Computed Tomography Angiography in Pediatric Pulmonary Hypertension: Evaluating MPA-to-Aortic Ratios as Diagnostic Markers
Abstract
1. Introduction
2. Materials
- The CTDI and DLP values referenced a 32 cm phantom, while the effective dose (ED) was calculated by multiplying the DLP by a factor of 2 to adapt to a 16 cm phantom model [17].
- Conversion coefficients specific to neonates and infants (0.039 mSv/(mGy·cm)) were applied based on age group for accurate dose estimation [18].
- ED (mSv = DLP (mGy.cm).(mSv.mGy−1.cm−1)). The CT dose index, dose-length product, and conversion factor were expressed for a 32 cm body phantom reference [19].
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abman, S.H.; Hansmann, G.; Archer, S.L.; Ivy, D.D.; Adatia, I.; Chung, W.K.; Hanna, B.D.; Rosenzweig, E.B.; Raj, J.U.; Cornfield, D.; et al. Pediatric Pulmonary Hypertension: Guidelines From the American Heart Association and American Thoracic Society. Circulation 2015, 132, 2037–2099. [Google Scholar] [CrossRef] [PubMed]
- Barst, R.J.; McGoon, M.D.; Elliott, C.G.; Foreman, A.J.; Miller, D.P.; Ivy, D.D. Survival in childhood pulmonary arterial hypertension: Insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management. Circulation 2012, 125, 113–122. [Google Scholar] [CrossRef]
- Suesaowalak, M.; Cleary, J.P.; Chang, A.C. Advances in diagnosis and treatment of pulmonary arterial hypertension in neonates and children with congenital heart disease. World J. Pediatr. 2010, 6, 13–31. [Google Scholar] [CrossRef]
- Evans, C.; Cober, N.; Dai, Z.; Stewart, D.; Zhao, Y.-Y. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur. Respir. J. 2021, 58, 2003957. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Bogaard, H.J.; Condliffe, R.; Frantz, R.; Khanna, D.; Kurzyna, M.; Langleben, D.; Manes, A.; Satoh, T.; Torres, F.; et al. Definitions and diagnosis of pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62 (Suppl. S25), D42–D50. [Google Scholar] [CrossRef]
- D’Alto, M.; Dimopoulos, K.; Budts, W.; Diller, G.P.; Di Salvo, G.; Dellegrottaglie, S.; Festa, P.; Scognamiglio, G.; Rea, G.; Ait Ali, L.; et al. Multimodality imaging in congenital heart disease-related pulmonary arterial hypertension. Heart 2016, 102, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef]
- Xie, M.; Wang, H.; Tang, S.; Chen, M.; Li, T.; He, L. Application of dual-energy CT with prospective ECG-gating in cardiac CT angiography for children: Radiation and contrast agent dose. Eur. J. Radiol. 2023, 170, 111229. [Google Scholar] [CrossRef]
- Chen, S.J.; Huang, J.H.; Lee, W.J.; Lin, M.T.; Chen, Y.S.; Wang, J.K. Diagnosis of Pulmonary Arterial Hypertension in Children by Using Cardiac Computed Tomography. Korean J. Radiol. 2019, 20, 976–984. [Google Scholar] [CrossRef]
- Rajaram, S.; Swift, A.J.; Condliffe, R.; Johns, C.; Elliot, C.A.; Hill, C.; Davies, C.; Hurdman, J.; Sabroe, I.; Wild, J.M.; et al. CT features of pulmonary arterial hypertension and its major subtypes: A systematic CT evaluation of 292 patients from the ASPIRE Registry. Thorax 2015, 70, 382–387. [Google Scholar] [CrossRef]
- Ratanawatkul, P.; Oh, A.; Richards, C.; Swigris, J. Performance of pulmonary artery dimensions measured on high-resolution computed tomography scan for identifying pulmonary hypertension. ERJ Open Res. 2020, 6, 00232-2019. [Google Scholar] [CrossRef] [PubMed]
- Truong, Q.A.; Bhatia, H.S.; Szymonifka, J.; Zhou, Q.; Lavender, Z.; Waxman, A.B.; Semigran, M.J.; Malhotra, R. A four-tier classification system of pulmonary artery metrics on computed tomography for the diagnosis and prognosis of pulmonary hypertension. J. Cardiovasc. Comput. Tomogr. 2018, 12, 60–66. [Google Scholar] [CrossRef]
- Caro-Domínguez, P.; Compton, G.; Humpl, T.; Manson, D.E. Pulmonary arterial hypertension in children: Diagnosis using ratio of main pulmonary artery to ascending aorta diameter as determined by multi-detector computed tomography. Pediatr. Radiol. 2016, 46, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Goo, H. Radiation dose, contrast enhancement, image noise and heart rate variability of ECG-gated CT volumetry using 3D threshold-based segmentation: Comparison between conventional single scan and dual focused scan methods. Eur. J. Radiol. 2021, 137, 109606. [Google Scholar] [CrossRef] [PubMed]
- Baş, S.; Alkara, U.; Aliyev, B. Evaluation of complex congenital heart disease with prospective ECG-gated cardiac CT in a single heartbeat at low tube voltage (70 kV) and adaptive statistical iterative reconstruction in infants: A single center experience. Int. J. Cardiovasc. Imaging 2022, 38, 413–422. [Google Scholar] [CrossRef]
- Chu, P.; Yu, S.; Wang, Y.; Seibert, J.; Cervantes, L.; Kasraie, N.; Chu, C.; Smith-Bindman, R. Reference phantom selection in pediatric computed tomography using data from a large, multicenter registry. Pediatr. Radiol. 2021, 52, 445–452. [Google Scholar] [CrossRef]
- Chu, P.; Kofler, C.; Mahendra, M.; Wang, Y.; Chu, C.; Stewart, C.; Delman, B.; Haas, B.; Lee, C.; Bolch, W.; et al. Dose length product to effective dose coefficients in children. Pediatr. Radiol. 2023, 53, 1659–1668. [Google Scholar] [CrossRef]
- Trattner, S.; Halliburton, S.; Thompson, C.M.; Xu, Y.; Chelliah, A.; Jambawalikar, S.R.; Peng, B.; Peters, M.R.; Jacobs, J.E.; Ghesani, M.; et al. Cardiac-Specific Conversion Factors to Estimate Radiation Effective Dose From Dose-Length Product in Computed Tomography. JACC Cardiovasc. Imaging 2018, 11, 64–74. [Google Scholar] [CrossRef]
- Truong, Q.A.; Massaro, J.M.; Rogers, I.S.; Mahabadi, A.A.; Kriegel, M.F.; Fox, C.S.; O’Donnell, C.J.; Hoffmann, U. Reference values for normal pulmonary artery dimensions by noncontrast cardiac computed tomography: The Framingham Heart Study. Circ. Cardiovasc. Imaging 2012, 5, 147–154. [Google Scholar] [CrossRef]
- Akay, H.O.; Ozmen, C.A.; Bayrak, A.H.; Senturk, S.; Katar, S.; Nazaroglu, H.; Taskesen, M. Diameters of normal thoracic vascular structures in pediatric patients. Surg. Radiol. Anat. 2009, 31, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.S.; Wells, A.U.; Padley, S.P. A CT sign of chronic pulmonary arterial hypertension: The ratio of main pulmonary artery to aortic diameter. J. Thorac. Imaging 1999, 14, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wan, C.; Tian, P.; Wu, Y.; Li, X.; Yang, T.; An, J.; Wang, T.; Chen, L.; Wen, F. CT-base pulmonary artery measurement in the detection of pulmonary hypertension: A meta-analysis and systematic review. Medicine 2014, 93, e256. [Google Scholar] [CrossRef] [PubMed]
- Compton, G.L.; Florence, J.; MacDonald, C.; Yoo, S.J.; Humpl, T.; Manson, D. Main Pulmonary Artery-to-Ascending Aorta Diameter Ratio in Healthy Children on MDCT. AJR Am. J. Roentgenol. 2015, 205, 1322–1325. [Google Scholar] [CrossRef]
- Saetung, M.; Kritsaneepaiboon, S.; Jarutach, J. Main pulmonary artery-to-descending aorta ratio in computed tomography: Cut-off value to diagnose pulmonary hypertension in children. Pol. J. Radiol. 2021, 86, e87–e92. [Google Scholar] [CrossRef]
p-Value | |||
---|---|---|---|
Sex (male) | Non-PHT group | %54 male (n = 19/35) | 0.672 |
PHT group | %66 male (n = 27/41) | ||
Age (month) | Non-PHT group | 42.1 (15.2–136.4) | 0.789 |
PHT group | 49.3 (14.9–152.1) | ||
Weight (kg) | Non-PHT group | 14.3 (11.2–18.3) | 0.543 |
PHT group | 16.4 (12.3–19.1) | ||
Weight (percentile) | Non-PHT group | 29.12 (20.8–44.6) | 0.234 |
PHT group | 35.2 (21.4–52.4) | ||
Weight (SDS) | Non-PHT group | −0.49 (−1.11–0.32) | 0.098 |
PHT group | −0.38 (−0.89–0.21) | ||
Height (cm) | Non-PHT group | 97.8 (80.2–112.4) | 0.275 |
PHT group | 105.2 (84.3–115.6) | ||
Height (percentile) | Non-PHT group | 41.2 (26.4–50.8) | 0.765 |
PHT group | 43.2 (24.2–48.9) | ||
Height (SDS) | Non-PHT group | −0.19 (−1.12–0.87) | 0.389 |
PHT group | −0.12 (−0.96–0.79) | ||
BMI kg/m2 | Non-PHT group | 14.95 (11.82–17.4) | 0.654 |
PHT group | 14.82 (10.98–16.5) | ||
BMI (percentile) | Non-PHT group | 33.36 (20.8–45.4) | 0.432 |
PHT group | 27.82 (22.5–42.8) | ||
BMI (SDS) | Non-PHT group | −0.43 (−1.32–0.08) | 0.685 |
PHT group | −0.51 (−1.25–0.32) | ||
Saturation (spo2) | Non-PHT group | 99.4 (98.2–99.1) | 0.145 |
PHT group | 98.8 (98.7–99.3) | ||
CTDIvol (mGy) | Non-PHT group | 9.08 (7.65–16.78) | 0.346 |
PHT group | 9.96 (8.12–15.65) | ||
DLP (mGycm) | Non-PHT group | 35.18 (28.65–48.32) | 0.295 |
PHT group | 43.92 (31.28–52.4) | ||
ED (mSv) | Non-PHT group | 1.98 (1.62–2.32) | 0.543 |
PHT group | 2.01 (1.88–2.68) | ||
Contrast (cc) | Non-PHT group | 15.65 (12.1–25.3) | 0.278 |
PHT group | 14.82 (11.9–28.2) |
Non-PHT (n = 35) | PHT (n = 41) | p-Value | |
---|---|---|---|
Pulmonary artery pressure | 16 (13.75–19.0) | 35.5 (28.0–42.5) | 0.0508 |
Ascending aorta (mm) | 14.25 (11–19) | 15.85 (12.8–17.62) | 0.37 |
Descending aorta (mm) | 10.1 (8.2–12.69) | 10.5 (8.52–12.92) | 0.46 |
Main pulmonary artery (mm) | 16.2 (11.6–18.4) | 19.8 (16.4–22.1) | 0.04 |
MPA/DA ratio | 1.58 (1.36–1.67) | 2.3 (1.88–2.40) | 0.0027 |
MPA/AA ratio | 1.16 (0.86–1.50) | 1.38 (1.25–1.52) | 0.0116 |
Years | p-Value | |||
---|---|---|---|---|
0–2 | MPA/AA ratio | Non-PHT group (n = 11) | 1.14 (0.96–1.42) | 0.0347 |
PHT group (n = 13) | 1.32 (1.21–1.48) | |||
MPA/DA ratio | Non-PHT group (n = 11) | 1.64 (1.36–1.78) | 0.0089 | |
PHT group (n = 13) | 2.17 (1.76–2.30) | |||
2–7 | MPA/AA ratio | Non-PHT group (n = 9) | 1.09 (0.84–1.31) | 0.0316 |
PHT group (n = 11) | 1.25 (1.18–1.37) | |||
MPA/DA ratio | Non-PHT group (n = 9) | 1.62 (1.26–1.87) | 0.0137 | |
PHT group (n = 11) | 2.04 (1.78–2.36) | |||
7–12 | MPA/AA ratio | Non-PHT group (n = 7) | 1.21 (0.98–1.62) | 0.078 |
PHT group (n = 8) | 1.34 (1.21–1.44) | |||
MPA/DA ratio | Non-PHT group (n = 7) | 1.68 (1.23–1.93) | 0.0097 | |
PHT group (n = 8) | 2.32 (1.89–2.45) | |||
12–18 | MPA/AA ratio | Non-PHT group (n = 8) | 1.23 (0.99–1.43) | 0.0416 |
PHT group (n = 9) | 1.33 (1.19–1.42) | |||
MPA/DA ratio | Non-PHT group (n = 8) | 1.68 (1.32–1.91) | 0.0087 | |
PHT group (n = 9) | 2.24 (1.84–2.48) | |||
>12 | MPA/AA ratio | Non-PHT group (n = 35) | 1.16 (0.86–1.50) | 0.0116 |
PHT group (n = 41) | 1.38 (1.25–1.52) | |||
MPA/DA ratio | Non-PHT group (n = 35) | 1.58 (1.36–1.67) | 0.0027 | |
PHT group (n = 41) | 2.2 (1.88–2.40) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güzelbağ, A.N.; Baş, S.; Kangel, D.; Toprak, M.H.H.; Oğuz, A.S.; Sağlam, S.; Tanıdır, İ.C.; Özturk, E. Computed Tomography Angiography in Pediatric Pulmonary Hypertension: Evaluating MPA-to-Aortic Ratios as Diagnostic Markers. Diagnostics 2025, 15, 1614. https://doi.org/10.3390/diagnostics15131614
Güzelbağ AN, Baş S, Kangel D, Toprak MHH, Oğuz AS, Sağlam S, Tanıdır İC, Özturk E. Computed Tomography Angiography in Pediatric Pulmonary Hypertension: Evaluating MPA-to-Aortic Ratios as Diagnostic Markers. Diagnostics. 2025; 15(13):1614. https://doi.org/10.3390/diagnostics15131614
Chicago/Turabian StyleGüzelbağ, Ali Nazım, Serap Baş, Demet Kangel, Muhammet Hamza Halil Toprak, Ahmet Saki Oğuz, Selin Sağlam, İbrahim Cansaran Tanıdır, and Erkut Özturk. 2025. "Computed Tomography Angiography in Pediatric Pulmonary Hypertension: Evaluating MPA-to-Aortic Ratios as Diagnostic Markers" Diagnostics 15, no. 13: 1614. https://doi.org/10.3390/diagnostics15131614
APA StyleGüzelbağ, A. N., Baş, S., Kangel, D., Toprak, M. H. H., Oğuz, A. S., Sağlam, S., Tanıdır, İ. C., & Özturk, E. (2025). Computed Tomography Angiography in Pediatric Pulmonary Hypertension: Evaluating MPA-to-Aortic Ratios as Diagnostic Markers. Diagnostics, 15(13), 1614. https://doi.org/10.3390/diagnostics15131614