Speech Recognition in Noise: Analyzing Phoneme, Syllable, and Word-Based Scoring Methods and Their Interaction with Hearing Loss
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Signal and Noise
2.3. Testing and Scoring
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CVC | Consonant–Vowel–Consonant |
HTL | Hearing Threshold Levels |
PTA | Pure Tone Average |
OPD | Out Patient Department |
UCL | Uncomfortable Loudness Level |
SRT | Speech Recognition Threshold |
SIS | Speech Identification Scores |
SD | Standard Deviation |
CSL | Computerized Speech Lab |
SSN | Speech Spectrum Shaped Noise |
SNR | Signal-to-Noise Ratio |
References
- Lewis, D.; Hoover, B.; Choi, S.; Stelmachowicz, P. The Relationship between Speech Perception in Noise and Phonological Awareness Skills for Children with Normal Hearing. Ear Hear. 2010, 31, 761. [Google Scholar] [CrossRef]
- Song, J.H.; Skoe, E.; Banai, K.; Kraus, N. Training to Improve Hearing Speech in Noise: Biological Mechanisms. Cereb. Cortex 2012, 22, 1180–1190. [Google Scholar] [CrossRef]
- Shojaei, E.; Jafari, Z.; Gholami, M. Effect of Early Intervention on Language Development in Hearing-Impaired Children. Iran. J. Otorhinolaryngol. 2016, 28, 13–21. [Google Scholar]
- Zhang, L.; Schlaghecken, F.; Harte, J.; Roberts, K.L. The Influence of the Type of Background Noise on Perceptual Learning of Speech in Noise. Front. Neurosci. 2021, 15, 646137. [Google Scholar] [CrossRef]
- Freyman, R.L.; Helfer, K.S.; McCall, D.D.; Clifton, R.K. The Role of Perceived Spatial Separation in the Unmasking of Speech. J. Acoust. Soc. Am. 1999, 106, 3578–3588. [Google Scholar] [CrossRef]
- Klatte, M.; Lachmann, T.; Meis, M. Effects of Noise and Reverberation on Speech Perception and Listening Comprehension of Children and Adults in a Classroom-like Setting. Noise Health 2010, 12, 270. [Google Scholar] [CrossRef]
- Fitzgerald, L.P.; DeDe, G.; Shen, J. Effects of Linguistic Context and Noise Type on Speech Comprehension. Front. Psychol. 2024, 15, 1345619. [Google Scholar] [CrossRef]
- Alqattan, D.; Turner, P. The Effect of Background Noise on Speech Perception in Monolingual and Bilingual Adults with Normal Hearing. Noise Health 2021, 23, 67–74. [Google Scholar] [CrossRef]
- Billings, C.J.; Penman, T.M.; Ellis, E.M.; Baltzell, L.S.; McMillan, G.P. Phoneme and Word Scoring in Speech-in-Noise Audiometry. Am. J. Audiol. 2016, 25, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Stenfelt, S.; Rönnberg, J. The Signal-Cognition Interface: Interactions between Degraded Auditory Signals and Cognitive Processes. Scand. J. Psychol. 2009, 50, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Thornton, A.R.; Raffin, M.J. Speech-Discrimination Scores Modeled as a Binomial Variable. J. Speech Hear. Res. 1978, 21, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Liberman, A.M.; Mattingly, I.G. The Motor Theory of Speech Perception Revised. Cognition 1985, 21, 1–36. [Google Scholar] [CrossRef]
- Gauthier, J.; Levy, R. The Neural Dynamics of Auditory Word Recognition and Integration. arXiv 2023, arXiv:2305.13388. [Google Scholar]
- Boothroyd, A.; Nittrouer, S. Mathematical Treatment of Context Effects in Phoneme and Word Recognition. J. Acoust. Soc. Am. 1988, 84, 101–114. [Google Scholar] [CrossRef]
- Gelfand, J.T.; Christie, R.E.; Gelfand, S.A. Large-Corpus Phoneme and Word Recognition and the Generality of Lexical Context in Cvc Word Perception. J. Speech Lang. Hear. Res. 2014, 57, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Narne, V.K.; Mohan, D.; Badariya, M.; Avileri, S.D.; Jain, S.; Ravi, S.K.; Krishna, Y.; Hussain, R.O.; Almudhi, A. The Influence of Vowels on the Identification of Spoken Disyllabic Words in the Malayalam Language for Individuals with Hearing Loss. Diagnostics 2024, 14, 2707. [Google Scholar] [CrossRef]
- Nilsson, M.; Soli, S.D.; Sullivan, J.A. Development of the Hearing in Noise Test for the Measurement of Speech Reception Thresholds in Quiet and in Noise. J. Acoust. Soc. Am. 1994, 95, 1085–1099. [Google Scholar] [CrossRef]
- Sereti, A.; Sidiras, C.; Eleftheriadis, N.; Nimatoudis, I.; Chermak, G.D.; Iliadou, V.M. On the Difference of Scoring in Speech in Babble Tests. Healthcare 2022, 10, 458. [Google Scholar] [CrossRef]
- Schlauch, R.S.; Anderson, E.S.; Micheyl, C. A Demonstration of Improved Precision of Word Recognition Scores. J. Speech Lang. Hear. Res. 2014, 57, 543–555. [Google Scholar] [CrossRef]
- Olsen, W.O.; Van Tasell, D.J.; Speaks, C.E. Phoneme and Word Recognition for Words in Isolation and in Sentences. Ear Hear. 1997, 18, 175. [Google Scholar] [CrossRef]
- Valente, M.; Oeding, K.; Brockmeyer, A.; Smith, S.; Kallogjeri, D. Differences in Word and Phoneme Recognition in Quiet, Sentence Recognition in Noise, and Subjective Outcomes between Manufacturer First-Fit and Hearing Aids Programmed to NAL-NL2 Using Real-Ear Measures. J. Am. Acad. Audiol. 2018, 29, 706–721. [Google Scholar] [CrossRef] [PubMed]
- Scheidiger, C.; Allen, J.B.; Dau, T. Assessing the Efficacy of Hearing-Aid Amplification Using a Phoneme Test. J. Acoust. Soc. Am. 2017, 141, 1739. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, N.; Winkler, A.; Boretzki, M.; Holube, I. A Phoneme Perception Test Method for High-Frequency Hearing Aid Fitting. J. Am. Acad. Audiol. 2016, 27, 367–379. [Google Scholar] [CrossRef]
- Carhart, R.; Jerger, J.F. Preferred Method for Clinical Determination of Pure-Tone Thresholds. J. Speech Hear. Disord. 1959, 24, 330. [Google Scholar] [CrossRef]
- American National Standards Institute. Methods of Manual Pure-Tone Threshold Audiometry; American National Standards Institute: Washington, DC, USA, 2009. [Google Scholar]
- Mayadevi, N. The Development and Standardization of a Common Speech Discrimination Test for Indians. Master’s Dissertation, University of Mysore, Mysore, India, 1974. [Google Scholar]
- ASHA. Determining Threshold Level for Speech; American Speech-Language-Hearing Association: Rockville, MD, USA, 1988. [Google Scholar]
- ASHA Working Group. Tympanometry; American Speech-Language-Hearing Association: Rockville, MD, USA, 1988; pp. 354–377. [Google Scholar]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Manjula, P.; Antony, J.; Kumar, K.S.S.; Geetha, C. Development of Phonemically Balanced Word Lists for Adults in Kannada Language. J. Hear. Sci. 2020, 5, 22–30. [Google Scholar] [CrossRef]
- Wilson, R.H. Clinical Experience with the Words-in-Noise Test on 3430 Veterans: Comparisons with Pure-Tone Thresholds and Word Recognition in Quiet. J. Am. Acad. Audiol. 2011, 22, 405–423. [Google Scholar] [CrossRef]
- Hillenbrand, J.M.; Gayvert, R.T. Open Source Software for Experiment Design and Control. J. Speech Lang. Hear. Res. 2005, 48, 45–60. [Google Scholar] [CrossRef]
- American National Standards Institute. Maximum Permissible Ambient Noise Levels for Audiometric Test Rooms; American National Standards Institute: Washington, DC, USA, 2013. [Google Scholar]
- Lipovetsky, S. Multiple Regression Model as Interpolation Through the Points of Weighted Means. J. Data Sci. Intell. Syst. 2024, 2, 205–211. [Google Scholar] [CrossRef]
- Mattys, S.L.; Carroll, L.M.; Li, C.K.W.; Chan, S.L.Y. Effects of Energetic and Informational Masking on Speech Segmentation by Native and Non-Native Speakers. Speech Commun. 2010, 52, 887–899. [Google Scholar] [CrossRef]
- Strauß, A.; Wu, T.; McQueen, J.M.; Scharenborg, O.; Hintz, F. The Differential Roles of Lexical and Sublexical Processing during Spoken-Word Recognition in Clear and in Noise. Cortex 2022, 151, 70–88. [Google Scholar] [CrossRef] [PubMed]
- Festen, J.M.; Plomp, R. Effects of Fluctuating Noise and Interfering Speech on the Speech-Reception Threshold for Impaired and Normal Hearing. J. Acoust. Soc. Am. 1990, 88, 1725–1736. [Google Scholar] [CrossRef]
- Kalikow, D.N.; Stevens, K.N.; Elliott, L.L. Development of a Test of Speech Intelligibility in Noise Using Sentence Materials with Controlled Word Predictability. J. Acoust. Soc. Am. 1977, 61, 1337–1351. [Google Scholar] [CrossRef] [PubMed]
- Dreschler, W.A.; Verschuure, H.; Ludvigsen, C.; Westermann, S. ICRA Noises: Artificial Noise Signals with Speech-like Spectral and Temporal Properties for Hearing Instrument Assessment. International Collegium for Rehabilitative Audiology. Audiology 2001, 40, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Loizou, P.C. Speech Processing in Vocoder-Centric Cochlear Implants. Adv. Otorhinolaryngol. 2006, 64, 109–143. [Google Scholar] [CrossRef]
- Kollmeier, B.; Warzybok, A.; Hochmuth, S.; Zokoll, M.A.; Uslar, V.; Brand, T.; Wagener, K.C. The Multilingual Matrix Test: Principles, Applications, and Comparison across Languages: A Review. Int. J. Audiol. 2015, 54 (Suppl. S2), 3–16. [Google Scholar] [CrossRef]
- Alberti, G.; Portelli, D.; Loteta, S.; Galletti, C.; D’Angelo, M.; Ciodaro, F. Open-Fitting Hearing Aids: A Comparative Analysis between Open behind-the-Ear and Open Completely-in-the-Canal Instant-Fit Devices. Eur. Arch. Otorhinolaryngol. 2024, 281, 6009–6019. [Google Scholar] [CrossRef]
Groups | No. of Subjects | Mean Age (SD) | Gender | Ear | PTA (dB HL) | SRT (dB HL) | SIS (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||||
1 | 20 | 33.50 (2.60) | 16 M/4 F | Right | 11.00 | 1.92 | 13.25 | 2.44 | 97.50 | 3.44 |
Left | 11.12 | 1.71 | 13.50 | 2.35 | 97.00 | 2.99 | ||||
2 | 20 | 35.05 (3.77) | 15 M/5 F | Right | 31.87 | 3.61 | 34.75 | 3.79 | 95.25 | 3.43 |
Left | 32.37 | 3.66 | 34.75 | 3.79 | 96.00 | 3.83 | ||||
3 | 20 | 34.80 (3.27) | 15 M/5 F | Right | 47.12 | 4.44 | 50.00 | 4.58 | 92.75 | 3.02 |
Left | 46.62 | 3.62 | 49.75 | 4.12 | 92.25 | 3.02 | ||||
4 | 20 | 35.05 (3.13) | 17 M/3 F | Right | 62.25 | 4.92 | 65.25 | 5.49 | 82.50 | 3.44 |
Left | 62.68 | 4.16 | 66.25 | 4.83 | 82.75 | 3.02 | ||||
5 | 20 | 34.50 (2.89) | 16 M/4 F | Right | 73.81 | 1.59 | 76.75 | 2.44 | 72.25 | 3.02 |
Left | 74.12 | 2.18 | 78.00 | 2.51 | 73.00 | 2.51 |
Comparisons | n | SNR-50 | SNR-70 | ||
---|---|---|---|---|---|
z-Values | p-Values | z-Values | p-Values | ||
phoneme-syllable | 100 | 2.715 | <0.001 * | 0.322 | 0.747 |
phoneme-word | 100 | 3.340 | <0.001 * | 1.888 | 0.059 |
syllable-word | 100 | 0.625 | 0.532 | 1.566 | 0.117 |
Group | Predicted Group Membership | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Good SNR | Poor SNR | |||||||||
Normal | Mild | Moderate | Moderately Severe | Severe | Normal | Mild | Moderate | Moderately Severe | Severe | |
Phoneme-Based Scoring | ||||||||||
Normal | 10 | 10 | 0 | 0 | 0 | 18 | 2 | 0 | 0 | 0 |
Mild | 1 | 19 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 |
Moderate | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 20 | 0 | 0 |
Moderately Severe | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 20 | 0 |
Severe | 0 | 0 | 0 | 1 | 19 | 0 | 0 | 0 | 0 | 20 |
Syllable-Based Scoring | ||||||||||
Normal | 10 | 10 | 0 | 0 | 0 | 16 | 4 | 0 | 0 | 0 |
Mild | 1 | 19 | 0 | 0 | 0 | 2 | 18 | 0 | 0 | 0 |
Moderate | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 20 | 0 | 0 |
Moderately Severe | 0 | 0 | 0 | 19 | 1 | 0 | 0 | 0 | 20 | |
Severe | 0 | 0 | 0 | 1 | 19 | 0 | 0 | 0 | 0 | 20 |
Word-Based Scoring | ||||||||||
Normal | 10 | 10 | 0 | 0 | 0 | Could not be performed | ||||
Mild | 1 | 19 | 0 | 0 | 0 | |||||
Moderate | 0 | 0 | 12 | 6 | 2 | |||||
Moderately Severe | 0 | 0 | 5 | 7 | 8 | |||||
Severe | 0 | 0 | 2 | 6 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, S.; Narne, V.K.; Bharani; Valayutham, H.; Madan, T.; Ravi, S.K.; Jain, C. Speech Recognition in Noise: Analyzing Phoneme, Syllable, and Word-Based Scoring Methods and Their Interaction with Hearing Loss. Diagnostics 2025, 15, 1619. https://doi.org/10.3390/diagnostics15131619
Jain S, Narne VK, Bharani, Valayutham H, Madan T, Ravi SK, Jain C. Speech Recognition in Noise: Analyzing Phoneme, Syllable, and Word-Based Scoring Methods and Their Interaction with Hearing Loss. Diagnostics. 2025; 15(13):1619. https://doi.org/10.3390/diagnostics15131619
Chicago/Turabian StyleJain, Saransh, Vijaya Kumar Narne, Bharani, Hema Valayutham, Thejaswini Madan, Sunil Kumar Ravi, and Chandni Jain. 2025. "Speech Recognition in Noise: Analyzing Phoneme, Syllable, and Word-Based Scoring Methods and Their Interaction with Hearing Loss" Diagnostics 15, no. 13: 1619. https://doi.org/10.3390/diagnostics15131619
APA StyleJain, S., Narne, V. K., Bharani, Valayutham, H., Madan, T., Ravi, S. K., & Jain, C. (2025). Speech Recognition in Noise: Analyzing Phoneme, Syllable, and Word-Based Scoring Methods and Their Interaction with Hearing Loss. Diagnostics, 15(13), 1619. https://doi.org/10.3390/diagnostics15131619