; Gompf, B. Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalogr. Clin. Neurophysiol. 1984, 57, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Aljasem, A.; Mohsen, S. Bridging the diagnostic gap! Behavioral tests for acute vestibular disorders. Egypt. J. Otolaryngol. 2025, 41, 77. [Google Scholar] [CrossRef]
- Adami, C. What is complexity? Bioessays 2002, 24, 1085–1094. [Google Scholar] [CrossRef]
- Timme, N.; Alford, W.; Flecker, B.; Beggs, J.M. Synergy, redundancy, and multivariate information measures: An experimentalist’s perspective. J. Comput. Neurosci. 2014, 36, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Pereda, E.; Quiroga, R.Q.; Bhattacharya, J. Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 2005, 77, 1–37. [Google Scholar] [CrossRef]
- Roerdink, M.; De Haart, M.; Daffertshofer, A.; Donker, S.F.; Geurts, A.C.H.; Beek, P.J. Dynamical structure of center-of-pressure trajectories in patients recovering from stroke. Exp. Brain Res. 2006, 174, 256–269. [Google Scholar] [CrossRef]
- Donker, S.F.; Ledebt, A.; Roerdink, M.; Savelsbergh, G.J.P.; Beek, P.J. Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children. Exp. Brain Res. 2008, 184, 363–370. [Google Scholar] [CrossRef]
- Huisinga, J.M.; Yentes, J.M.; Filipi, M.L.; Stergiou, N. Postural control strategy during standing is altered in patients with multiple sclerosis. Neurosci. Lett. 2012, 524, 124–128. [Google Scholar] [CrossRef]
- Michalska, J.; Kamieniarz, A.; Brachman, A.; Marszałek, W.; Cholewa, J.; Juras, G.; Słomka, K.J. Fall-related measures in elderly individuals and Parkinson’s disease subjects. PLoS ONE 2020, 15, e0236886. [Google Scholar] [CrossRef]
- Kamieniarz, A.; Michalska, J.; Marszałek, W.; Stania, M.; Słomka, K.J.; Gorzkowska, A.; Juras, G.; Okun, M.S.; Christou, E.A. Detection of postural control in early Parkinson’s disease: Clinical testing vs. modulation of center of pressure. PLoS ONE 2021, 16, e0245353. [Google Scholar] [CrossRef]
- Cullen, K.E. Vestibular processing during natural self-motion: Implications for perception and action. Nat. Rev. Neurosci. 2019, 20, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.K.; Krebs, D.E. Posturography does not test vestibulospinal function. Otolaryngol. Head Neck Surg. 1999, 120, 164–173. [Google Scholar] [CrossRef] [PubMed]
Peripheral Vestibulopathy | Sensory Neuropathy | |
---|---|---|
Number | 39 | 30 |
Age | 60.1 ± 13.4 years | 59.7 ± 15.6 years |
Etiology | Unilateral vestibulopathy n = 32 (vestibular neuritis n = 26, labyrinthitis n = 4, vestibular schwannoma n = 2) Bilateral vestibulopathy n = 7 (Meniere’s disease n = 3, vestibulotoxic drugs n = 2, bilateral vestibular schwannoma n = 1, unknown n = 1) | Diabetes mellitus n = 6 Paraneoplastic n = 4 Alcohol n = 3 Chemotherapy n = 2 Sjögren’s syndrome n = 2 Unknown n = 13 |
Controls | Sensory Neuropathy | Vestibulopathy | ||
---|---|---|---|---|
Romberg quotient (median, 25th–75th percentile) | Sway area | 1.18 (0.73–1.93) | 2.16 (1.02–2.77) | 1.38(0.74–1.82) |
AP sway | 1.01 (0.76–1.38) | 1.32 (1.06–1.62) | 1.21 (0.96–1.47) | |
ML sway | 1.18 (0.87–1.38) | 1.53 (1.01–1.94) | 1.08 (0.88–1.33) | |
Vestibular Romberg quotient (median, 25th–75th percentile) | Sway area | 1.55 (0.99–2.35) | 1.86 (1.51–3.90) | 1.78 (1.40–3.21) |
AP sway | 1.31 (1.04–1.64) | 1.54 (1.23–1.85) | 1.45 (0.98–1.89) | |
ML sway | 1.22 (0.95–1.63) | 1.32 (1.02–2.04) | 1.43 (1.21–1.78) | |
Refined vestibular Romberg Quotient (median, 25th–75th percentile) | Sway area | 2.32 (1.39–4.17) | 2.46 (1.67–4.00) | 4.37 (2.89–7.36) |
AP sway | 1.51 (1.23–1.78) | 1.59 (1.31–1.81) | 1.93 (1.42–2.46) | |
ML sway | 1.61 (1.20–2.53) | 1.51 (1.13–2.16) | 2.33 (1.56–3.48) |
Controls | Sensory Neuropathy | Vestibulopathy | ||
---|---|---|---|---|
Romberg quotient (median, 25th–75th percentile) | Low frequency AP | 0.94 (0.86–1.00) | 0.92 (0.78–1.01) | 0.96 (0.88–1.03) |
Low frequency ML | 0.98 (0.92–1.08) | 1.02 (0.88–1.08) | 0.98 (0.87–1.02) | |
Middle frequency AP | 1.91 (1.05–2.51) | 1.15 (1.00–2.32) | 1.30 (0.91–2.35) | |
Middle frequency ML | 1.38 (0.85–1.89) | 0.86 (0.49–2.07) | 1.26 (0.74–2.14) | |
High frequency AP | 1.05 (0.62–2.19) | 1.45 (0.85–2.72) | 1.10 (0.70–1.52) | |
High frequency ML | 1.01 (0.57–1.37) | 0.86 (0.52–1.58) | 0.98 (0.58–1.36) | |
Vestibular Romberg quotient (median, 25th–75th percentile) | Low frequency AP | 0.91 (0.85–1.00) | 0.89 (0.77–1.03) | 0.86 (0.75–0.94) |
Low frequency ML | 0.98 (0.87–1.03) | 0.94 (0.88–1.12) | 0.97 (0.91–1.02) | |
Middle frequency AP | 1.54 (1.05–2.23) | 1.64 (0.89–2.56) | 1.85 (1.30–3.14) | |
Middle frequency ML | 1.16 (0.76–2.68) | 1.48 (0.62–2.50) | 1.43 (0.88–1.87) | |
High frequency AP | 0.89 (0.67–1.18) | 1.43 (0.96–2.03) | 1.37 (0.83–1.78) | |
High frequency ML | 0.72 (0.43–1.3) | 1.08 (0.86–2.30) | 0.92 (0.59–1.11) | |
Refined vestibular Romberg quotient (median, 25th–75th percentile) | Low frequency AP | 0.93 (0.81–1.05) | 1.01 (0.89–1.28) | 0.91 (0.77–1.00) |
Low frequency ML | 1.04 (1.00–1.14) | 1.00 (0.89–1.08) | 1.04 (0.96–1.19) | |
Middle frequency AP | 1.54 (0.84–2.32) | 1.00 (0.71–1.48) | 1.65 (1.02–2.90) | |
Middle frequency ML | 1.02 (0.54–1.30) | 1.14 (0.64–2.93) | 1.04 (0.62–2.41) | |
High frequency AP | 0.91 (0.60–1.18) | 1.10 (0.80–1.98) | 0.94 (0.63–1.50) | |
High frequency ML | 0.44 (0.26–0.76) | 0.84 (0.43–2.42) | 0.46 (0.26–0.67) |
Controls | Sensory Neuropathy | Vestibulopathy | ||
---|---|---|---|---|
Romberg quotient (median, 25th–75th percentile) | AP entropy | 0.99 (0.95–1.05) | 1.02 (0.98–1.05) | 0.99 (0.97–1.05) |
ML entropy | 1.00 (0.97–1.03) | 1.00 (0.96–1.04) | 1.01 (0.97–1.05) | |
Joint entropy | 1.00 (0.97–1.03) | 1.02 (0.99–1.05) | 1.01 (0.98–1.05) | |
Vestibular Romberg quotient (median, 25th–75th percentile) | AP entropy | 1.03 (0.97–1.05) | 1.00 (0.97–1.04) | 1.00 (0.97–1.05) |
ML entropy | 1.00 (0.96–1.05) | 0.98 (0.94–1.02) | 0.98 (0.95–1.01) | |
Joint entropy | 1.02 (0.99–1.04) | 0.99 (0.98–1.03) | 1.00 (0.98–1.03) | |
Refined vestibular Romberg quotient | AP entropy | 1.00 (0.97–1.05) | 1.00 (0.98–1.03) | 1.00 (0.98–1.03) |
ML entropy | 1.01 (0.96–1.05) | 0.96 (0.94–1.03) | 0.98 (0.94–1.03) | |
Joint entropy | 1.00 (0.97–1.04) | 0.99 (0.96–1.01) | 0.99 (0.98–1.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anagnostou, E.; Gamvroula, A.; Kouvli, M.; Karagianni, E.; Stranjalis, G.; Skoularidou, M.; Kalamatianos, T. A Refined Vestibular Romberg Test to Differentiate Somatosensory from Vestibular-Induced Disequilibrium. Diagnostics 2025, 15, 1621. https://doi.org/10.3390/diagnostics15131621
Anagnostou E, Gamvroula A, Kouvli M, Karagianni E, Stranjalis G, Skoularidou M, Kalamatianos T. A Refined Vestibular Romberg Test to Differentiate Somatosensory from Vestibular-Induced Disequilibrium. Diagnostics. 2025; 15(13):1621. https://doi.org/10.3390/diagnostics15131621
Chicago/Turabian StyleAnagnostou, Evangelos, Anastasia Gamvroula, Maria Kouvli, Evangelia Karagianni, George Stranjalis, Maria Skoularidou, and Theodosis Kalamatianos. 2025. "A Refined Vestibular Romberg Test to Differentiate Somatosensory from Vestibular-Induced Disequilibrium" Diagnostics 15, no. 13: 1621. https://doi.org/10.3390/diagnostics15131621
APA StyleAnagnostou, E., Gamvroula, A., Kouvli, M., Karagianni, E., Stranjalis, G., Skoularidou, M., & Kalamatianos, T. (2025). A Refined Vestibular Romberg Test to Differentiate Somatosensory from Vestibular-Induced Disequilibrium. Diagnostics, 15(13), 1621. https://doi.org/10.3390/diagnostics15131621