Next Article in Journal
Consistency Analysis of Centiloid Values Across Three Commercial Software Platforms for Amyloid PET Quantification
Previous Article in Journal
Brittle Cornea Syndrome: Molecular Diagnosis and Management
Previous Article in Special Issue
Relationship Between Sigmoid Volvulus Subtypes, Clinical Course, and Imaging Findings
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

Comparing FIB-4, VCTE, pSWE, 2D-SWE, and MRE Thresholds and Diagnostic Accuracies for Detecting Hepatic Fibrosis in Patients with MASLD: A Systematic Review and Meta-Analysis

1
Department of Radiology and Diagnostic Imaging, University of Alberta, 8440-112 Street NW, Edmonton, AB T6G 2B7, Canada
2
Evidence-Based Practice Center, Mayo Clinic, Rochester, MN 55905, USA
*
Authors to whom correspondence should be addressed.
Diagnostics 2025, 15(13), 1598; https://doi.org/10.3390/diagnostics15131598
Submission received: 9 May 2025 / Revised: 11 June 2025 / Accepted: 18 June 2025 / Published: 24 June 2025
(This article belongs to the Special Issue Diagnostic Imaging in Gastrointestinal and Liver Diseases)

Abstract

Objectives: To compare thresholds and accuracies of FIB-4, vibration-controlled transient elastography (VCTE), point shear wave elastography (pSWE), 2D shear wave elastography (2D-SWE), and MR elastography (MRE) for detecting hepatic fibrosis in patients with MASLD. Materials and Methods: Systematic searching of MEDLINE, EMBASE, Cochrane Library, Scopus, and the gray literature from inception to March 2024 was performed. Studies evaluating accuracies of FIB-4, VCTE, 2D-SWE, pSWE, and/or MRE for detecting significant (≥F2) and/or advanced (≥F3) hepatic fibrosis in MASLD patients compared to histology were identified. Full-text review and data extraction were performed independently by two reviewers. Multivariate meta-analysis and subgroup analyses were performed using index test and fibrosis grading. Risk of bias was assessed using QUADAS-2. Results: 207 studies with over 80,000 patient investigations were included. FIB-4 1.3 threshold sensitivity was 71% (95% CI 66–75%) for detecting advanced hepatic fibrosis, which improved to 88% (85–91%) using a <0.75 threshold. FIB-4 specificity using a 2.67 threshold was 96% (94–97%). Sensitivities of 88–91% were achieved using thresholds of 3.2 kPa for pSWE, 4.92 kPa for 2D-SWE, 7.18 kPa for VCTE, and 2.32 kPa for MRE. No significant differences were identified for sensitivities in subgroup analysis with thresholds between 7 and 9 kPa. Most imaging-based studies were high risk of bias for the index test. Conclusions: A FIB-4 threshold of <0.75 and modality-dependent thresholds (VCTE < 7 kPa; pSWE <3 kPa; 2D-SWE <5 kPa; and MRE <2.5 kPa) would achieve sensitivities of around 90% when defining low-risk MASLD in population screening. A modified two-tier algorithm aligning with existing Society of Radiologists in Ultrasound guidelines would improve risk stratification accuracies compared to existing guidelines by European and American liver societies.

1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly non-alcoholic fatty liver disease (NAFLD), has become the most common cause of chronic liver disease (CLD) in the Western world with a rising incidence [1]. MASLD consists of a spectrum of steatotic liver diseases ranging from isolated liver steatosis (metabolic dysfunction-associated steatotic liver [MASL]), hepatocellular ballooning and lobular inflammation (metabolic dysfunction-associated steatohepatitis [MASH]), and hepatic fibrosis ultimately to cirrhosis. Hepatic fibrosis and cirrhosis are associated with liver failure, portal hypertension and other complications including hepatocellular carcinoma, ultimately resulting in approximately 2 million deaths annually worldwide [2]. Early detection and risk stratification of patients on the MASLD spectrum can help identify patients who may benefit from lifestyle and medical intervention to prevent and even reverse early stages of CLD. The traditional gold standard, liver biopsy, is subject to several limitations restricting widespread use at the population level. As such, several alternative non-invasive approaches to detect significant and advanced liver fibrosis have been developed, including various combinations of clinical and laboratory investigations (the most popular calculation now used is termed Fibrosis-4 [FIB-4]), as well as several imaging-based tools such as vibration-controlled transient elastography (VCTE), point shear wave elastography (pSWE), 2D shear wave elastography (2D-SWE), and MR elastography (MRE). These elastography technologies utilize different physical properties including variations of vibration-controlled technologies (TE and MRE) and acoustic radiation force impulses (pSWE and 2D-SWE).
Several guidelines have recently been published offering recommendations for population-level risk stratification using non-invasive techniques [1,2,3,4]. These guidelines have included a range of recommendations from a single vendor agnostic image-based multi-threshold risk stratification tool independent of underlying pathophysiology [4] to variations of a two-step blood-based followed by imaging-based vendor and modality agnostic approach, to risk stratification thresholds [1,3] and disease severity grading [2]. In guidelines using multi-modality image-based risk stratification tools, only one differentiated thresholds for MRE from other liver stiffness measurement (LSM) techniques [2] but did not differentiate between VCTE, pSWE, nor 2D-SWE. Given that each technique differs fundamentally in underlying technology, a nuanced evaluation of accuracy is needed, comparing the accuracy and threshold grading of these modalities to inform current and future revisions of these population-level risk stratification guidelines. This meta-analysis aims to evaluate the individual diagnostic accuracies of FIB-4, VCTE, pSWE, 2D-SWE, and MRE for detecting significant (METAVIR ≥ F2) and advanced (METAVIR ≥ F3) hepatic fibrosis in patients with MASLD at differing thresholds. Subgroup analyses are performed to determine the accuracies of frequently recommended modality-specific thresholds.

2. Methods

This systematic review and meta-analysis were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis–Diagnostic Test Accuracy (PRISMA-DTA) guidelines (Supplementary Table S1) [5]. Prior to initiation, a study proposal was submitted to the PROSPERO database (CRD42024528716). Institutional ethics approval and patient consent were not required as this review included pooled analysis of previously published studies.

2.1. Literature Search

A systematic search of multiple databases was performed to identify studies evaluating the diagnostic accuracy of one or more of (1) FIB-4, (2) VCTE, (3) pSWE, (4) 2D-SWE, or (5) MRE for detecting significant and/or advanced hepatic fibrosis in patients with MASLD. Individualized search protocols for MEDLINE, EMBASE, Cochrane Library (systematic reviews and registry of controlled trials), and Scopus from the date of inception up to March 25, 2024 were developed by a reviewer with 10 years of imaging experience and expertise in the performance of diagnostic test accuracy systematic reviews (M.P.W.). Several combinations of title/abstract/keywords and medical subject headings pertaining to information related to patient population (NAFLD/MASLD), index test(s) (FIB-4, VCTE, pSWE, 2D-SWE, and MRE) and diagnostic accuracy were customized by database. Individualized database search criteria are shown in Appendix A. No language restriction was applied. The electronic search was conducted according to best practices [6]. Studies from individual databases were then collated, and duplicates were removed. A title and abstract review was performed by a separate reviewer with 10 years of imaging experience and experience in diagnostic test accuracy studies (R.S.). A full-text review was then conducted separately in a blinded fashion by this reviewer and a medical student with prior experience in scoping reviews (R.S., S.M.), with a gray literature search performed in tandem by S.M. evaluating the most recent three years of meetings by the Radiological Society of North America (RSNA), the American Roentgen Ray Society (ARRS), and the American College of Gastroenterology (ACG). References for relevant articles were manually evaluated by reviewers, and forward searching of relevant included articles was also performed on Google Scholar.

2.2. Selection Criteria

Studies were identified and ultimately selected for inclusion when evaluating one or more index test diagnostic accuracies using the following criteria: (1) MASLD patient population; (2) one or more of FIB-4, VCTE, pSWE, 2D-SWE, and/or MRE used as the index test; (3) histopathology used as the reference standard; (4) studies evaluating a minimum of 5 patients; and (5) sufficient information to construct a 2 × 2 contingency table (true positive [TP], false positive [FP], false negative [FN], and true negative [TN]). Histopathology reference standards were referenced to METAVIR 0–1 versus 2–4 (“significant hepatic fibrosis”) and/or METAVIR 0–2 versus 3–4 (“advanced hepatic fibrosis”). When studies used alternative histopathology staging systems for hepatic fibrosis (such as Ishak score or Batts–Ludwig system), studies were correlated to METAVIR grading using previously proposed standardized correspondence between systems [7]. Studies were excluded from review if (1) MASLD was not the selected patient population and/or the performance of index tests in only MASLD patients could not be extracted from pooled data with other patient populations; (2) an index test other than the above was used; (3) patients without a histopathological reference standard were included; and (4) they were non-original articles, including review articles, guidelines, consensus statements, letters, and editorials.

2.3. Data Extraction

Two reviewers (R.S., S.M.) independently extracted data. Study, patient, and index test characteristics were recorded, including author, year, country of institution, study design (prospective or retrospective), number of centers involved in patient recruitment (single- or multicenter), reference standard, total number of patients, mean age and range, percentage of male sex, total number of cases of METAVIR ≥ 2 and/or ≥ 3, index test(s) used, thresholds by index test and fibrosis severity, reader agreement, and pertinent notes by study. For studies evaluating one or more of pSWE, 2D-SWE, and/or VCTE, details related to the index test including vendor used, probe frequency (when applicable), number of acquisitions of elastography, and technician (person performing the examination) experience were extracted. For studies evaluating MRE as an index test, details including vendor used, reader experience, MRI field strength (1.5 T or 3 T), pulse sequence used (gradient echo [GRE] versus spin echo echoplanar imaging [SE-EPI]), passive driver amplitude, and segmentation technique used (manual/freehand or automated) were extracted. Contingency tables were developed for each individual index test and fibrosis severity, and corresponding thresholds were recorded. Thresholds were reported as Young’s modulus (kPa) for imaging-based modalities. For studies reporting elasticity with shear wave velocities (m/s), a conversion calculation of E = 3pc2 was used, where E = Young’s modulus, p = density [1000 kg/m3], and c = shear wave velocity [8]. When true positive, false positive, false negative, and true negative cases were not reported directly, a contingency table was constructed using the total number of patients included in that index test, the total number of positive cases (based on fibrosis severity), and sensitivity and specificity. If contingency tables were provided by multiple readers within a single index test and fibrosis severity, results were averaged as a single result based on the a priori design [9]. After independent extraction, the data were combined into a single file where discrepancies were resolved by re-review and consensus between the two data extractors and a third author (R.S., S.M., and M.P.W.).

2.4. Risk of Bias Assessment

Risk of bias and applicability concerns were evaluated on a per study basis using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool [10]. The patient selection, reference standard, and flow and timing were assessed using standardized signaling questions outlined in QUADAS-2. Any single signaling question marked as high risk would result in a high-risk grading for a given domain.

2.5. Data Analysis

A bivariate mixed-effects regression model was initially planned in an a priori protocol with stratification by index test, fibrosis severity, and threshold used. However, after extraction of the data and recognition of inconsistent threshold performance variably reported across a continuous spectrum by study and index test, a multilevel random effects model was instead performed with stratification by index test and fibrosis severity (METAVIR 0–1 versus 2–4 and/or 0–2 versus 3–4) for the primary analysis. This model links the range of thresholds and retrospective pairs of sensitivity and specificity to identify thresholds at which the test is likely to perform optimally. The model assumes a logistic distribution and estimates the distribution parameters in patients without significant and/or advanced hepatic fibrosis, applying a linear mixed-effects model to the transformed data. The model accounts for between-study variability and dependence of sensitivity and specificity. Three separate sensitivity weightings were applied (sensitivity to specificity weights of 0.3:0.7, 0.5:0.5, and 0.7:0.2). These weightings were selected to recognize likely “rule in”, “balanced”, and “rule out” thresholds, respectively. Continuity correction using a value of one was applied to any cells in a 2 × 2 contingency table where a zero value was encountered. Summary sensitivities and specificities with a 95% confidence interval (CI) were estimated for each threshold. A separate multilevel random effects model was applied for FIB-4 studies evaluating thresholds of 1.3 and 2.67 for detecting both significant and advanced hepatic fibrosis based on current guideline recommendations. Finally, a vendor-specific multilevel random effects model was applied for pSWE, 2D-SWE, and VCTE studies in the same fashion.
Statistical measures of study variability and publication bias were not assessed as these are proven to be unreliable and no longer recommended in the PRISMA-DTA checklist [5]. Variability across studies was assumed, and exploration for potential causes of variability between image-based investigations using a priori subgroup analyses was planned. These included a number of study characteristics (year of publication, location, study design, reference standard, and duration between index test and reference standard), patient characteristics (percent male sex, mean age, total number of included patients, and total number of patients stratified by METAVIR grading), and imaging characteristics (VCTE/pSWE/2D-SWE: vendor used, technician experience, number of acquisitions, and threshold used; MRE: vendor used, MRI field strength, passive driver amplitude, segmentation method, and threshold used). Based on available data, completed subgroup analyses included location (east Asian country versus other countries), study design (prospective versus retrospective), number of centers (single-center versus multicenter), risk of bias (low risk of bias versus single domain with unclear or high risk of bias), vendor used, number of measurements for pSWE (<10 versus ≥ 10), MRI field strength (1.5 T versus 3 T), and MRI pulse sequence used (GRE versus SE-EPI). Analysis was performed using STATA 16 software (StataCorp, 2019, Stata Statistical Software: Release 15, College Station, TX, USA: StataCorp LP) and R software (R Core Team (2021, R: A language and environment for statistical computing; R Foundation for Statistical Computing, Vienna, Austria).

3. Results

The literature search PRISMA flow diagram is shown in Figure 1. Of 3806 articles reviewed, a total of 207 were included, with 121 articles evaluating FIB-4 (57,100 patients) [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131], 13 articles evaluating pSWE (1033 patients) [14,132,133,134,135,136,137,138,139,140,141,142,143], 24 articles evaluating 2D-SWE (2592 patients) [11,13,116,140,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163], 93 articles evaluating VCTE (24,628 patients) [12,15,19,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,49,67,116,133,134,136,137,138,140,142,146,150,151,152,154,159,160,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207], and 24 articles evaluating MRE (3420 patients) [15,16,17,18,19,20,116,139,145,146,152,172,174,175,198,208,209,210,211,212,213,214,215,216]. Some articles included the evaluation of more than one modality.

3.1. Study, Patient, and Imaging Characteristics

Study and patient details for FIB-4 are shown in Appendix B. Included studies were performed across numerous countries using a mix of prospective and retrospective study designs. All studies used liver biopsy as the reference standard.
Study, patient, and imaging characteristics for studies evaluating pSWE, 2D-SWE, and VCTE are shown in Appendix C. Studies evaluating 2D-SWE used a mix of vendors including Canon, General Electric (GE), Siemens, SuperSonic Imagine, Toshiba, and Ultrasign. Studies evaluating pSWE used a mix of Siemens, Phillips, and Samsung. All VCTE studies used Echosens (FibroScan). Studies for each modality were performed internationally with a mix of prospective and retrospective study designs. Readers demonstrated varying degrees of experience with the technologies (reported as number of exams and/or years of experience). All studies used liver biopsy as the reference standard.
Study, patient, and imaging characteristics for studies evaluating MRE are shown in Appendix D. Most studies were performed in North America, with east Asian countries the next most common. A mix of magnet strengths (1.5 Tesla or 3 Tesla) and pulse sequences (2D gradient echo [2D-GRE] or spin echo echoplanar [SE-EPI] sequences) were used. Most studies used a 60 Hz passive driver and a manual region of interest. All studies used liver biopsy as the reference standard.

3.2. Diagnostic Accuracy by Modality

Pooled and weighted sensitivity and specificity values reported by threshold for each modality for detecting significant (METAVIR 0–1 versus 2–4) and advanced (METAVIR 0–2 versus 3–4) hepatic fibrosis are shown in Table 1. Specific evaluation of studies assessing FIB-4 thresholds of 1.3 and 2.67 are shown in Table 2. Sensitivities are 65% (95% CI 55–73%) and 72% (68–76%) for detecting significant and advanced hepatic fibrosis at a FIB-4 threshold of 1.3. Sensitivities are increased to 89% (84–93%) and 88% (85–91%) for excluding significant and advanced hepatic fibrosis at FIB-4 thresholds of 0.48 and 0.74, respectively. Specificities are 97% (94–99%) and 96% (94–97%) for detecting significant and advanced hepatic fibrosis at a FIB-4 threshold of 2.67 with sensitivities of 25% (18–33%) and 32% (27–38%), respectively. A lowered specificity of 88% (85–91%) for detecting advanced hepatic fibrosis is achieved with a threshold of ≥2.4 with a corresponding increased sensitivity of approximately 10% (42% [35–50%]).
Studies evaluating pSWE showed lower threshold values for achieving similar accuracies compared to 2D-SWE and VCTE. Thresholds with sensitivities nearing 90% for detecting significant and advanced hepatic fibrosis are 0.80 (88% [42–99%]) and 3.20 (88% [74–95%]), respectively, for pSWE, 5.10 (88% [78–94%]) and 4.92 (88% [70–94%]) for 2D-SWE, and 6.10 (88% [92–92%]) and 7.18 (88% [85–91%]) for VCTE. Sensitivities of 90% (80–95%) and 91% (84–95%) for detecting significant and advanced hepatic fibrosis are achieved with MRE thresholds of 2.32 and 1.24, respectively.
Evaluations of vendor-specific thresholds and accuracies are shown in Table 3. Accuracies of most vendor-specific thresholds for pSWE, 2D-SWE, and MRE could not be performed due to the limited number of individual studies and/or contingency tables available by fibrosis severity. More than one vendor comparison was only available for 2D-SWE (GE and Supersonic Imagine), with GE demonstrating higher thresholds for similar accuracies. For example, sensitivities of 88% (81–96) and 88% (39–99%) for detecting advanced hepatic fibrosis were achieved with thresholds of 6.1 for GE and 3.3 for Supersonic Imagine, respectively.

3.3. Subgroup Analysis

Subgroup analyses evaluating reported thresholds of 7–9 kPa (8 ± 1 kPa) for pSWE, 2D-SWE, VCTE, and MRE are shown in Table 4. No significant differences were identified between sensitivities across all modalities and fibrosis severity. Studies using more than 10 measurements with pSWE had a higher specificity for detecting advanced hepatic fibrosis (84% vs. 57%, p < 0.05). GE demonstrated a higher specificity than Supersonic Imagine for detecting advanced hepatic fibrosis using 2D-SWE (86% vs. 62%, p < 0.05) but no difference was seen for Canon or Siemens. Studies with a single domain rated as unclear or high risk of bias demonstrated a higher specificity than low-risk studies for detecting advanced hepatic fibrosis using VCTE (79% vs. 61%, p < 0.05). No other differences were seen between specificities across modalities and fibrosis severity.

3.4. Risk of Bias Assessment

Risk of bias and applicability concerns are shown for each study separated by modality in Appendix E. Most imaging-based modalities (pSWE, 2D-SWE, VCTE, and MRE) were deemed high risk of bias for the index test as most studies used a retrospective threshold to evaluate accuracy. Many studies would also report a 90% sensitivity and/or 90% specificity, and these were included for multilevel evaluation when reported. Most studies evaluating imaging-based modalities were deemed low or unclear risk for patient selection, index test, and flow and timing. Most studies evaluating FIB-4 were deemed low or unclear risk of bias across all four domains.

4. Discussion

The European Association for the Study of Liver (EASL), American Association for the Study of Liver Disease (AASLD), and the American Gastroenterological Association (AGA) have each recently published guidelines for population-level screening of patients with suspected or diagnosed MASLD [1,2,3]. These guidelines use a combination of blood-based, then imaging-based recommendations. An initial blood-based investigation is suggested to be a more cost-effective first step with each guideline recommending the use of FIB-4 as the investigation of choice. In these pathways, a FIB-4 score of <1.3 characterizes a patient as low risk for liver-related outcomes, while a FIB-4 score of >2.67 characterizes a patient as high risk. Scores of 1.3–2.67 are deemed to be indeterminate and warrant further evaluation with an imaging-based investigation. Our meta-analysis of over 50,000 international patients receiving FIB-4 testing suggests that a “rule out” threshold of 1.3 results in sensitivities of only 71–74% for significant and advanced hepatic fibrosis. By contrast, a threshold of <0.75 can result in a sensitivity of nearly 90% for excluding advanced hepatic fibrosis. Conversely, a “rule in” threshold warranting referral to hepatology of 2.67 can result in specificities of 96–97% for detecting significant and advanced hepatic steatosis but with a sensitivity of only 32% (95% CI 27–38%). A slightly lower “rule in” threshold of ≥2.4 would result in a specificity nearing 90% and could also increase sensitivity by approximately 10% (42% [35–50%]), but it may result in an increase of too many patients without hepatic fibrosis being referred to hepatology services.
For imaging-based investigations recommended in indeterminate scenarios, existing guidelines recommend a modality- and vendor-agnostic threshold of 8 kPa as the low-risk threshold with two guidelines recommending follow-up with FIB-4 in 1–3 years [1,3] and one guideline recommending either follow-up or liver biopsy in these low-risk patients [2]. However, our meta-analysis indicates that a threshold of <8 kPa is likely to have a sensitivity between 70–80% when using 2D-SWE or VCTE for detecting advanced hepatic fibrosis, and a lower sensitivity when using pSWE. By contrast, individualized sensitivities of nearly 90% can be achieved with independent modality thresholds of 3 kPa for pSWE, 5 kPa for 2D SWE, and 7 kPa for VCTE (“3/5/7 rule”) for detecting advanced hepatic fibrosis. Conversely, a “rule in” threshold of 13 kPa could result in specificities of nearly 90% detecting advanced hepatic fibrosis with pSWE and VCTE and significant hepatic fibrosis with 2D-SWE. These thresholds would more closely align with the comparatively more conservative thresholds recommended by the Society of Radiologists in Ultrasound (SRU) for pSWE and 2D-SWE, which use a “rule out” threshold of 5 kPa and an indeterminate range of 5–13 kPa [4].
Finally, the ASSLD guideline recommends an MRE threshold of ≤3 kPa to risk stratify indeterminate risk patients into a low-risk category [2]. Our meta-analysis suggests that a threshold of 3 kPa would result in a sensitivity of around 80% for detecting significant and advanced hepatic fibrosis, while a threshold closer to 2.5 kPa would increase the sensitivity to around 90% for detecting significant hepatic fibrosis. A lower threshold was identified in our meta-analysis for detecting advanced hepatic fibrosis, which is felt to be a function of limited underlying studies evaluating this disease severity, so preference is placed on the identified threshold for significant hepatic fibrosis.
Based on these results, a revised proposed risk stratification pathway is shown in Figure 2. This proposed pathway lowers the “rule out” FIB-4 threshold from existing guidelines and provides modality-specific thresholds for imaging-based investigations. While this is likely to result in higher frequency use of imaging-based investigations and possibly a higher number of hepatology referrals for “indeterminate risk” patients, the ability to risk stratify MASLD patients into a “low-risk” category would be improved with the sensitivity increasing from below 80% to approximately 90%.

4.1. Limitations

Our meta-analysis is limited by near-universal issues of presumed variability in diagnostic test accuracy systematic reviews [5]. In an effort to identify potential sources of variability within different modalities, an a priori subgroup analysis explored several potential causes for variability separated by modality and fibrosis severity with thresholds between 7 and 9 kPa. No significant differences in sensitivity were identified in these thresholds, and only three differences in specificity were identified (higher specificities identified with ≥10 measurements for pSWE, for GE versus Supersonic Imagine vendors for 2D-SWE, and for studies with unclear and/or high-risk domains for VCTE). This likely under-recognizes other potential sources for variability which were not explored due to lack of available data or non-extraction. One area of particular concern was vendor-specific accuracies for pSWE, 2D-SWE, and MRE as these technologies rely on vendor-specific proprietary software parameters. Unlike VCTE, which uses a single-vendor product, these modalities may be dependent on the vendor-specific acquisition. However, subgroup analysis identified only a statistically lower accuracy for Supersonic Imagine compared to GE for 2D-SWE with thresholds between 7 and 9 kPa for detecting advanced but not significant hepatic fibrosis. A separate vendor-specific analysis of all thresholds was also performed to determine the appropriateness of vendor-specific threshold recommendations, although limited available primary data precluded detailed comparison between these vendors stratified by modality and fibrosis severity. The available data suggest that Supersonic Imagine may benefit from a lower “rule out” threshold recommendation than GE to sustain sensitivities around 90% for 2D-SWE, although this was not statistically significant. Another potential area for variability between modalities was the conversions needed for some studies such as shear wave velocities to Young’s modulus (most often needed in pSWE studies) and conversion to a METAVIR grading system from other histologic grading systems. It is possible that differences between vendor-specific conversion calculations and assumptions (such as density of soft tissue and liver) may have contributed to lower threshold values for pSWE compared to 2D-SWE and VCTE, for example. As such, it is recommended that manual conversions from shear wave speed to Young’s modulus should utilize the same calculation as was used in this study when referencing the modified threshold recommendations outlined here. Additionally, to reduce the risk for potential variability within an individual, surveillance of the same patient would best be performed using the same modality and, ideally, the same machine as was used previously. The SRU suggests a variance of 10% using the same machine to indicate a clinically significant change in individualized surveillance for pSWE and 2D-SWE [4].

4.2. Future Research

Several avenues of future research are needed. First, continued accuracy studies, particularly for image-based investigations including pSWE, 2D-SWE, and MRE will help future data synthesis identify important subgroups to further refine threshold recommendations. In particular, further studies evaluating vendor-specific accuracies and thresholds will help define the potential utility of vendor-specific threshold recommendations. Additionally, as population screening gains traction on a national and international level, large-scale longitudinal evaluation of the change in referral patterns and patient outcomes will be required. Through this process, optimal surveillance recommendations—currently based on expert consensus and dependent on individual guidelines and regional practice—can be further refined. For those receiving imaging-based follow-up, evaluation of individual modality-specific and clinically significant thresholds for change are needed. This includes studies evaluating specific subgroups of MASLD which can inform referral pathways and threshold recommendations. For example, limited literature evaluating patients <18 years of age is available, and recommended guidelines for the pediatric population with MASLD are not clearly established. Alternatively, type 2 diabetes is known to be the strongest predictor for developing MASLD/MASH-related advanced fibrosis and liver related complications and may warrant shorter surveillance periods [1]. Additionally, a cost-analysis study to determine the economic consequences of the proposed changes outlined in this study can help inform economic decisions necessary for these algorithmic changes.

4.3. Conclusions

In summary, this comprehensive systematic review, including more than 200 studies and over 80,000 index tests, offers novel insights into the accuracies of individual blood-based and imaging-based guidelines available to date. Our study suggests that existing guideline thresholds for determining low-risk patients with FIB-4 should be lowered, and image-based investigations for indeterminate patients should be individualized by modality. A revised proposed algorithm has been provided which can be used to inform future guideline development and revisions, and, more importantly, population-based screening and risk stratification practices.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/diagnostics15131598/s1, Table S1: PRISMA checklist.

Author Contributions

Conceptualization, M.P.W. and G.L.; Methodology, M.P.W., M.H.M., C.F. and G.L.; Formal analysis, M.P.W. and M.H.M.; Investigation, R.S. and S.M.; Resources, M.P.W. and C.F.; Data curation, R.S. and S.M.; Writing – original draft, M.P.W.; Writing – review & editing, M.P.W., R.S., S.M., M.H.M., C.F. and G.L.; Supervision, M.P.W., C.F. and G.L.; Funding acquisition, M.P.W. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by a University of Alberta Summer Student Research Award (Shyam Mehta).

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

CLD = Chronic liver disease; MASH = metabolic dysfunction-associated steatohepatitis; MASLD = Metabolic dysfunction-associated steatotic liver disease; MRE = Magnetic resonance elastography; NAFLD = Non-alcoholic fatty liver disease; PRISMA-DTA = Preferred Reporting Items for Systematic Reviews and Meta-analysis–Diagnostic Test Accuracy; SE-EPI = spin echo–echoplanar imaging; SWE = Shear wave elastography; QUADAS 2 = Quality Assessment of Diagnostic Accuracy Studies-2; VCTE = Vibration controlled transient elastography

Appendix A

Table A1. Search strategy by database.
Table A1. Search strategy by database.
DatabaseSearch Strategy
MEDLINE(exp Non-alcoholic Fatty Liver Disease/OR nonalcoholic fatty liver disease.mp. OR NAFLD.mp. OR metabolic dysfunction-associated steatotic liver disease.mp. OR MASLD.mp.) AND (FIB-4.mp. OR exp Elasticity Imaging Techniques/OR [transient elastography.mp. OR Fibroscan.mp.] OR shear wave elastography.mp. OR SWE.mp. OR pSWE.mp. OR 2D-SWE.mp. OR magnetic resonance elastography.mp. OR MRE.mp.) AND (exp “Sensitivity and Specificity”/OR sensitivity.mp. OR specificity.mp. OR performance.mp. OR exp Data Accuracy/OR accuracy.mp.)
EMBASE(exp nonalcoholic fatty liver/OR nonalcoholic fatty liver disease.mp. OR NAFLD.mp. OR Metabolic dysfunction-associated steatotic liver disease.mp. OR MASLD.mp.) AND (FIB-4.mp. OR exp elastography/OR exp transient elastography/or exp elasticity/OR transient elastography.mp. OR Fibroscan.mp. OR exp elastograph/OR exp shear wave elastography/OR shear wave elastography.mp. OR SWE.mp. OR pSWE.mp. OR 2D-SWE.mp. OR exp. magnetic resonance elastography/OR magnetic resonance elastography.mp. OR MRE.mp.) AND (exp “sensitivity and specificity”/OR sensitivity.mp. OR specificity.mp. OR performance.mp. OR exp performance/OR exp data accuracy/OR exp diagnostic test accuracy study/OR acciracy.mp. OR exp diagnostic accuracy/)
Scopus(TITLE-ABS-KEY ((non-alcoholic AND fatty AND liver AND disease) OR nafld OR (metabolic AND dysfunction-associated AND steatotic AND liver AND disease) OR masld) AND TITLE-ABS-KEY (fib-4 OR (transient AND elastography) OR fibroscan OR (shear AND wave AND elastography) OR swe OR pswe OR 2d-swe OR (magneticAND resonance AND elastography) OR mre) AND TITLE-ABS-KEY (sensitivity OR specificity OR performance OR accuracy))
Cochrane Library(nonalcoholic fatty liver disease OR nafld OR metabolic dysfunction-associated steatotic liver disease OR masld) AND (FIB-4 OR transient elastography OR fibroscan OR shear wave elastography OR see OR pswe OR 2d-swe OR magnetic resonance elastography OR mre) AND (sensitivity OR specificity OR performance OR accuracy)
Database search was performed on 25 March 2024.

Appendix B

Table A2. Study, patient, and imaging characteristics of included studies evaluating the accuracy of FIB-4 for detecting significant and/or advanced hepatic fibrosis in MASLD patients.
Table A2. Study, patient, and imaging characteristics of included studies evaluating the accuracy of FIB-4 for detecting significant and/or advanced hepatic fibrosis in MASLD patients.
AuthorYearCountryStudy DesignCentersTotal # PatientsMean Age (Range)Male Sex (%)Total Patients
Chen [11]2022ChinaRetrospectiveSingle-center10032 (16–65)31100
Lee [12]2022Republic of KoreaRetrospectiveMulticenter25144 (34–56)53251
Takeuchi [13]2018JapanProspectiveSingle-center7151 (18–82)6571
da Silva [14]2021BrazilProspectiveSingle-center1084521108
Duman [15]2024TurkeyRetrospectiveSingle-center11954 (20–73)32119
Cui [16]2015USAProspectiveSingle-center1025141102
Inada [17]2022JapanRetrospectiveSingle-center10565 (58–72)45105
Tamaki [18]2023USA and JapanBothMulticenter806NR48806
Ogawa [19]2018JapanRetrospectiveSingle-center1655458165
Jung [20]2021USAProspectiveMulti-center23851 (37–65)46238
Armandi [21]2023ItalyProspectiveSingle-center9650 (20–74)6296
Wong [22]2010France and HKProspectiveMulticenter2455155245
Boursier [23]2016FranceProspectiveMulticenter5885657452
Pennisi [24]2023ItalyProspectiveSingle-center52052 (25–78)65520
Pennisi [25]2023Multi-countryRetrospectiveMulticenter178061 (54–67)581780
Prat [26]2019United KingdomRetrospectiveSingle-center2748 (38–58)10027
Arvaniti [27]2023GreeceRetrospectiveSingle-center3850 (16–69)6138
Kao [28]2020TaiwanProspectiveSingle-center1233629123
Castera [29]2023FranceProspectiveMulticenter16359 (median)58163
Petta [30]2019Italy, France, Hong Kong, ChinaProspectiveMulticenter9685063968
Staufer [31]2019AustriaProspectiveMulticenter18652 (39–60)57186
Boursier [32]2023FranceProspectiveMulticenter105158 [50–66]601051
Noureddin [33]2023USARetrospectiveMulticenter5485835548
Noureddin [34]2021USARetrospectiveMulticenter130857 (median)NR1308
Cheung [35]2023Malaysia, Hong Kong, ChinaProspectiveMulticenter4314857431
Bhadoria [36]2017IndiaRetrospectiveSingle-center7794475779
Anstee [37]2019MulticenterProspectiveMulticenter312359583123
Anstee [38]2020UKProspectiveMulticenter42058 (44–74)52420
Labenz [39]2018GermanyProspectiveSingle-center24351 (19–93)53243
Arora [40]2023India, SingaporeRetrospectiveMulticenter6414355641
Barritt [41]2019USARetrospectiveMulticenter154959451549
Harrison [42]2020USAProspectiveMulti-center3205538307
Petta [43]2015ItalyProspectiveSingle-center17945 (18–72)68179
Gabriel-Medina [44]2023SpainProspectiveSingle-center1405942140
Zhang [45]2023ChinaProspectiveSingle-center71466871
Eddowes [46]2019UKProspectiveMulticenter35653 (42–64)57356
Sanyal [47]2023MultipleNot specifiedMulticenter143455513176
Boursier [48]2019FranceProspectiveMulticenter93857 (18–80)59938
Bertot [49]2023AustraliaRetrospectiveSingle-center27152 (40–64)40271
Kobayashi [50]2017JapanRetrospectiveSingle-center22956 (45–64)46229
Eren [51]2022TurkeyRetrospectiveMulticenter56048 (18–71)53560
Singh [52]2020USARetrospectiveSingle-center115751351157
Marella [53]2020USARetrospectiveSingle-center9074768907
Treeprasertsuk [54]2016ThailandProspectiveSingle-center1394147139
McPherson [55]2013UKRetrospectiveSingle-center3054863305
Kolhe [56]2019IndiaRetrospectiveSingle-center10046 (18–80)53100
Kaya [57]2019TurkeyRetrospectiveSingle-center4634653463
Nones [58]2017BrazilRetrospectiveMulticenter67553767
Balakrishnan [59]2018USACross-sectionalSingle-center1224720122
Alkayyali [60]2020TurkeyRetrospectiveSingle-center34948 (38–58)43349
Nielsen [61]2021DenmarkRetrospectiveMulticenter51755 (54–56)52517
Ampuero [62]2020Spain, France, Italy, Cuba, ChinaRetrospectiveMulticenter245252 (18–57)552452
Sang [63]2021China, Malaysia, IndiaRetrospectiveMulticenter54047 (18–57)52540
Shima [64]2020JapanRetrospectiveSingle-center27858 (18–57)48278
Seko [65]2023JapanRetrospectiveMulticenter37161 (17–85)43371
Siddiqui [66]2019USARetrospectiveMulticenter190450 (18–57)371904
Li [67]2024Hong KongRetrospectiveSingle-center27952 (18–57)55599
Sanyal [68]2023USARetrospectiveMulticenter107353 (10–56)381073
Moon [69]2023Republic of KoreaRetrospectiveSingle-center118NRNR118
Zambrano-Huailla [70]2020Peru, Brazil, ArgentinaRetrospectiveMulticenter37946 (18–75)30379
Yang [71]2022ChinaRetrospectiveSingle-center30946 (18–57)52309
Giammarino [72]2022USARetrospectiveSingle-center244NRNR244
Nishikawa [73]2016JapanRetrospectiveSingle-center13452 (18–57)49134
Kakisaka [74]2018JapanRetrospectiveSingle-center1255146125
Schmitz [75]2020GermanyProspectiveSingle-center1414327141
Zhang [76]2023ChinaRetrospectiveSingle-center10546 (15–69)52105
Balakrishnan [77]2021USARetrospectiveSingle-center99477499
Kariyama [78]2022JapanRetrospectiveMulticenter105955 (14–87)521059
Mohammed [79]2019EgyptProspectiveSingle-center1004738100
de la Tijera [80]2021MexicoRetrospectiveMulticenter22246 (37–54)26222
McPherson [81]2015UKProspectiveMulticenter63469 (66–72)35634
Shah [82]2020USAProspectiveMulticenter2056NRNR2056
Maurice [83]2021UK, USA, Italy, CanadaRetrospectiveMulticenter1164893116
Zhou [84]2019ChinaProspectiveSingle-center20742 (18–75)73207
Kouvari [85]2023USA, Italy, Greece, AustraliaProspectiveMulticenter45553 (51–56)52455
Ballestri [86]2021ItalyProspectiveSingle-center1074872107
Noureddin [87]2022USARetrospectiveMulticenter2325660232
Singh [88]2022IndiaProspectiveSingle-center12940NR129
Prasad [89]2020IndiaRetrospectiveSingle-center2403978240
Kim [90]2022USARetrospectiveSingle-center36351 (median)46363
Yoneda [91]2013JapanRetrospectiveMulticenter110260NR1102
Qadri [92]2022FinlandRetrospectiveSingle-center37850 (18–75)29378
Miller [93]2019USARetrospectiveSingle-center35450 (37–63)42354
Drolz [94]2021GermanyRetrospectiveSingle-center36847 (35–56)43368
Meneses [95]2020SpainProspectiveSingle-center5049 (18–57)3050
Alqahtani [96]2021USARetrospectiveSingle-center58443 (18–57)21584
De Carli [97]2020BrazilRetrospectiveSingle-center3233776266
Ito [98]2023Japan, Taiwan, KoreaRetrospectiveMulticenter148946 (18–57)541489
Bril [99]2020USARetrospectiveSingle-center21358 (50–66)84213
Satapathy [100]2019USARetrospectiveMulticenter269NRNR269
Moon [101]2024Republic of KoreaRetrospectiveMulticenter23146 (18–57)54231
Schwenger [102]2023CanadaRetrospectiveSingle-center17047 (18–57)79131
Andrade [103]2022BrazilRetrospectiveSingle-center14348 (19–68)34143
Aida [104]2015JapanRetrospectiveSingle-center14861 (46–70)36148
Huang [105]2023ChinaProspectiveSingle-center37331 (18–57)34373
McPherson [106]2010UKRetrospectiveSingle-center14551 (18–57)61145
Kaya [107]2020TurkeyRetrospectiveSingle-center4634648463
Xun [108]2012ChinaRetrospectiveSingle-center15237 (18–57)80152
Mikolasevic [109]2022CroatiaRetrospectiveSingle-center13559 (52–68)52135
Younossi [110]2023USARetrospectiveSingle-center4634831463
McPherson [111]2012UKRetrospectiveSingle-center12353 (42–64)54123
Sanyal [112]2023Global (including US and Europe)RetrospectiveMulticenter20535462410
Soresi [113]2020ItalyRetrospectiveSingle-center5742 (18–57)2857
Kaya [114]2020TurkeyRetrospectiveSingle-center10752 (29–71)36107
Kawamura [115]2013JapanRetrospectiveSingle-center3060 (29–80)7330
Kalaiyarasi [116]2024SingaporeProspectiveSingle-center1649 (18–57)3116
Ishiba [117]2021JapanRetrospectiveMulticenter31158 (16–84)59311
Udelsman [118]2021USARetrospectiveSingle-center246546 (18–57)292465
Zain [119]2020MalaysiaRetrospectiveSingle-center12250 (18–57)50122
Lubner [120]2021USARetrospectiveSingle-center1864940186
Soontornmanokul [121]2013ThailandRetrospectiveMulticenter11551 (18–31)50115
Wu [122]2021ChinaRetrospectiveSingle-center5841 (18–57)8558
Le [123]2018USARetrospectiveSingle-center2545035254
Sumida [124]2012JapanRetrospectiveMulticenter57652 (15)51576
Chong [125]2023MalaysiaRetrospectiveSingle-center19650 (39–61)50196
Pérez-Gutiérrez [126]2013Mexico and ChileRetrospectiveMulticenter22849 (36–61)49228
Singh [127]2017USARetrospectiveMulticenter1157NRNR1157
Panackel [128]2019IndiaRetrospectiveSingle-center11349 (37–61)55113
Sanyal [129]2023USAProspectiveMulticenter107354381073
Kolhe [130]2018IndiaRetrospectiveSingle-center10044 (31–56)42100
Luger [131]2016AustriaProspectiveSingle-center4642 (13)2046

Appendix C

Table A3. Study, patient, and imaging characteristics of included studies evaluating the accuracy of pSWE, 2D-SWE, or VCTE for detecting significant and/or advanced hepatic fibrosis in MASLD patients. pSWE = point shear wave elastography; 2D-SWE = 2D shear wave elastography; VCTE = vibration-controlled elastography; GE = General Electric; NA = not applicable; NR = not reported.
Table A3. Study, patient, and imaging characteristics of included studies evaluating the accuracy of pSWE, 2D-SWE, or VCTE for detecting significant and/or advanced hepatic fibrosis in MASLD patients. pSWE = point shear wave elastography; 2D-SWE = 2D shear wave elastography; VCTE = vibration-controlled elastography; GE = General Electric; NA = not applicable; NR = not reported.
AuthorModalityYearCountryStudy DesignCentersVendor TypeProbe FrequencyMin Number of AcquisitionsTechnician Experience Mean Age (Range)Male Sex (%)Total Patients
Medellin [132]pSWE2019CanadaProspectiveSingle-centerSiemens NR103–20 years57 (45–79)5147
da Silva [14]pSWE2021BrazilProspectiveSingle-centerSiemens4–1 MHz6>5 years452179
Roccarina [133]pSWE2017UKProspectiveSingle-centerPhilipsNRNRNR565960
Leong [134]pSWE2020MalaysiaProspectiveSingle-centerPhilips NR3“Experienced”57 (47–67)46100
Kapur [135]pSWE2021IndiaProspectiveSingle-centerPhilips 1–5 MHzNRNR397117
Argalia [136]pSWE2022ItalyProspectiveSingle-centerPhilips NR10>years526450
Roccarina [137]pSWE2022UKRetrospectiveSingle-centerPhilipsNR10“Experienced”56 (43–69)57159
Taibbi [138]pSWE2021ItalyProspectiveSingle-centerSamsung1–7 MHz10>15 years55 (40–73)5946
Cui [139]pSWE2016USAProspectiveSingle-centerSiemens1–5 MHz110.5 years4946125
Cassinotto [140]pSWE2016FranceProspectiveMulticenterSiemensNR10>2 years57 (18–80)59236
Tomeno [141]pSWE2009JapanProspectiveSingle-centerSiemensNRNRNR52NR50
Yoneda [142]pSWE2010JapanProspectiveSingle-centerSiemens4 MHz10“Experienced”5451NR
Braticevici [143]pSWE2013RomaniaProspectiveSingle-centerSiemens4-MHz10NR51 (47–90)4464
Lee [144]2D SWE2021Republic of KoreaProspectiveSingle-centerCanon1–8 MHz9Radiologist NOS48 (30–63)43102
Zhang [145]2D SWE2022USAProspectiveSingle-centerGE1–6 MHz10>10 years51.8 (25–78)46100
Furlan [146]2D SWE2020USAProspectiveSingle-centerGE2–5 MHz10>10 years50 (24–53)4257
Yu Ogino [147]2D SWE2023JapanRetrospectiveSingle-centerGENR6>26 years51 (37–65)61107
Zhou [148]2D SWE2022ChinaRetrospectiveSingle-centerSuperSonic ImagineNR5>10 years46 (18–77)47116
Ozturk [149]2D SWE2020USARetrospectiveSingle-centerSuperSonic Imagine1–6 MHz10Variable51 (39–62)47116
Sharpton [150]2D SWE2021USAProspectiveSingle-centerSuperSonic Imagine1–6 MHz3>1 year55 (45–64)54114
Taru [151]2D SWE2024RomaniaRetrospectiveSingle-centerSuperSonic Imagine1–6 MHz5NRNRNR149
Imajo [152]2D SWE2022JapanProspectiveSingle-centerGE3–6 MHz10>6 years61 (51–71)53201
Herrmann [153]2D SWE2018Multi-countryRetrospectiveMulticenterSuperSonic Imagine2–6 MHz1 (variable)NR54 (20–83)54156
Chen [11]2D SWE2022ChinaRetrospectiveSingle-centerSuperSonic Imagine1–6 MHz3NR32 (16–65)31100
Mendoza [154]2D SWE2022SwitzerlandProspectiveSingle-centerSuperSonic ImagineNR3NR53 (25–78)4388
Takeuchi [13]2D SWE2018JapanProspectiveSingle-centerSuperSonic Imagine1–6 MHz5>10 years51 (18–82)6571
Jamialahmadi [155]2D SWE2019IranProspectiveSingle-centerSuperSonic Imagine1–6 MHz10NR39 (27–50)2090
Petzold [156]2D SWE2020GermanyProspectiveSingle-centerGENRNR6533370
Didenko [157]2D SWE2019UkraineProspectiveSingle-centerUltrasign2–5 MHzNRSonographer NOS473324
Sugimoto [158]2D SWE2020JapanProspectiveSingle-centerCanon3.5 MHz10>15 years5351111
Kalaiyarasi [116]2D SWE2024SingaporeProspectiveSingle-centerGE3–5 MHz5>20 years493116
Seo [159]2D SWE2023Republic of KoreaProspectiveMulticenterCanon1–8 MHz10NR36 (27–50)51105
Kuroda [160]2D SWE2021JapanProspectiveSingle-centerGE4.0 MHz10Radiologist NOS55 [18–80]49202
Jang [161]2D SWE2022Republic of KoreaProspectiveMulticenterCanon1–8 MHz58–28 years38 (27–54)48132
Kim [162]2D SWE2022Republic of KoreaRetrospectiveSingle-centerTobshibaNR10NR51 [25–78]4760
Lee [163]2D SWE2017Republic of KoreaProspectiveSingle-centerSiemens1–5 MHzNR13 years56 (53–58)4469
Cassinotto [140]2D SWE2016FranceProspectiveMulticenterSiemensNR10>2 years57 (18–80)59236
Duman [15]VCTE2024TurkeyRetrospectiveSingle centerEchosensNANRNR54 (20–73)32119
Gabriel-Medina [44]VCTE2024SpainRetrospectiveSingle centerEchosensNA10“Experienced”5942140
Mikolasevic [164]VCTE2021CroatiaProspectiveMulticenterEchosensNA10“Trained”5951179
Eddowes [165]VCTE2016UKProspectiveMulticenterEchosensNA10NR53 (39–66)57117
Jun Yang [166]VCTE2019UKProspectiveSingle-centerEchosensNANRNRNRNR373
Petta [167]VCTE2019UKProspectiveMulticenterEchosensNANRNR5357356
Gitto [168]VCTE2021ChinaProspectiveSingle-centerEchosensNA10“Skilled”58 (24–74)4085
Juan Zhu [169]VCTE2020JapanProspectiveMulticenterEchosensNA10“Experienced”52 (35–70)58122
Wong [170]VCTE2017USAProspectiveMulticenterEchosensNANRNR5232292
Kawamura [173]VCTE2015ChinaProspectiveSingle centerEchosensNA10NR5054203
Imajo [152]VCTE2017JapanProspectiveSingle centerEchosensNA10NR5750171
Bae [174]VCTE2023ChinaRetrospectiveSingle centerEchosensNA10NR46 (18–73)6871
Park [174]VCTE2021The NetherlandsProspectiveSingle centerEchosensNANR>50 exams49.5 (20–74)6237
Hockings [208]VCTE2020USAProspectiveSingle centerEchosensNA10>100 exams50 (24–53)4259
Chung [175]VCTE2022Republic of KoreaRetrospectiveMulticenterEchosensNA10>500 exams44 (34–56)53251
Costa-Silva [214]VCTE2021USAProspectiveSingle centerEchosensNA10“Trained”55 (45–64)54114
Yilmaz [176]VCTE2024RomaniaRetrospectiveSingle centerEchosensNA10NRNRNR149
Bahl [177]VCTE2022JapanRetrospectiveMulticenterEchosensNANRNRNRNR126
Pan [178]VCTE2022JapanProspectiveSingle centerEchosensNA106 years61 (51–71)53201
Lu [179]VCTE2017UKProspectiveSingle centerEchosensNANRNR565960
Fujii [180]VCTE2022SwitzerlandProspectiveSingle-centerEchosensNA3NR53 [25–78]58102
Machado [181]VCTE2024SingaporeProspectiveSingle-centerEchosensNA10NR49516
Tokushige [182]VCTE2023Republic of KoreaRetrospectiveMulticenterEchosensNANRNR36 (27–50)51105
Yang [184]VCTE2021JapanProspectiveSingle-centerEchosensNANR“Experienced”55 (18–80)49202
Ruiz-Fernandez [185]VCTE2022Republic of KoreaRetrospectiveSingle-centerEchosensNANR1051 (25–78)4760
Del Barrio Azaceta [186]VCTE2016Republic of KoreaProspectiveSingle-centerEchosensNANR>1000 exam56 (53–58)4494
Hernandez-Rocha [187]VCTE2020MalaysiaProspectiveSingle-centerEchosensNA10“Trained”57 (47–67)46100
Zheng [188]VCTE2021ItalyProspectiveSingle-centerEchosensNA10>15 years55 (40–73)5946
Chuah [189]VCTE2022ItalyProspectiveSingle-centerEchosensNA10NR526450
Ghanvatkar [190]VCTE2022UKRetrospectiveSingle centerEchosensNA10“Experienced”56NR159
Chu [191]VCTE2017USAProspectiveSingle-centerEchosensNA10NR514394
Yang [192]VCTE2016JapanProspectiveMulticenterEchosensNA10NR5857127
Roh [193]VCTE2018JapanRetrospectiveSingle-centerEchosensNANRNR5458113
Bob Harrap [194]VCTE2023ItalyProspectiveSingle centerEchosensNA10“Experienced”50 (20–74)6296
de Ledinghen [195]VCTE2010HK, FranceProspectiveMulticenterEchosensNA10NR5155246
Garteiser [196]VCTE2016FranceRetrospectiveMulticenterEchosensNA10“Experienced”5657452
Gaia [197]VCTE2023IranProspectiveMulticenterEchosensNA10>500 exams436273
Alsaqal [198]VCTE2010MalaysiaProspectiveSingle-centerEchosensNANRNR496025
Naveau [199]VCTE2023ItalyRetrospectiveSingle centerEchosensNA10“Experienced”52 (25–78)65520
Jafarov [200]VCTE2017Hong KongProspectiveSingle-centerEchosensNA10>50 exams52 (41–57)55215
Tapper [201]VCTE2023Multi-countryProspectiveMulticenterEchosensNANRNR5158632
Chakraborty [202]VCTE2021BrazilProspectiveSingle-centerEchosensNA10NR36 (20–67)3185
Siddiqui [203]VCTE2016Republic of KoreaProspectiveMulticenterEchosensNA10“Experienced”4161183
Pathik [204]VCTE2019UKRetrospectiveSingle-centerEchosensNA10NR47 (37–57)8127
Ergelen [205]VCTE2018AustraliaProspectiveMulti-centerEchosensNA10>2000 exams463266
Kosick [206]VCTE2019AustriaProspectiveMulticenterEchosensNA10NR5257140
Tovo [207]VCTE2023ChinaRetrospectiveSingle-centerEchosensNANRNR43 (35–59)59172
Li [67]VCTE2012CanadaProspectiveMulticenterEchosensNA10“Experienced”50 (43–57)6375
Bhatia [104]VCTE2023GreeceRetrospectiveSingle-centerEchosensNA10>10 years50 (16–69)6038
Koh [105]VCTE2020TaiwanProspectiveSingle-centerEchosensNA10"Trained"3629123
Boursier [48]VCTE2023FranceProspectiveMulticenterEchosensNANRNR59 (median)58163
Bertot [49]VCTE2022SpainProspectiveSingle-centerEchosensNANRNR5140115
Al-Fryan [24]VCTE2019Italy, France, HK, ChinaProspectiveMulticenterEchosensNA10>300 exams5063968
Chawla [25]VCTE2023SpainProspectiveMulticenterEchosensNA10NR56661124
Hernandez [26]VCTE2015ChinaProspectiveMulticenterEchosensNA10>300 exams57 (47–67)46101
Pópulo [27]VCTE2023FranceProspectiveMulticenterEchosensNA10NR58 (50–66)601051
Jeong [28]VCTE2021USARetrospectiveMulticenterEchosensNANRNR57 (median)NR1308
Kwee [29]VCTE2023USARetrospectiveMulticenterEchosensNA10“Trained”5835548
Trifan [30]VCTE2014USAProspectiveSingle-centerEchosensNANRNR54 (44–64)4094
Gaia-Póvoa [31]VCTE2016FranceProspectiveMulticenterEchosensNA10“Experienced”57 (18–80)59223
Boursier [32]VCTE2020MalaysiaRetrospectiveSingle-centerEchosensNA10“Trained”5545136
Younes [33]VCTE2023Malaysia/HK/ChinaProspectiveMulticenterEchosensNA10NR4857396
Marra [34]VCTE2015TurkeyProspectiveSingle-centerEchosensNA10NR46 (24–62)4987
Liu [35]VCTE2017IndiaRetrospectiveSingle-centerEchosensNA10NR4475779
Yoo [36]VCTE2010JapanProspectiveSingle-centerEchosensNA10“Experienced”514654
Saadeh [37]VCTE2008JapanProspectiveMulticenterEchosensNA10NR52 [25–78]4197
Watanabe [38]VCTE2019MulticenterProspectiveMulticenterEchosensNA10NR59 (53–65)581765
Xiao [39]VCTE2021ChinaProspectiveSingle-centerEchosensNA10“Experienced”40 (32–56)5191
Cai [40]VCTE2013MalaysiaProspectiveSingle-centerEchosensNA10NR50 (38–62)53120
Barritt [41]VCTE2010RomaniaProspectiveSingle-centerEchosensNA10NR42 (20–69)7172
Harrison [42]VCTE2023India, SingaporeRetrospectiveMulticenterEchosensNA10“Trained”4355641
Petta [43]VCTE2009France/ChinaProspectiveMulticenterEchosensNANRNR5155208
Selvarajah [45]VCTE2018GermanyProspectiveSingle-centerEchosensNA10“Trained”51 (19–93)53126
Djordjevic [46]VCTE2017Republic of KoreaProspectiveMulticenterEchosensNA10>1000 exams56 (53–58)4494
Sanyal [47]VCTE2021FranceProspectiveSingle-centerEchosensNA10>100 exams42 ± 1116152
Aziz [50]VCTE2011ItalyProspectiveSingle-centerEchosensNA10“Trained”48 (24–65)7272
Ruiz [51]VCTE2019USARetrospectiveMulticenterEchosensNA10“Experienced”59451549
Jang [52]VCTE2020USAProspectiveMulti-centerEchosensNA10NR5562212
Sung [53]VCTE2015ItalyProspectiveMulticenterEchosensNA10NR45 (18–78)70321
Kim [54]VCTE2022SwedenProspectiveSingle-centerEchosensNA10“Experienced”55 (13.09)5966
Liang [55]VCTE2014FranceProspectiveSingle-centerEchosensNA10NR4319100
Zhang [56]VCTE2020TurkeyProspectiveSingle-centerEchosensNA10>15,000 exams4959139
Wang [57]VCTE2016USAProspectiveSingle-centerEchosensNA10>500 exams5159120
Cho [58]VCTE2019USARetrospectiveSingle-centerEchosensNA10NR54 191
Toubia [59]VCTE2019USAProspectiveMulticenterEchosensNA10“Trained”5132393
Kim [60]VCTE2015IndiaProspectiveSingle-centerEchosensNA10NR42 (18–80)46110
Nam [61]VCTE2023MultipleNot specifiedMulticenterEchosensNA8NR55511434
Moon [62]VCTE2019FranceProspectiveMulticenterEchosensNA10NR57 (18–80)59938
Kim [63]VCTE2023AustraliaRetrospectiveSingle-centerEchosensNA10“Experienced”52 (40–64)40125
Park [64]VCTE2016TurkeyProspectiveSingle-centerEchosensNA10NR47 (25–78)6263
Cho [65]VCTE2019CanadaRetrospectiveSingle-centerEchosensNANRNR55 (50–64)5486
Jeong [66]VCTE2024Hong KongRetrospectiveSingleEchosensNA10“Experienced”52 (18–57)55431
Li [67]VCTE2019BrazilProspectiveMulticenterEchosensNA10>500 exams55 (45–65)26104

Appendix D

Table A4. Study, patient, and imaging characteristics of included studies evaluating the accuracy of MRE for detecting significant and/or advanced hepatic fibrosis in MASLD patients. MRE = magnetic resonance elastography; NR = not reported; GE = General Electric; GRE = gradient echo; SE-EPI = spin echo echoplanar; ROI = region of interest.
Table A4. Study, patient, and imaging characteristics of included studies evaluating the accuracy of MRE for detecting significant and/or advanced hepatic fibrosis in MASLD patients. MRE = magnetic resonance elastography; NR = not reported; GE = General Electric; GRE = gradient echo; SE-EPI = spin echo echoplanar; ROI = region of interest.
AuthorYearCountryStudy DesignCentersVendor TypeReader ExperienceMRI Field StrengthPulse SequenceDriver AmplitudeSegmentation UsedMean Age (Range)Male Sex (%)Total Patients
Duman [15]2024TurkeyRetrospectiveSingle-centerSiemensNR1.5T2D GRENRManual ROI54 (20–73)32119
Troelstra [172]2021The NetherlandsProspectiveSingle-centerPhillips3 years3T2D GRE50 HzManual ROI496235
Hockings [208]2020SwedenNRNot specifiedNRNRNRNRNRNRNRNR68
Cui [16]2015USAProspectiveSingle-centerGENR3T2D GRENRManual ROI5141102
Zhang [145]2022USAProspectiveSingle-centerGE>1 year3T2D GRE60 HzManual ROI52 (25–78)46100
Furlan [146]2020USAProspectiveSingle-centerNRNR1.5T2D GRENRNR50 (24–53)4259
Imajo [152]2022JapanProspectiveSingle-centerGE>6 years3TSE-EPI60 HzManual ROI61 (51–71)53201
Kalaiyarasi [116]2024SingaporeProspectiveSingle-centerGE“Experienced”1.5T2D GRENRManual ROI493116
Loomba [209]2013USAProspectiveSingle-centerNRNRNRNRNRNR505252
Loomba [210]2014USAProspectiveSingle-centerGE“Trained”3T2D GRE60 HzManual ROI5044117
Loomba [211]2016USAProspectiveSingle-centerGE“Trained”3T2D GRE60 HzManual ROI504499
Loomba [212]2020USARetrospectiveMulticenterNRNRNRNRNRNRNR44296
Li [213]2023USAProspectiveSingle-centerGE5 years1.5T2D GRE60 HzManual ROI55 (46–60)38104
Cui [139]2016USAProspectiveSingle-centerGENR3T2D GRENRManual ROI49 (15.4)46125
Park [174]2017USAProspectiveSingle-centerGE“Trained”3T2D GRE60 Hz Manual ROI514394
Imajo [175]2016JapanProspectiveMulticenterGERadiologist3TSE-EPINRManual ROI5857142
Costa-Silva [214]2018BrazilProspectiveSingle-centerGE15 years1.5TNR60 HzManual ROI54 (25–76)1449
Kim [215]2020Republic of KoreaProspectiveSingle-centerSiemens6–25 years3TSE-EPINRNR513447
Hanniman [216]2022CanadaProspectiveSingle-centerGEMedical student, Fellow3TNR60 HzManual ROI55 (33–74)3749
Alsaqal [198]2022SwedenProspectiveSingle-centerGE“Trained”3T2D GRENRNR55 (18–70)5964
Naveau [199]2023USA/JapanProspectiveMulticenterGE“Trained”1.5T and 3TNRNRNR57 (46–67)48806
Jafarov [200]2022JapanRetrospectiveSingle-centerGENR1.5T2D GRE60 HzManual ROI65 (58–72)45105
Tapper [201]2018JapanRetrospectiveSingle-centerNRNRNRNRNRNR5458111
Chakraborty [202]2021USA/JapanProspectiveMulti-centerGERadiologist3TNR60HzAutomated ROI 51 (USA)/56 (Japan)46 (USA)/56 (Japan)238 (USA)/272 (Japan)

Appendix E

Table A5. Results of QUADAS-2 assessment for risk of bias and applicability concerns reported on a per index test (modality) basis.
Table A5. Results of QUADAS-2 assessment for risk of bias and applicability concerns reported on a per index test (modality) basis.
AuthorModalityRoB Patient SelectionRoB Index TestRoB Reference StandardRoB Flow and TimingAC Patient SelectionAC Index TestAC Reference Standard
Lee2D SWELowHighLowLowLowLowLow
Zhang2D SWELowHighLowLowLowLowLow
Furlan2D SWELowHighLowLowLowLowLow
Yu Ogino2D SWELowHighLowHighHighLowLow
Zhou2D SWELowHighLowLowLowHighLow
Ozturk2D SWEHighHighLowLowLowLowLow
Sharpton2D SWEHighHighLowLowLowLowLow
Taru2D SWELowHighUnclearUnclearLowUnclearLow
Imajo2D SWELowHighLowLowLowLowLow
Herrmann2D SWELowHighLowLowLowLowLow
Chen2D SWELowHighLowLowLowLowLow
Mendoza2D SWELowLowLowLowLowLowLow
Takeuchi2D SWELowHighLowLowLowLowLow
Jamialahmadi2D SWEHighHighHighHighHighHighLow
Petzold2D SWELowHighLowHighLowLowLow
Didenko2D SWELowUnclearLow LowLowLowLow
Sugimoto2D SWEHighHighLowHighHighHighLow
Kalaiyarasi2D SWEHighLowLowHighHighLowLow
Seo2D SWEHighHighHighLowHighHighHigh
Kuroda2D SWELowHighLowLowLowLowLow
Jang2D SWELowUnclearHighLowLowLowHigh
Kim2D SWELowHighLowLowLowUnclearLow
Lee2D SWELowHighLowLowLowLowLow
Cassinotto2D SWELowHighLowLowLowHighLow
MedellinpSWELowLowLowUnlearLowLowLow
da SilvapSWELowHighLowLowLowHighLow
RoccarinapSWELowHighUnclearUnclearUnclearHighUnclear
LeongpSWELowHighLowLowLowHighLow
KapurpSWEHighHighHighYesLowHighHigh
ArgaliapSWELowHighLowLowLowHighLow
RoccarinapSWELowHighHighHighLowHighLow
TaibbipSWELowHighLowLowLowHighLow
CuipSWELowHighLowLowLowHighLow
CassinottopSWELowHighLowLowLowHighLow
TomenopSWELowHighLowLowLowHighLow
YonedapSWELowHighLowHighLowHighLow
BraticevicipSWELowHighLowLowLowLowLow
DumanVCTELowHighLowLowLowHighLow
Gabriel-MedinaVCTELowHighLowLowLowHighLow
MikolasevicVCTELowHighLowLowLowHighLow
EddowesVCTELowHighLowLowLowHighLow
EddowesVCTELowHighLowLowLowHighLow
EddowesVCTELowHighLowLowLowHighLow
YuVCTELowHighLowLowLowHighLow
OedaVCTELowHighLowLowLowHighLow
SiddiquiVCTELowHighLowLowLowHighLow
WongVCTELowHighUnclearLowUnclearHighUnclear
SekiVCTELowHighLowLowLowHighLow
ZhangVCTELowHighLowLowLowHighLow
TroelstraVCTELowHighLowLowLowHighLow
FurlanVCTELowHighLowLowLowHighLow
LeeVCTELowHighUnclearLowLowHighLow
SharptonVCTEHighHighLowLowLowHighLow
TaruVCTELowHighLowLowLowHighLow
KawamuraVCTELowLowLowLowLowLowLow
ImajoVCTELowHighLowLowLowHighLow
RoccarinaVCTEHighHighLowLowHighHighLow
MendozaVCTELowHighLowLowLowHighLow
KalaiyarasiVCTEHighHighLowHighHighHighLow
SeoVCTEHighHighHighLowHighHighHigh
KurodaVCTELowHighLowLowLowHighLow
KimVCTELowHighLowLowLowHighLow
LeeVCTELowHighLowLowLowHighLow
LeongVCTEHighHighHighLowHighHighLow
TaibbiVCTELowHighLowLowLowHighLow
ArgaliaVCTEYesHighYesYesLowHighLow
RoccarinaVCTELowHighLowUnclearLowHighLow
ParkVCTELowHighHighLowLowHighLow
ImajoVCTEYesHighHighUnclearLowHighLow
OgawaVCTEHighHighLowLowHighHighLow
ArmandiVCTELowHighLowLowLowHighLow
WongVCTELowHighLowLowLowHighLow
BoursierVCTELowHighLowLowLowHighLow
SalehiVCTELowHighLowLowLowHighLow
MahadevaVCTELowHighLowLowLowHighLow
Pennisi VCTELowLowLowLowLowLowLow
LoongVCTELowUnclearLowLowLowUnclearLow
ValiVCTELowHighLowLowLowHighLow
FilhoVCTELowHighLowHighLowHighLow
LeeVCTELowHighLowLowLowHighLow
PratVCTELowUnclearLowLowLowUnclearLow
OoiVCTELowHighLowLowLowHighLow
StauferVCTELowHighLowLowLowHighLow
LuVCTEHighHighLowLowHighHighLow
MyersVCTELowHighLowLowLowHighLow
ArvanitiVCTEUnclearHighLowLowUnclearHighUnclear
KaoVCTELowHighLowLowLowHighLow
CasteraVCTELowLowLowLowLowLowLow
Ruiz-FernandezVCTELowHighLowLowLowHighLow
PettaVCTELowLowLowLowLowLowLow
Del Barrio AzacetaVCTELowUnclearLowUnclearLowUnclearLow
ShenVCTELowHighLowLowLowHighLow
BoursierVCTELowLowLowLowLowLowLow
NoureddinVCTEUnclearUnclearUnclearUnclearUnclearUnclearUnclear
NoureddinVCTELowLowLowLowLowLowLow
VuppalanchiVCTEUnclearHighLowHighUnclearHighLow
CassinottoVCTELowHighLowLowLowHighLow
ChuahVCTELowUnclearLowLowLowUnclearLow
CheungVCTELowHighLowLowLowHighLow
ErgelenVCTELowHighLowLowLowHighLow
BhadoriaVCTELowHighLowLowLowHighLow
YonedaVCTELowHighLowLowLowHighLow
YonedaVCTELowHighLowLowLowHighLow
AnsteeVCTELowLowLowLowLowLowLow
YangVCTELowHighLowLowLowHighLow
MahadevaVCTELowHighLowLowLowHighLow
LupsorVCTELowHighLowLowLowHighLow
AroraVCTELowHighLowLowLowHighLow
de LedinghenVCTELowHighLowLowLowHighLow
LabenzVCTELowUnclearLowHighLowUnclearLow
LeeVCTELowHighLowLowLowHighLow
GarteiserVCTELowHighLowLowLowHighLow
GaiaVCTEHighHighLowLowHighHighLow
BarrittVCTEUnclearUnclearLowUnclearUnclearUnclearLow
HarrisonVCTELowHighLowLowLowHighLow
PettaVCTELowUnclearLowLowLowUnclearLow
AlsaqalVCTELowHighLowLowLowHighLow
NaveauVCTELowHighLowLowLowHighLow
JafarovVCTELowHighLowLowLowHighLow
TapperVCTELowHighLowLowLowHighLow
ChakrabortyVCTELowHighLowLowLowHighLow
SiddiquiVCTELowHighLowLowLowHighLow
PathikVCTELowHighLowLowLowHighLow
SanyalVCTELowHighLowLowLowHighLow
BoursierVCTELowHighLowLowLowHighLow
BertotVCTELowLowLowLowLowLowLow
ErgelenVCTEUnclearHighLowLowUnclearHighLow
KosickVCTEUnclearHighUnclearUnclearUnclearHighUnclear
LiVCTELowLowUnclearLowLowLowUnclear
TovoVCTELowLowLowLowLowLowLow
DumanMRELowHighLowLowLowHighLow
TroelstraMRELowHighLowLowLowHighLow
HockingsMREUnclearUnclearUnclearUnclearUnclearUnclearUnclear
CuiMRELowLowLowLowLowLowLow
ZhangMRELowHighLowLowLowHighLow
FurlanMRELowHighLowUnclearLowHighLow
ImajoMRELowHighLowLowLowHighLow
KalaiyarasiMRELowLowLowLowLowLowLow
LoombaMREUnclearUnclearLowUnclearUnclearUnclearLow
LoombaMRELowHighLowLowLowHighLow
LoombaMRELowUnclearLowLowLowUnclearLow
LoombaMRELowLowLowUnclearLowLowLow
LiMRELowHighLowLowLowHighLow
CuiMRELowHighLowLowLowHighLow
ParkMRELowHighLowLowLowHighLow
ImajoMRELowHighLowLowLowHighLow
Costa-SilvaMRELowHighLowUnclearLowHighLow
KimMRELowHighLowLowLowHighLow
HannimanMRELowLowLowLowLowLowLow
AlsaqalMRELowHighLowLowLowHighLow
TamakiMRELowLowLowLowLowLowLow
InadaMRELowHighLowLowLowHighLow
OgawaMREHighHighLowLowHighHighLow
Jung MRELowHighLowLowLowHighLow
ChenFIB-4UnclearUnclearUnclearUnclearUnclearUnclearUnclear
LeeFIB-4LowLowLowLowLowLowLow
TakeuchiFIB-4LowLowLowLowLowLowLow
da SilvaFIB-4LowLowLowLowLowLowLow
DumanFIB-4UnclearLowLowLowLowLowLow
CuiFIB-4LowLowLowLowLowLowLow
InadaFIB-4LowHighLowLowHighHighLow
TamakiFIB-4LowLowLowLowHighHighLow
OgawaFIB-4UnclearHighLowUnclearUnclearHighLow
JungFIB-4LowLowLowLowLowLowLow
ArmandiFIB-4LowLowLowUnclearLowLowLow
WongFIB-4LowLowLowLowLowLowLow
BoursierFIB-4LowLowLowLowLowLowLow
PennisiFIB-4LowLowLowLowLowLowLow
PennisiFIB-4LowLowLowLowLowLowLow
PratFIB-4LowLowLowLowLowLowLow
ArvanitiFIB-4LowLowLowLowLowLowLow
KaoFIB-4UnclearHighUnclearLowUnclearUnclearUnclear
CasteraFIB-4LowUnclearLowLowLowUnclearLow
PettaFIB-4LowLowLowUnclearLowLowLow
StauferFIB-4LowLowLowLowLowLowLow
BoursierFIB-4LowLowLowLowLowLowLow
NoureddinFIB-4LowLowLowLowLowLowLow
NoureddinFIB-4LowUnclearLowLowLowUnclearLow
CheungFIB-4LowUnclearLowLowLowUnclearLow
BhadoriaFIB-4LowUnclearUnclearLowLowUnclearUnclear
AnsteeFIB-4LowUnclearLowUnclearLowUnclearLow
AnsteeFIB-4LowHighLowLowLowHighLow
LabenzFIB-4LowLowLowLowLowLowLow
AroraFIB-4LowUnclearUnclearLowLowUnclearUnclear
BarrittFIB-4UnclearUnclearLowUnclearUnclearUnclearLow
HarrisonFIB-4LowLowLowLowLowLowLow
PettaFIB-4LowLowLowLowLowLowLow
Gabriel-MedinaFIB-4LowLowLowLowLowLowLow
ZhangFIB-4LowLowLowLowLowLowLow
EddowesFIB-4LowLowLowLowLowLowLow
SanyalFIB-4LowLowLowLowLowLowLow
SanyalFIB-4LowLowLowLowLowLowLow
SanyalFIB-4LowLowLowLowLowLowLow
BoursierFIB-4LowLowLowLowLowLowLow
BertotFIB-4LowLowLowLowLowLowLow
KobayashiFIB-4LowUnclearLowLowLowUnclearLow
ErenFIB-4LowLowLowLowLowLowLow
SinghFIB-4LowLowLowLowLowLowLow
MarellaFIB-4 HighLowLowUnclearHighLowLow
TreeprasertsukFIB-4 LowLowLowUnclearLowLowLow
McPhersonFIB-4 LowLowLowLowLowLowLow
McPhersonFIB-4 LowLowLowLowLowLowLow
KolheFIB-4 HighLowLowLowHighLowLow
KayaFIB-4LowLowLowLowLowLowLow
NonesFIB-4LowUnclearLowLowLowUnclearLow
BalakrishnanFIB-4UnclearUnclearUnclearUnclearUnclearUnclearUnclear
AlkayyaliFIB-4LowLowLowLowLowLowLow
AlkayyaliFIB-4LowLowLowLowLowLowLow
NielsenFIB-4LowLowLowLowLowLowLow
AmpueroFIB-4LowLowLowLowLowLowLow
SangFIB-4LowLowLowLowLowLowLow
ShimaFIB-4LowLowLowLowLowLowLow
SekoFIB-4LowLowLowLowLowLowLow
SiddiquiFIB-4LowLowLowLowLowLowLow
LiFIB-4LowLowLowLowLowLowLow
LiFIB-4LowLowLowLowLowLowLow
SanyalFIB-4LowLowLowLowLowLowLow
MoonFIB-4LowLowLowLowLowLowLow
Zambrano-HuaillaFIB-4UnclearUnclearLowLowUnclearUnclearLow
YangFIB-4HighUnclearLowUnclearHighUnclearLow
GiamarrinoFIB-4UnclearUnclearUnclearUnclearUnclearUnclearUnclear
NishikawaFIB-4LowLowLowLowLowLowLow
KakisakaFIB-4LowLowLowUnclearLowLowLow
SchmitzFIB-4LowLowLowLowLowLowLow
ZhangFIB-4LowLowLowLowLowLowLow
BalakrishnanFIB-4LowLowLowLowLowLowLow
KariyamaFIB-4LowUnclearLowLowLowUnclearLow
MohammedFIB-4LowLowLowLowLowLowLow
de la TijeraFIB-4LowLowLowLowLowLowLow
McPhersonFIB-4LowLowLowLowLowLowLow
ShahFIB-4LowLowLowLowLowLowLow
MauriceFIB-4LowUnclearLowUnclearLowLowLow
ZhouFIB-4LowLowLowUnclearLowLowLow
KouvariFIB-4LowLowLowLowLowLowLow
BallestriFIB-4LowLowLowLowLowLowLow
NoureddinFIB-4LowLowLowLowLowLowLow
SinghFIB-4UnclearUnclearUnclearUnclearUnclearUnclearUnclear
PrasadFIB-4UnclearUnclearYesUnclearUnclearUnclearLow
KimFIB-4LowLowLowUnclearLowLowLow
YonedaFIB-4LowLowLowUnclearLowLowLow
QadriFIB-4LowUnclearLowLowLowUnclearLow
MillerFIB-4LowUnclearUnclearUnclearLowUnclearUnclear
DrolzFIB-4LowLowUnclearUnclearLowLowUnclear
MenesesFIB-4LowLowLowLowLowLowLow
AlqahtaniFIB-4 UnclearLowLowUnclearUnclearLowLow
De CarliFIB-4UnclearHighUnclearHighUnclearHighUnclear
ItoFIB-4UnclearUnclearUnclearUnclearUnclearUnclearUnclear
BrilFIB-4LowLowLowUnclearLowLowLow
SatapathyFIB-4 UnclearUnclearUnclearUnclearUnclearUnclearUnclear
MoonFIB-4UnclearLowLowUnclearUnclearLowLow
SchwengerFIB-4HighLowLowUnclearHighLowLow
AndradeFIB-4LowUnclearLowUnclearLowUnclearLow
AidaFIB-4LowUnclearUnclearLowLowLowLow
Huang FIB-4 HighUnclearLowUnclearHighUnclearLow
McPhersonFIB-4UnclearUnclearUnclearLowUnclearUnclearUnclear
KayaFIB-4LowLowLowUnclearLowLowLow
XunFIB-4LowLowLowLowLowLowLow
MikolasevicFIB-4 UnclearUnclearUnclearUnclearUnclearUnclearUnclear
YounossiFIB-4LowLowUnclearLowLowLowLow
McPhersonFIB-4UnclearUnclearUnclearUnclearUnclearUnclearUnclear
SanyalFIB-4LowLowLowLowLowLowLow
SoresiFIB-4LowHighLowLowLowHighLow
KayaFIB-4LowLowLowLowLowLowLow
KawamuraFIB-4LowUnclearUnclearLowLowLowLow
KalaiyarasiFIB-4UnclearLowLowUnclearUnclearLowLow
IshibaFIB-4UnclearLowUnclearUnclearUnclearLowUnclear
UdelsmanFIB-4LowUnclear UnclearUnclearLowLowUnclear
ZainFIB-4UnclearUnclearUnclearUnclearUnclearUnclearUnclear
LubnerFIB-4UnclearLowLowLowUnclearLowLow
SoontornmanokulFIB-4UnclearLowUnclearUnclearUnclearLowUnclear
WuFIB-4LowLowLowLowLowLowLow
LeFIB-4UnclearUnclearLowUnclearUnclearUnclearLow
SumidaFIB-4UnclearLowLowUnclearUnclearLowLow
ChongFIB-4HighUnclearUnclearUnclearHighUnclearUnclear
Pérez-GutiérrezFIB-4UnclearLowUnclearUnclearUnclearLowUnclear
SinghFIB-4UnclearLowUnclearUnclearUnclearLowUnclear
PanackelFIB-4HighUnclearUnclearUnclearHighUnclearLow
SanyalFIB-4HighUnclearLowUnclearHighUnclearLow
KolheFIB-4LowUnclearUnclearLowLowUnclearUnclear
LugerFIB-4UnclearUnlcearUnclearUnclearLowLowLow

References

  1. Tacke, F.; Horn, P.; Wong, V.W.-S.; Ratziu, V.; Bugianesi, E.; Francque, S.; Zelber-Sagi, S.; Valenti, L.; Roden, M.; Schick, F.; et al. EASL–EASD–EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
  2. Sterling, R.K.; Duarte-Rojo, A.; Patel, K.; Asrani, S.K.; Alsawas, M.; Dranoff, J.A.; Fiel, M.I.; Murad, M.H.; Leung, D.H.; Levine, D.; et al. AASLD Practice Guideline on imaging-based noninvasive liver disease assessment of hepatic fibrosis and steatosis. Hepatology 2025, 81, 672–724. [Google Scholar] [CrossRef]
  3. Kanwal, F.; Shubrook, J.H.; Adams, L.A.; Pfotenhauer, K.; Wong, V.W.-S.; Wright, E.; Abdelmalek, M.F.; Harrison, S.A.; Loomba, R.; Mantzoros, C.S.; et al. Clinical Care Pathway for the Risk Stratification and Management of Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2021, 161, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
  4. Barr, R.G.; Wilson, S.R.; Rubens, D.; Garcia-Tsao, G.; Ferraioli, G. Update to the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement. Radiology 2020, 296, 263–274. [Google Scholar] [CrossRef]
  5. McInnes, M.D.F.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; Hooft, L.; et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies. The PRISMA-DTA Statement. JAMA 2018, 319, 388–396, Erratum in JAMA 2019, 322, 2026. [Google Scholar] [CrossRef] [PubMed]
  6. Sampson, M.; McGowan, J.; Cogo, E.; Grimshaw, J.; Moher, D.; Lefebvre, C. An evidence-based practice guideline for the peer review of electronic search strategies. J. Clin. Epidemiol. 2009, 62, 944–952. [Google Scholar] [CrossRef]
  7. Chowdhury, A.B.; Mehta, K.J. Liver biopsy for assessment of chronic liver diseases: A synopsis. Clin. Exp. Med. 2022, 23, 273–285. [Google Scholar] [CrossRef]
  8. Ozturk, A.; Grajo, J.R.; Dhyani, M.; Anthony, B.W.; Samir, A.E. Principles of ultrasound elastography. Abdom. Imaging 2018, 43, 773–785. [Google Scholar] [CrossRef]
  9. McGrath, T.A.; McInnes, M.D.; Langer, F.W.; Hong, J.; Korevaar, D.A.; Bossuyt, P.M. Treatment of multiple test readers in diagnostic accuracy systematic reviews-meta-analyses of imaging studies. Eur. J. Radiol. 2017, 93, 59–64. [Google Scholar] [CrossRef]
  10. Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
  11. Chen, G.; Yang, J.-C.; Zhang, G.-X.; Cheng, Z.; Du, X. Evaluation of Six Noninvasive Methods for the Detection of Fibrosis in Chinese Patients with Obesity and Nonalcoholic Fatty Liver Disease. Obes. Surg. 2022, 32, 3619–3626. [Google Scholar] [CrossRef]
  12. Lee, J.S.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Jang, J.Y.; Park, S.Y.; Lee, H.W.; Lee, C.K.; Kim, S.U. Comparison of FibroScan-Aspartate Aminotransferase (FAST) Score and Other Non-invasive Surrogates in Predicting High-Risk Non-alcoholic Steatohepatitis Criteria. Front. Med. 2022, 9, 869190. [Google Scholar] [CrossRef]
  13. Takeuchi, H.; Sugimoto, K.; Oshiro, H.; Iwatsuka, K.; Kono, S.; Yoshimasu, Y.; Kasai, Y.; Furuichi, Y.; Sakamaki, K.; Itoi, T. Liver fibrosis: Noninvasive assessment using supersonic shear imaging and FIB4 index in patients with non-alcoholic fatty liver disease. J. Med. Ultrason. 2017, 45, 243–249. [Google Scholar] [CrossRef]
  14. da Silva, R.G.; de Miranda, M.L.Q.; Brant, P.E.d.A.C.; Schulz, P.O.; Nascimento, M.d.F.A.; Schmillevitch, J.; Vieira, A.; de Freitas, W.R.; Szutan, L.A. Acoustic radiation force impulse elastography and liver fibrosis risk scores in severe obesity. Arq. Bras. Endocrinol. Metabol. 2021, 65, 730–738. [Google Scholar] [CrossRef]
  15. Duman, S.; Kuru, D.; Gumussoy, M.; Kiremitci, S.; Gokcan, H.; Ulas, B.; Ellik, Z.; Ozercan, M.; Er, R.E.; Karakaya, F.; et al. A combination of non-invasive tests for the detection of significant fibrosis in patients with metabolic dysfunction-associated steatotic liver disease is not superior to magnetic resonance elastography alone. Eur. Radiol. 2024, 34, 3882–3888. [Google Scholar] [CrossRef]
  16. Cui, J.; Ang, B.; Haufe, W.; Hernandez, C.; Verna, E.C.; Sirlin, C.B.; Loomba, R. Comparative diagnostic accuracy of magnetic resonance elastography vs. eight clinical prediction rules for non-invasive diagnosis of advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease: A prospective study. Aliment. Pharmacol. Ther. 2015, 41, 1271–1280. [Google Scholar] [CrossRef]
  17. Inada, K.; Tamaki, N.; Kurosaki, M.; Kirino, S.; Yamashita, K.; Hayakawa, Y.; Higuchi, M.; Takaura, K.; Kaneko, S.; Maeyashiki, C.; et al. Validation of magnetic resonance elastography plus fibrosis-4 for significant fibrosis in nonalcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2022, 37, 1726–1731. [Google Scholar] [CrossRef]
  18. Tamaki, N.; Imajo, K.; Sharpton, S.R.; Jung, J.; Sutter, N.; Kawamura, N.; Yoneda, M.; Valasek, M.A.; Behling, C.; Sirlin, C.B.; et al. Two-Step Strategy, FIB-4 Followed by Magnetic Resonance Elastography, for Detecting Advanced Fibrosis in NAFLD. Clin. Gastroenterol. Hepatol. 2022, 21, 380–387.e3. [Google Scholar] [CrossRef]
  19. Ogawa, Y.; Honda, Y.; Kessoku, T.; Tomeno, W.; Imajo, K.; Yoneda, M.; Kawanaka, M.; Kirikoshi, H.; Ono, M.; Taguri, M.; et al. Wisteria floribunda agglutinin-positive Mac-2-binding protein and type 4 collagen 7S: Useful markers for the diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2018, 33, 1795–1803. [Google Scholar] [CrossRef]
  20. Jung, J.; Loomba, R.R.; Imajo, K.; Madamba, E.; Gandhi, S.; Bettencourt, R.; Singh, S.; Hernandez, C.; A Valasek, M.; Behling, C.; et al. MRE combined with FIB-4 (MEFIB) index in detection of candidates for pharmacological treatment of NASH-related fibrosis. Gut 2020, 70, 1946–1953. [Google Scholar] [CrossRef]
  21. Armandi, A.; Rosso, C.; Younes, R.; Leeming, D.J.; Karsdal, M.A.; Caviglia, G.P.; Pérez-Diaz-Del-Campo, N.; D’amato, D.; Abdulle, A.; Nicolosi, A.; et al. Cross-Sectional and Longitudinal Performance of Non-Invasive Tests of Liver Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. J. Clin. Med. 2023, 12, 650. [Google Scholar] [CrossRef]
  22. Wong, V.W.-S.; Vergniol, J.; Wong, G.L.-H.; Foucher, J.; Chan, H.L.-Y.; Le Bail, B.; Choi, P.C.-L.; Kowo, M.; Chan, A.W.-H.; Merrouche, W.; et al. Diagnosis of Fibrosis and Cirrhosis Using Liver Stiffness Measurement in Nonalcoholic Fatty Liver Disease. Hepatology 2010, 51, 454–462. [Google Scholar] [CrossRef]
  23. Boursier, J.; Vergniol, J.; Guillet, A.; Hiriart, J.-B.; Lannes, A.; Le Bail, B.; Michalak, S.; Chermak, F.; Bertrais, S.; Foucher, J.; et al. Diagnostic accuracy and prognostic significance of blood fibrosis tests and liver stiffness measurement by FibroScan in non-alcoholic fatty liver disease. J. Hepatol. 2016, 65, 570–578. [Google Scholar] [CrossRef]
  24. Pennisi, G.; Enea, M.; Pandolfo, A.; Celsa, C.; Antonucci, M.; Ciccioli, C.; Infantino, G.; La Mantia, C.; Parisi, S.; Tulone, A.; et al. AGILE 3+ Score for the Diagnosis of Advanced Fibrosis and for Predicting Liver-related Events in NAFLD. Clin. Gastroenterol. Hepatol. 2022, 21, 1293–1302.e5. [Google Scholar] [CrossRef]
  25. Pennisi, G.; Enea, M.; Falco, V.; Aithal, G.P.; Palaniyappan, N.; Yilmaz, Y.; Boursier, J.; Cassinotto, C.; de Lédinghen, V.; Chan, W.K.; et al. Noninvasive assessment of liver disease severity in patients with nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. Hepatology 2023, 78, 195–211. [Google Scholar] [CrossRef]
  26. Prat, L.I.; Roccarina, D.; Lever, R.; Lombardi, R.; Rodger, A.; Hall, A.; Luong, T.V.; Bhagani, S.; Tsochatzis, E.A. Etiology and Severity of Liver Disease in HIV-Positive Patients with Suspected NAFLD: Lessons From a Cohort with Available Liver Biopsies. Am. J. Ther. 2019, 80, 474–480. [Google Scholar] [CrossRef]
  27. Arvaniti, P. FibroMeter scores are predictive noninvasive markers of advanced and significant liver fibrosis in patients with chronic viral hepatitis or metabolic dysfunction-associated steatotic liver disease. Ann. Gastroenterol. 2023, 36, 661–669. [Google Scholar] [CrossRef]
  28. Kao, W.-Y.; Chang, I.-W.; Chen, C.-L.; Su, C.-W.; Fang, S.U.; Tang, J.-H.; Chang, C.-C.; Chang, Y.-J.; Wang, W. Fibroscan-Based Score to Predict Significant Liver Fibrosis in Morbidly Obese Patients with Nonalcoholic Fatty Liver Disease. Obes. Surg. 2020, 30, 1249–1257. [Google Scholar] [CrossRef]
  29. Castéra, L.; Vidal-Trecan, T.; Khoury, T.; Julla, J.-B.; Paradis, V.; Riveline, J.-P.; Valla, D.; Gautier, J.-F. Head-to-head comparison of Agile 3+, LSM-VCTE, NFS, and FIB-4 scores for detecting advanced fibrosis in patients with type 2 diabetes seen in diabetes clinic. J. Hepatol. 2023, 78, S681–S682. [Google Scholar] [CrossRef]
  30. Petta, S.; Wong, V.W.-S.; Bugianesi, E.; Fracanzani, A.L.; Cammà, C.; Hiriart, J.-B.; Wong, G.L.-H.; Vergniol, J.; Chan, A.W.-H.; Giannetti, A.; et al. Impact of Obesity and Alanine Aminotransferase Levels on the Diagnostic Accuracy for Advanced Liver Fibrosis of Noninvasive Tools in Patients with Nonalcoholic Fatty Liver Disease. Am. J. Gastroenterol. 2019, 114, 916–928. [Google Scholar] [CrossRef]
  31. Staufer, K.; Halilbasic, E.; Spindelboeck, W.; Eilenberg, M.; Prager, G.; Stadlbauer, V.; Posch, A.; Munda, P.; Marculescu, R.; Obermayer-Pietsch, B.; et al. Evaluation and comparison of six noninvasive tests for prediction of significant or advanced fibrosis in nonalcoholic fatty liver disease. United Eur. Gastroenterol. J. 2019, 7, 1113–1123. [Google Scholar] [CrossRef]
  32. Boursier, J.; Canivet, C.M.; Costentin, C.; Lannes, A.; Delamarre, A.; Sturm, N.; Le Bail, B.; Michalak, S.; Oberti, F.; Hilleret, M.-N.; et al. Impact of Type 2 Diabetes on the Accuracy of Noninvasive Tests of Liver Fibrosis with Resulting Clinical Implications. Clin. Gastroenterol. Hepatol. 2022, 21, 1243–1251.e12. [Google Scholar] [CrossRef]
  33. Noureddin, M.; Mena, E.; Vuppalanchi, R.; Samala, N.; Wong, M.; Pacheco, F.; Polanco, P.; Sakkal, C.; Antaramian, A.; Chang, D.; et al. Increased accuracy in identifying NAFLD with advanced fibrosis and cirrhosis: Independent validation of the Agile 3+ and 4 scores. Hepatol. Commun. 2023, 7, e0055. [Google Scholar] [CrossRef]
  34. Noureddin, M.; Truong, E.; Chang, D.; Gornbein, J.; Mena, E. Simple combined serum-imaging non-invasive testing formulas to assess significant and advanced fibrosis in NAFLD patients. Hepatology 2021, 74 (Suppl. S1), 985A–986A. [Google Scholar] [CrossRef]
  35. Cheung, J.T.K.; Zhang, X.; Wong, G.L.; Yip, T.C.; Lin, H.; Li, G.; Leung, H.H.; Lai, J.C.; Mahadeva, S.; Mustapha, N.R.N.; et al. MAFLD fibrosis score: Using routine measures to identify advanced fibrosis in metabolic-associated fatty liver disease. Aliment. Pharmacol. Ther. 2023, 58, 1194–1204. [Google Scholar] [CrossRef]
  36. Bhadoria, A.; Jindal, A.; Rastogi, A.; Sharma, C.; Bhardwaj, A.; Kumar, G.; Sharma, M.; Sarin, S. Non invasive diagnostic modalities to predict advanced hepatic fibrosis in patients with non alcoholic fatty liver disease: A retrospective study. J. Hepatol. 2017, 66, S658–S659. [Google Scholar] [CrossRef]
  37. Anstee, Q.M.; Lawitz, E.J.; Alkhouri, N.; Wong, V.W.-S.; Romero-Gomez, M.; Okanoue, T.; Trauner, M.; Kersey, K.; Li, G.; Han, L.; et al. Noninvasive Tests Accurately Identify Advanced Fibrosis due to NASH: Baseline Data From the STELLAR Trials. Hepatology 2019, 70, 1521–1530. [Google Scholar] [CrossRef]
  38. Anstee, Q.; Mantry, P.; Laurent, C.; Shah, D.; Niu, X.; Landgren, H.; Tan, B.; Martins, E.B.; Torstenson, R.; Schattenberg, J.M.; et al. Non-invasive test cut-offs for the identification of advanced liver fibrosis in a diabetes cohort with non-alcoholic steatohepatitis: Data from the phase 3 AURORA study. J. Hepatol. 2020, 73, S524. [Google Scholar] [CrossRef]
  39. Labenz, C.; Huber, Y.; Kalliga, E.; Nagel, M.; Ruckes, C.; Straub, B.K.; Galle, P.R.; Wörns, M.; Anstee, Q.M.; Schuppan, D.; et al. Predictors of advanced fibrosis in non-cirrhotic non-alcoholic fatty liver disease in Germany. Aliment. Pharmacol. Ther. 2018, 48, 1109–1116. [Google Scholar] [CrossRef]
  40. Arora, U.; Goyal, R.M.; Teh, K.K.J.; Pei, Y.; Goh, G.B.B.; Lin, S.; Kumar, R.; Biswas, S.; Vaishnav, M.; Swaroop, S.; et al. Poor Performance of Non-invasive Tests for Advanced Fibrosis in Nonalcoholic Fatty Liver Disease: A Multicentric Asian Study. Dig. Dis. Sci. 2023, 68, 4485–4498. [Google Scholar] [CrossRef]
  41. Barritt, A.S.; Lok, A.S.; Reddy, K.R.; Weiss, L.M.; Firpi, R.J.; Thuluvath, P.J.; Trinh, H.N.; Djedjos, S.; Haubrich, R.; Billin, A.; et al. Routinely available noninvasive tests perform well in identifying patients with advanced fibrosis due to NASH: Data from the target-NASH observational cohort. Hepatology 2019, 70 (Suppl. S1), 1049A. [Google Scholar]
  42. Harrison, S.A.; Calanna, S.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.; Sejling, A.-S.; Newsome, P.N. Semaglutide for the treatment of non-alcoholic steatohepatitis: Trial design and comparison of non-invasive biomarkers. Contemp. Clin. Trials 2020, 97, 106174. [Google Scholar] [CrossRef]
  43. Petta, S.; Vanni, E.; Bugianesi, E.; Di Marco, V.; Cammà, C.; Cabibi, D.; Mezzabotta, L.; Craxì, A. The combination of liver stiffness measurement and NAFLD fibrosis score improves the noninvasive diagnostic accuracy for severe liver fibrosis in patients with nonalcoholic fatty liver disease. Liver Int. 2014, 35, 1566–1573. [Google Scholar] [CrossRef]
  44. Gabriel-Medina, P.; Ferrer-Costa, R.; Ciudin, A.; Augustin, S.; Rivera-Esteban, J.; Pericàs, J.M.; Selva, D.M.; Rodriguez-Frias, F. Accuracy of a sequential algorithm based on FIB-4 and ELF to identify high-risk advanced liver fibrosis at the primary care level. Intern. Emerg. Med. 2024, 19, 745–756. [Google Scholar] [CrossRef]
  45. Zhang, F.; Han, Y.; Zheng, L.; Liu, J.; Wu, Y.; Bao, Z.; Liu, L.; Li, W. Association of Non-Invasive Markers with Significant Fibrosis in Patients with Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study. Diabetes, Metab. Syndr. Obesity: Targets Ther. 2023, 16, 2255–2268. [Google Scholar] [CrossRef]
  46. Eddowes, P.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.; Paradis, V.; Bedossa, P.; Newsome, P.N. Combination of fibroscan and fibrometer (fibrometer VCTE) improves identification of patients with advanced fibrosis in patients with NAFLD. Inflamm. Intest. Dis. 2019, 4, 8–9. [Google Scholar] [CrossRef]
  47. Sanyal, A.J.; Foucquier, J.; Younossi, Z.M.; Harrison, S.A.; Newsome, P.N.; Chan, W.-K.; Yilmaz, Y.; De Ledinghen, V.; Costentin, C.; Zheng, M.-H.; et al. Enhanced diagnosis of advanced fibrosis and cirrhosis in individuals with NAFLD using FibroScan-based Agile scores. J. Hepatol. 2022, 78, 247–259. [Google Scholar] [CrossRef]
  48. Boursier, J.; Guillaume, M.; Leroy, V.; Irlès, M.; Roux, M.; Lannes, A.; Foucher, J.; Zuberbuhler, F.; Delabaudière, C.; Barthelon, J.; et al. New sequential combinations of non-invasive fibrosis tests provide an accurate diagnosis of advanced fibrosis in NAFLD. J. Hepatol. 2019, 71, 389–396. [Google Scholar] [CrossRef]
  49. Bertot, L.C.; Jeffrey, G.P.; de Boer, B.; Wang, Z.; Huang, Y.; Garas, G.; MacQuillan, G.; Wallace, M.; Smith, B.W.; Adams, L.A. Comparative Accuracy of Clinical Fibrosis Markers, Hepascore and Fibroscan® to Detect Advanced Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Dig. Dis. Sci. 2023, 68, 2757–2767. [Google Scholar] [CrossRef]
  50. Kobayashi, N.; Kumada, T.; Toyoda, H.; Tada, T.; Ito, T.; Kage, M.; Okanoue, T.; Kudo, M. Ability of Cytokeratin-18 Fragments and FIB-4 Index to Diagnose Overall and Mild Fibrosis Nonalcoholic Steatohepatitis in Japanese Nonalcoholic Fatty Liver Disease Patients. Dig. Dis. 2017, 35, 521–530. [Google Scholar] [CrossRef]
  51. Eren, F.; Kaya, E.; Yilmaz, Y. Accuracy of Fibrosis-4 index and non-alcoholic fatty liver disease fibrosis scores in metabolic (dysfunction) associated fatty liver disease according to body mass index: Failure in the prediction of advanced fibrosis in lean and morbidly obese individuals. Eur. J. Gastroenterol. Hepatol. 2020, 34, 98–103. [Google Scholar] [CrossRef]
  52. Singh, A.; Gosai, F.; Siddiqui, M.T.; Gupta, M.; Lopez, R.; Lawitz, E.; Poordad, F.; Carey, W.; McCullough, A.; Alkhouri, N. Accuracy of Noninvasive Fibrosis Scores to Detect Advanced Fibrosis in Patients with Type-2 Diabetes with Biopsy-proven Nonalcoholic Fatty Liver Disease. J. Clin. Gastroenterol. 2020, 54, 891–897. [Google Scholar] [CrossRef]
  53. Marella, H.K.; Reddy, Y.K.; Jiang, Y.; Ganguli, S.; Podila, P.S.; Snell, P.D.; Kovalic, A.J.; Cholankeril, G.; Singal, A.K.; Nair, S.; et al. Accuracy of Noninvasive Fibrosis Scoring Systems in African American and White Patients with Nonalcoholic Fatty Liver Disease. Clin. Transl. Gastroenterol. 2020, 11, 165. [Google Scholar] [CrossRef]
  54. Treeprasertsuk, S.; Piyachaturawat, P.; Soontornmanokul, T.; Wisedopas-Klaikaew, N.; Komolmit, P.; Tangkijavanich, P. Accuracy of noninvasive scoring systems to assess advanced liver fibrosis in Thai patients with nonalcoholic fatty liver disease. Asian Biomed. 2017, 10, s49–s55. [Google Scholar]
  55. McPherson, S.; Anstee, Q.M.; Henderson, E.; Day, C.P.; Burt, A.D. Are simple noninvasive scoring systems for fibrosis reliable in patients with NAFLD and normal ALT levels? Eur. J. Gastroenterol. Hepatol. 2013, 25, 652–658. [Google Scholar] [CrossRef]
  56. Kolhe, K.M.; Amarapurkar, A.; Parikh, P.; Chaubal, A.; Chauhan, S.; Khairnar, H.; Walke, S.; Ingle, M.; Pandey, V.; Shukla, A. Aspartate transaminase to platelet ratio index (APRI) but not FIB-5 or FIB-4 is accurate in ruling out significant fibrosis in patients with non-alcoholic fatty liver disease (NAFLD) in an urban slum-dwelling population. BMJ Open Gastroenterol. 2019, 6, e000288. [Google Scholar] [CrossRef]
  57. Kaya, E.; Bakir, A.; Yilmaz, Y. Can advanced fibrosis be reliably excluded by simple non-invasive fibrosis scoring systems? Diagnostic performance of FIB-4 and NFS in Turkish patients with biopsy-proven non-alcoholic fatty liver disease. Turk. J. Gastroenterol. 2019, 30, 3–5. [Google Scholar] [CrossRef]
  58. Nones, R.B.; Ivantes, C.P.; Pedroso, M.L.A. Can FIB4 and NAFLD fibrosis scores help endocrinologists refer patients with non-alcoholic fat liver disease to a hepatologist? Arq. Bras. Endocrinol. Metabol. 2017, 61, 276–281. [Google Scholar] [CrossRef]
  59. Balakrishnan, M.; Gaba, R.; Jain, S. Clinical fibrosis prediction scores perform poorly among mexican/central american patients with NAFLD. Hepatology 2018, 68 (Suppl. S1), 1304A. [Google Scholar] [CrossRef]
  60. Alkayyali, T.; Qutranji, L.; Kaya, E.; Bakir, A.; Yilmaz, Y. Clinical utility of noninvasive scores in assessing advanced hepatic fibrosis in patients with type 2 diabetes mellitus: A study in biopsy-proven non-alcoholic fatty liver disease. Acta Diabetol. 2020, 57, 613–618. [Google Scholar] [CrossRef]
  61. Nielsen, M.J.; Leeming, D.J.; Goodman, Z.; Friedman, S.; Frederiksen, P.; Rasmussen, D.G.K.; Vig, P.; Seyedkazemi, S.; Fischer, L.; Torstenson, R.; et al. Comparison of ADAPT, FIB-4 and APRI as non-invasive predictors of liver fibrosis and NASH within the CENTAUR screening population. J. Hepatol. 2021, 75, 1292–1300. [Google Scholar] [CrossRef]
  62. Ampuero, J.; Pais, R.; Aller, R.; Gallego-Durán, R.; Crespo, J.; García-Monzón, C.; Boursier, J.; Vilar, E.; Petta, S.; Zheng, M.-H.; et al. Development and Validation of Hepamet Fibrosis Scoring System–A Simple, Noninvasive Test to Identify Patients with Nonalcoholic Fatty Liver Disease with Advanced Fibrosis. Clin. Gastroenterol. Hepatol. 2020, 18, 216–225.e5. [Google Scholar] [CrossRef] [PubMed]
  63. Sang, C.; Yan, H.; Chan, W.K.; Zhu, X.; Sun, T.; Chang, X.; Xia, M.; Sun, X.; Hu, X.; Gao, X.; et al. Diagnosis of Fibrosis Using Blood Markers and Logistic Regression in Southeast Asian Patients with Non-alcoholic Fatty Liver Disease. Front. Med. 2021, 8, 637652. [Google Scholar] [CrossRef]
  64. Shima, T.; Sakai, K.; Oya, H.; Katayama, T.; Mitsumoto, Y.; Mizuno, M.; Kanbara, Y.; Okanoue, T. Diagnostic accuracy of combined biomarker measurements and vibration-controlled transient elastography (VCTE) for predicting fibrosis stage of non-alcoholic fatty liver disease. J. Gastroenterol. 2019, 55, 100–112. [Google Scholar] [CrossRef]
  65. Seko, Y.; Takahashi, H.; Toyoda, H.; Hayashi, H.; Yamaguchi, K.; Iwaki, M.; Yoneda, M.; Arai, T.; Shima, T.; Fujii, H.; et al. Diagnostic accuracy of enhanced liver fibrosis test for nonalcoholic steatohepatitis-related fibrosis: Multicenter study. Hepatol. Res. 2023, 53, 312–321. [Google Scholar] [CrossRef]
  66. Siddiqui, M.S.; Yamada, G.; Vuppalanchi, R.; Loomba, R.; Guy, C.; Brandman, D.; Tonascia, J.; Chalasani, N.; Sanyal, A.J.; Allende, D.; et al. Diagnostic Accuracy of Noninvasive Fibrosis Models to Detect Change in Fibrosis Stage. Clin. Gastroenterol. Hepatol. 2019, 17, 1877–1885.e5. [Google Scholar] [CrossRef]
  67. Li, G.; Lin, H.; Sripongpun, P.; Liang, L.Y.; Zhang, X.; Wong, V.W.; Wong, G.L.; Kim, W.R.; Yip, T.C. Diagnostic and prognostic performance of the SAFE score in non-alcoholic fatty liver disease. Liver Int. 2023, 44, 15–26. [Google Scholar] [CrossRef] [PubMed]
  68. Sanyal, A.J.; Shankar, S.S.; Yates, K.P.; Bolognese, J.; Daly, E.; Dehn, C.A.; Neuschwander-Tetri, B.; Kowdley, K.; Vuppalanchi, R.; Behling, C.; et al. Diagnostic performance of circulating biomarkers for non-alcoholic steatohepatitis. Nat. Med. 2023, 29, 2656–2664. [Google Scholar] [CrossRef] [PubMed]
  69. Moon, S.Y.; Kang, Y.W. Diagnostic performance of serum m2bpgi compared with other serological panels for biop-sy-proven advanced fibrosis and cirrhosis in NAFLD. Hepatol. Int. 2023, 17 (Suppl. S1), S180–S181. [Google Scholar] [CrossRef]
  70. Zambrano-Huailla, R.; Guedes, L.; Stefano, J.T.; de Souza, A.A.A.; Marciano, S.; Yvamoto, E.; Michalczuk, M.T.; Vanni, D.S.; Rodriguez, H.; Carrilho, F.J.; et al. Diagnostic performance of three non-invasive fibrosis scores (Hepamet, FIB-4, NAFLD fibrosis score) in NAFLD patients from a mixed Latin American population. Ann. Hepatol. 2020, 19, 622–626. [Google Scholar] [CrossRef]
  71. Yang, X.; Xia, M.; Chang, X.; Zhu, X.; Sun, X.; Yang, Y.; Wang, L.; Liu, Q.; Zhang, Y.; Xu, Y.; et al. A novel model for detecting advanced fibrosis in patients with nonalcoholic fatty liver disease. Diabetes/Metabolism Res. Rev. 2022, 38, e3570. [Google Scholar] [CrossRef] [PubMed]
  72. Giammarino, A.; Kovalic, A.; Qiu, H.; Bulsara, K.; Khan, S. Accuracy of non-invasive scores in diagnosing nonalcoholic ste-atohepatitis with clinically significant fibrosis in a large cohort of biopsy-proven nonalcoholic fatty liver disease patients. Hepatology 2022, 76 (Suppl. S1), S862. [Google Scholar] [CrossRef]
  73. Nishikawa, H.; Enomoto, H.; Iwata, Y.; Kishino, K.; Shimono, Y.; Hasegawa, K.; Nakano, C.; Takata, R.; Yoh, K.; Nishimura, T.; et al. Clinical significance of serum Wisteria floribunda agglutinin positive Mac-2-binding protein level in non-alcoholic steatohepatitis. Hepatol. Res. 2016, 46, 1194–1202. [Google Scholar] [CrossRef]
  74. Kakisaka, K.; Suzuki, Y.; Fujiwara, Y.; Abe, T.; Yonezawa, M.; Kuroda, H.; Ishida, K.; Sugai, T.; Takikawa, Y. Evaluation of ballooned hepatocytes as a risk factor for future progression of fibrosis in patients with non-alcoholic fatty liver disease. J. Gastroenterol. 2018, 53, 1285–1291. [Google Scholar] [CrossRef]
  75. Schmitz, S.M.-T.; Kroh, A.; Ulmer, T.F.; Andruszkow, J.; Luedde, T.; Brozat, J.F.; Neumann, U.P.; Alizai, P.H. Evaluation of NAFLD and fibrosis in obese patients—A comparison of histological and clinical scoring systems. BMC Gastroenterol. 2020, 20, 254. [Google Scholar] [CrossRef]
  76. Zhang, W.; Zhang, J.; Shi, H.; Liu, F.; Yu, H.; Shi, H. Exosome GLUT1 derived from hepatocyte identifies the risk of non-alcoholic steatohepatitis and fibrosis. Hepatol. Int. 2023, 17, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
  77. Balakrishnan, M.; Seth, A.; Cortes-Santiago, N.; Jain, S.; Sood, G.K.; El-Serag, H.B.; Thrift, A.P. External Validation of Four Point-of-Care Noninvasive Scores for Predicting Advanced Hepatic Fibrosis in a Predominantly Hispanic NAFLD Population. Dig. Dis. Sci. 2020, 66, 2387–2393. [Google Scholar] [CrossRef]
  78. Kariyama, K.; Kawanaka, M.; Nouso, K.; Hiraoka, A.; Toyoda, H.; Tada, T.; Ishikawa, T.; Wakuta, A.; Miyake, N.; Murakami, S.; et al. Fibrosis-3 Index: A New Score to Predict Liver Fibrosis in Patients with Nonalcoholic Fatty Liver Disease Without Age as a Factor. Gastro Hep Adv. 2022, 1, 1108–1113. [Google Scholar] [CrossRef]
  79. Mohammed, M.A.; Omar, N.M.; Mohammed, S.A.; Amin, A.M.; Gad, D.F. FICK-3 Score Combining Fibrosis-4, Insulin Resistance and Cytokeratin-18 in Predicting Non-alcoholic Steatohepatitis in NAFLD Egyptian Patients. Pak. J. Biol. Sci. 2019, 22, 457–466. [Google Scholar] [CrossRef]
  80. Higuera-De-La-Tijera, F.; Córdova-Gallardo, J.; Buganza-Torio, E.; Barranco-Fragoso, B.; Torre, A.; Parraguirre-Martínez, S.; Rojano-Rodríguez, M.E.; Quintero-Bustos, G.; Castro-Narro, G.; Moctezuma-Velazquez, C. Hepamet Fibrosis Score in Nonalcoholic Fatty Liver Disease Patients in Mexico: Lower than Expected Positive Predictive Value. Dig. Dis. Sci. 2021, 66, 4501–4507. [Google Scholar] [CrossRef]
  81. Mcpherson, S.; Hardy, T.; Henderson, E.; Allison, M.; Ratziu, V.; Francque, S.; Burt, A.; Day, C.; Anstee, Q. PWE-120 High rate of false positives for advanced fibrosis when simple non-invasive fibrosis tests are used in older patients (≥ 65 years) with nafld. Gut 2015, 64, A265. [Google Scholar] [CrossRef]
  82. Shah, D.; Niu, X.; Doshi, J.A.; Marcus, S.; Rodriquez, G.; Tapper, E. Identification of significant fibrosis in patients with non-alcoholic steatohepatitis using non-invasive tests: Determination of optimal thresholds based on cross-sectional analyses of patients screened for a phase 3 randomised controlled trial. J. Hepatol. 2020, 73, S407. [Google Scholar] [CrossRef]
  83. Maurice, J.B.; Goldin, R.; Hall, A.; Price, J.C.; Sebastiani, G.; Morse, C.G.; Prat, L.I.; Perazzo, H.; Garvey, L.; Ingiliz, P.; et al. Increased Body Mass Index and Type 2 Diabetes Are the Main Predictors of Nonalcoholic Fatty Liver Disease and Advanced Fibrosis in Liver Biopsies of Patients with Human Immunodeficiency Virus Monoinfection. Clin. Infect. Dis. 2020, 73, e2184–e2193. [Google Scholar] [CrossRef] [PubMed]
  84. Zhou, Y.-J.; Ye, F.-Z.; Li, Y.-Y.; Pan, X.-Y.; Chen, Y.-X.; Wu, X.-X.; Xiong, J.-J.; Liu, W.-Y.; Xu, S.-H.; Chen, Y.-P.; et al. Individualized risk prediction of significant fibrosis in non-alcoholic fatty liver disease using a novel nomogram. United Eur. Gastroenterol. J. 2019, 7, 1124–1134. [Google Scholar] [CrossRef]
  85. Kouvari, M.; Valenzuela-Vallejo, L.; Guatibonza-Garcia, V.; Polyzos, S.A.; Deng, Y.; Kokkorakis, M.; Agraz, M.; Mylonakis, S.C.; Katsarou, A.; Verrastro, O.; et al. Liver biopsy-based validation, confirmation and comparison of the diagnostic performance of established and novel non-invasive steatotic liver disease indexes: Results from a large multi-center study. Metabolism 2023, 147, 155666. [Google Scholar] [CrossRef]
  86. Ballestri, S.; Mantovani, A.; Baldelli, E.; Lugari, S.; Maurantonio, M.; Nascimbeni, F.; Marrazzo, A.; Romagnoli, D.; Targher, G.; Lonardo, A. Liver Fibrosis Biomarkers Accurately Exclude Advanced Fibrosis and Are Associated with Higher Cardiovascular Risk Scores in Patients with NAFLD or Viral Chronic Liver Disease. Diagnostics 2021, 11, 98. [Google Scholar] [CrossRef]
  87. Noureddin, M.; Truong, E.; Gornbein, J.A.; Saouaf, R.; Guindi, M.; Todo, T.; Noureddin, N.; Yang, J.D.; Harrison, S.A.; Alkhouri, N. MRI-based (MAST) score accurately identifies patients with NASH and significant fibrosis. J. Hepatol. 2022, 76, 781–787. [Google Scholar] [CrossRef]
  88. Singh, P.; Duseja, A.; Mehta, M.; De, A.; Mitra, S. Non-invasive fibrosis scores-validation in Indian patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD). Hepatol. Int. 2022, 16 (Suppl. S1), S271. [Google Scholar] [CrossRef]
  89. Prasad, S.S.; Ranjan, K.C.; Kanta, S.S.; Meher, D. Utility of noninvasive scoring systems of fibrosis for detecting advanced fibrosis in patients with leaner nonalcoholic fatty liver disease (NAFLD). Hepatol. Int. 2020, 14 (Suppl. S1), S360. [Google Scholar]
  90. Kim, R.G.; Deng, J.; Reaso, J.N.; Grenert, J.P.; Khalili, M. Noninvasive Fibrosis Screening in Fatty Liver Disease Among Vulnerable Populations: Impact of Diabetes and Obesity on FIB-4 Score Accuracy. Diabetes Care 2022, 45, 2449–2451. [Google Scholar] [CrossRef]
  91. Yoneda, M.; Imajo, K.; Eguchi, Y.; Fujii, H.; Sumida, Y.; Hyogo, H.; Ono, M.; Suzuki, Y.; Kawaguchi, T.; Japan Study Group of Nonalcoholic Fatty Liver Disease (JSG-NAFLD); et al. Noninvasive scoring systems in patients with nonalcoholic fatty liver disease with normal alanine aminotransferase levels. J. Gastroenterol. 2013, 48, 1051–1060. [Google Scholar] [CrossRef]
  92. Qadri, S.; Ahlholm, N.; Lønsmann, I.; Pellegrini, P.; Poikola, A.; Luukkonen, P.K.; Porthan, K.; Juuti, A.; Sammalkorpi, H.; Penttilä, A.K.; et al. Obesity Modifies the Performance of Fibrosis Biomarkers in Nonalcoholic Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2021, 107, e2008–e2020. [Google Scholar] [CrossRef] [PubMed]
  93. Miller, A.; Li, N.; Hinton, A.; Mumtaz, K. 1019 Performance of Lab-Based Scoring Tests for the Assessment of Hepatic Fibrosis Compared to the Liver Biopsy Among Patients with Non-Alcoholic Fatty Liver Disease. Am. J. Gastroenterol. 2019, 114, S585–S586. [Google Scholar] [CrossRef]
  94. Drolz, A.; Wolter, S.; Wehmeyer, M.H.; Piecha, F.; Horvatits, T.; Wiesch, J.S.Z.; Lohse, A.W.; Mann, O.; Kluwe, J. Performance of non-invasive fibrosis scores in non-alcoholic fatty liver disease with and without morbid obesity. Int. J. Obes. 2021, 45, 2197–2204. [Google Scholar] [CrossRef] [PubMed]
  95. Meneses, D.; Olveira, A.; Corripio, R.; Méndez, M.d.C.; Romero, M.; Calvo-Viñuelas, I.; Herranz, L.; Vicent, D.; De-Cos-Blanco, A.I. Performance of Noninvasive Liver Fibrosis Scores in the Morbid Obese Patient, Same Scores but Different Thresholds. Obes. Surg. 2020, 30, 2538–2546. [Google Scholar] [CrossRef]
  96. Alqahtani, S.A.; Golabi, P.; Paik, J.M.; Lam, B.; Moazez, A.H.; Elariny, H.A.; Goodman, Z.; Younossi, Z.M. Performance of Noninvasive Liver Fibrosis Tests in Morbidly Obese Patients with Nonalcoholic Fatty Liver Disease. Obes. Surg. 2021, 31, 2002–2010. [Google Scholar] [CrossRef]
  97. De Carli, M.A.; de Carli, L.A.; Correa, M.B.; Junqueira, G., Jr.; Tovo, C.V.; Coral, G.P. Performance of noninvasive scores for the diagnosis of advanced liver fibrosis in morbidly obese with nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 2020, 32, 420–425. [Google Scholar] [CrossRef]
  98. Ito, T.; Nguyen, V.H.; Tanaka, T.; Park, H.; Kawanaka, M.; Arai, T.; Atsukawa, M.; Yoon, E.L.; Tsai, P.-C.; Toyoda, H.; et al. Poor Diagnostic Efficacy of Noninvasive Tests for Advanced Fibrosis in Obese or Younger Than 60 Diabetic NAFLD patients. Clin. Gastroenterol. Hepatol. 2022, 21, 1013–1022.e6. [Google Scholar] [CrossRef]
  99. Bril, F.; McPhaul, M.J.; Caulfield, M.P.; Clark, V.C.; Soldevilla-Pico, C.; Firpi-Morell, R.J.; Lai, J.; Shiffman, D.; Rowland, C.M.; Cusi, K. Performance of Plasma Biomarkers and Diagnostic Panels for Nonalcoholic Steatohepatitis and Advanced Fibrosis in Patients with Type 2 Diabetes. Diabetes Care 2019, 43, 290–297. [Google Scholar] [CrossRef]
  100. Satapathy, S.K.; Vilar-Gomez, E.; Brake, D.; Samala, N.; Bickett-Burkhart, K.; Ganguli, S.; Marella, H.K.; Reddy, Y.K.; Snell, P.D.; Podila, P.; et al. Mo1510–Prevalence and Risk Factors for Advanced Liver Histology Among African Americans with Histologically Confirmed Nonalcoholic Fatty Liver Disease (NAFLD). Gastroenterology 2019, 156, S-772. [Google Scholar] [CrossRef]
  101. Moon, S.Y.; Baek, Y.H.; Jang, S.Y.; Jun, D.W.; Yoon, K.T.; Cho, Y.Y.; Gil Jo, H.; Jo, A.J. Proposal of a Novel Serological Algorithm Combining FIB-4 and Serum M2BPGi for Advanced Fibrosis in Nonalcoholic Fatty Liver Disease. Gut Liver 2023, 18, 283–293. [Google Scholar] [CrossRef] [PubMed]
  102. Schwenger, K.J.P.; Alali, M.; Ghorbani, Y.; Fischer, S.E.; Jackson, T.D.; Okrainec, A.; Allard, J.P. Reliability of Non-invasive Liver Fibrosis Assessment Tools Versus Biopsy in Pre- and Post-bariatric Surgery Patients with Non-alcoholic Fatty Liver Disease. Obes. Surg. 2022, 33, 247–255. [Google Scholar] [CrossRef]
  103. Andrade, T.G.; Xavier, L.C.D.; Souza, F.F.; Araújo, R.C. Risk predictors of advanced hepatic fibrosis in patients with nonalcoholic fatty liver disease—A survey in a university hospital in Brazil. Arq. Bras. de Endocrinol. Metabol. 2022, 66, 823–830. [Google Scholar] [CrossRef]
  104. Aida, Y.; Abe, H.; Tomita, Y.; Nagano, T.; Seki, N.; Sugita, T.; Itagaki, M.; Ishiguro, H.; Sutoh, S.; Aizawa, Y. Serum Immunoreactive Collagen IV detected by Monoclonal Antibodies as a Marker of Severe Fibrosis in Patients with Non- Alcoholic Fatty Liver Disease. J. Gastrointest. Liver Dis. 2015, 24, 61–68. [Google Scholar] [CrossRef]
  105. Huang, Y.; Dong, S.; Wang, C.; Dong, Z.; Chen, W. Significant fibrosis assessed by liver biopsy among Chinese bariatric surgery patients: A prospective cross-sectional study. Front. Endocrinol. 2023, 14, 1090598. [Google Scholar] [CrossRef] [PubMed]
  106. McPherson, S.; Stewart, S.F.; Henderson, E.; Burt, A.D.; Day, C.P. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 2010, 59, 1265–1269. [Google Scholar] [CrossRef]
  107. Kaya, E.; Bakir, A.; Kani, H.T.; Demirtas, C.O.; Keklikkiran, C.; Yilmaz, Y. Simple Noninvasive Scores Are Clinically Useful to Exclude, Not Predict, Advanced Fibrosis: A Study in Turkish Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gut Liver 2020, 14, 486–491. [Google Scholar] [CrossRef] [PubMed]
  108. Xun, Y.H.; Fan, J.G.; Zang, G.Q.; Liu, H.; Jiang, Y.M.; Xiang, J.; Huang, Q.; Shi, J.P. Suboptimal performance of simple noninvasive tests for advanced fibrosis in Chinese patients with nonalcoholic fatty liver disease. J. Dig. Dis. 2012, 13, 588–595. [Google Scholar] [CrossRef]
  109. Mikolasevic, I.; Domislovic, V.; Krznaric-Zrnic, I.; Krznaric, Z.; Virovic-Jukic, L.; Stojsavljevic, S.; Grgurevic, I.; Milic, S.; Vukoja, I.; Puz, P.; et al. The Accuracy of Serum Biomarkers in the Diagnosis of Steatosis, Fibrosis, and Inflammation in Patients with Nonalcoholic Fatty Liver Disease in Comparison to a Liver Biopsy. Medicina 2022, 58, 252. [Google Scholar] [CrossRef]
  110. Younossi, Z.M.; Stepanova, M.; Felix, S.; Jeffers, T.; Younossi, E.; Goodman, Z.; Racila, A.; Lam, B.P.; Henry, L. The combination of the enhanced liver fibrosis and FIB-4 scores to determine significant fibrosis in patients with nonalcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2023, 57, 1417–1422. [Google Scholar] [CrossRef]
  111. McPherson, S.; Griffiths, L.; Hardy, T.; Henderson, E.; Burt, A.; Day, C.; Anstee, Q. 1308 THE FIB-4 SCORE RELIABLY EXCLUDES ADVANCED FIBROSIS IN A DIABETIC COHORT WITH NAFLD. J. Hepatol. 2012, 56, S515–S516. [Google Scholar] [CrossRef]
  112. Sanyal, A.J.; Magnanensi, J.; Majd, Z.; Rosenquist, C.; Vera, D.M.; Almas, J.P.; Connelly, M.A. NIS2+™, an effective blood-based test for the diagnosis of at-risk nonalcoholic steatohepatitis in adults 65 years and older. Hepatol. Commun. 2023, 7, e0223. [Google Scholar] [CrossRef]
  113. Soresi, M.; Cabibi, D.; Giglio, R.V.; Martorana, S.; Guercio, G.; Porcasi, R.; Terranova, A.; Lazzaro, L.A.; Emma, M.R.; Augello, G.; et al. The Prevalence of NAFLD and Fibrosis in Bariatric Surgery Patients and the Reliability of Noninvasive Diagnostic Methods. BioMed Res. Int. 2020, 2020, 5023157. [Google Scholar] [CrossRef]
  114. Kaya, E. The utility of noninvasive scores in non-alcoholic fatty liver disease patients with normal and elevated serum transaminases. Hepatol. Forum 2020, 1, 8–13. [Google Scholar] [CrossRef]
  115. Kawamura, Y.; Saitoh, S.; Arase, Y.; Ikeda, K.; Fukushima, T.; Hara, T.; Seko, Y.; Hosaka, T.; Kobayashi, M.; Sezaki, H.; et al. Three-dimensional magnetic resonance imaging for stringent diagnosis of advanced fibrosis associated with nonalcoholic steatohepatitis. Hepatol. Int. 2013, 7, 850–858. [Google Scholar] [CrossRef]
  116. Kalaiyarasi, K.; Sanchalika, A.; Min, L.H.; Ming, Y.W.; Vishalkumar, S.; Chao, Y.K.; Keem, L.J.; Sameer, J.; Terence, H.C.W.; Ping, T.Y. Transient Elastography Is the Best-Performing Non-Invasive Test of Liver Fibrosis in Obese Asian Patients with Non-Alcoholic Fatty Liver Disease: A Pilot, Cross-Sectional Study. Medicina 2024, 60, 169. [Google Scholar] [CrossRef]
  117. Ishiba, H.; Sumida, Y.; Seko, Y.; Tanaka, S.; Hyogo, H.; Ono, M.; Fujii, H.; Eguchi, Y.; Suzuki, Y.; Yoneda, M.; et al. Type IV Collagen 7S Is the Most Accurate Test For Identifying Advanced Fibrosis in NAFLD with Type 2 Diabetes. Hepatol. Commun. 2020, 5, 559–572. [Google Scholar] [CrossRef] [PubMed]
  118. Udelsman, B.V.; Corey, K.; Hutter, M.M.; Chang, D.C.; Witkowski, E.R. Use of noninvasive scores for advanced liver fibrosis can guide the need for hepatic biopsy during bariatric procedures. Surg. Obes. Relat. Dis. 2021, 17, 292–298. [Google Scholar] [CrossRef] [PubMed]
  119. Zain, S.M.; Tan, H.; Mohamed, Z.; Chan, W.; Mahadeva, S.; Basu, R.C.; Mohamed, R. Use of simple scoring systems for a public health approach in the management of non-alcoholic fatty liver disease patients. JGH Open 2020, 4, 1155–1161. [Google Scholar] [CrossRef]
  120. Lubner, M.G.; Graffy, P.M.; Said, A.; Watson, R.; Zea, R.; Malecki, K.M.; Pickhardt, P.J. Utility of Multiparametric CT for Identification of High-Risk NAFLD. Am. J. Roentgenol. 2021, 216, 659–668. [Google Scholar] [CrossRef]
  121. Soontornmanokul, T.; Piyachaturawat, P.; Siramolpiwat, S.; Wisedopas, N.; Tangkijvanich, P.; Mahachai, V.; Kullavanijaya, P.; Treeprasertsuk, S. Mo1018 Validation of 4 Noninvasive Scoring Systems to Identify Patients with Advanced Fibrosis in the Thai NAFLD Population. Gastroenterology 2013, 144, S1014. [Google Scholar] [CrossRef]
  122. Wu, Y.-L.; Kumar, R.; Wang, M.-F.; Singh, M.; Huang, J.-F.; Zhu, Y.-Y.; Lin, S. Validation of conventional non-invasive fibrosis scoring systems in patients with metabolic associated fatty liver disease. World J. Gastroenterol. 2021, 27, 5753–5763. [Google Scholar] [CrossRef] [PubMed]
  123. Le, P.; Yu, P.-C.; Singh, A.; Nguyen, C.; Singh, T.; McCullough, A.; Rothberg, M. Su1533-Validation of Noninvasive Fibrosis Scores in Prediabetic Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2018, 154, S-1169. [Google Scholar] [CrossRef]
  124. Sumida, Y.; Yoneda, M.; Hyogo, H.; Itoh, Y.; Ono, M.; Fujii, H.; Eguchi, Y.; Suzuki, Y.; Aoki, N.; Kanemasa, K.; et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol. 2012, 12, 2. [Google Scholar] [CrossRef]
  125. Chong, S.-E.; Chang, F.; Chuah, K.-H.; Sthaneshwar, P.; Mustapha, N.R.N.; Mahadeva, S.; Chan, W.-K. Validation of the Hepamet fibrosis score in a multi-ethnic Asian population. Ann. Hepatol. 2022, 28, 100888. [Google Scholar] [CrossRef]
  126. Pérez-Gutiérrez, O.Z.; Hernández-Rocha, C.; Candia-Balboa, R.A.; Arrese, M.A.; Benítez, C.; Brizuela-Alcántara, D.C.; Méndez-Sánchez, N.; Uribe, M.; Chávez-Tapia, N.C. Validation study of systems for noninvasive diagnosis of fibrosis in nonalcoholic fatty liver disease in Latin population. Ann. Hepatol. 2013, 12, 416–424. [Google Scholar] [CrossRef]
  127. Younossi, Z.M.; Karrar, A.; Tokarz, K.; Ulyanov, A.; Stepanova, M.; Younoszai, Z.; Jeffers, T.; Felix, S.C.; Tan, D.; Moin, A.; et al. Signature of Circulating microRNA (miR) Detected by NextSeq Differentiates Non-alcoholic Fatty Liver Disease (NAFLD) Patients with Higher Percentage Hepatic Collagen: A Potential Role for a Prognostic Biomarker: 2017 Category Award (Liver). Am. J. Gastroenterol. 2017, 112, S490–S577. [Google Scholar] [CrossRef]
  128. Panackel, C.; Jacob, M.; Francis, J.; Raja, K.; Sakpal, M.; Ganjoo, N.; Asthana, S.; Lochan, R.; Saif, R.; Reddy, J.; et al. SAT-295-Diagnostic accuracy of non-invasive Methods (NFS Score and FIB-4) for detecting advanced fibrosis: Avalidation study of NFS score and FIB-4 in a cohort of South Indian patients with NAFLD. J. Hepatol. 2019, 70, e768. [Google Scholar] [CrossRef]
  129. Sanyal, A.; Shankar, S.; Yates, K.; Bolognese, J.; Daly, E.; Dehn, C.; Neuschwander-Tetri, B.; Kowdley, K.; Vuppalanchi, R.; Behling, C.A.; et al. The Nimble Stage 1 Study Validates Diagnostic Circulating Biomarkers for Nonal-coholic Steatohepatitis. Res. Sq. 2023, Preprint. [Google Scholar] [CrossRef]
  130. Indian Society of Gastroenterology. Indian J. Gastroenterol. 2018, 37, 1–137. [CrossRef]
  131. Luger, M.; Kruschitz, R.; Kienbacher, C.; Traussnigg, S.; Langer, F.B.; Schindler, K.; Würger, T.; Wrba, F.; Trauner, M.; Prager, G.; et al. Prevalence of Liver Fibrosis and its Association with Non-invasive Fibrosis and Metabolic Markers in Morbidly Obese Patients with Vitamin D Deficiency. Obes. Surg. 2016, 26, 2425–2432. [Google Scholar] [CrossRef] [PubMed]
  132. Medellin, A.; Pridham, G.; Urbanski, S.J.; Jayakumar, S.; Wilson, S.R. Acoustic Radiation Force Impulse and Conventional Ultrasound in the Prediction of Cirrhosis Complicating Fatty Liver: Does Body Mass Index Independently Alter the Results? Ultrasound Med. Biol. 2019, 45, 3160–3171. [Google Scholar] [CrossRef] [PubMed]
  133. Roccarina, D.; Buzzetti, E.; Misas, M.; Rosselli, M.; Majumdar, A.; Pinzani, M.; Tsochatzis, E. ElastPQ shear-wave elastography compared to fibroscan transient elastography for fibrosis staging in patients with NAFLD. J. Hepatol. 2017, 66, S236. [Google Scholar] [CrossRef]
  134. Leong, W.L.; Lai, L.L.; Mustapha, N.R.N.; Vijayananthan, A.; Rahmat, K.; Mahadeva, S.; Chan, W.K. Comparing point shear wave elastography (ElastPQ) and transient elastography for diagnosis of fibrosis stage in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2019, 35, 135–141. [Google Scholar] [CrossRef]
  135. Kapur, S.; Kalra, N.; Bhatia, A.; Duseja, A.; Das, A.; Dhiman, R.K.; Chawla, Y.; Sandhu, M.S. Comparison of Elastography Point Quantification with Transient Elastography in Patients with Chronic Viral Hepatitis and Nonalcoholic Fatty Liver Disease: A Pilot Study. J. Clin. Exp. Hepatol. 2021, 11, 21–29. [Google Scholar] [CrossRef]
  136. Argalia, G.; Ventura, C.; Tosi, N.; Campioni, D.; Tagliati, C.; Tufillaro, M.; Cucco, M.; Baroni, G.S.; Giovagnoni, A. Comparison of point shear wave elastography and transient elastography in the evaluation of patients with NAFLD. La Radiol. medica 2022, 127, 571–576. [Google Scholar] [CrossRef]
  137. Roccarina, D.; Prat, L.I.; Pallini, G.; Misas, M.G.; Buzzetti, E.; Saffioti, F.; Aricò, F.M.; Mantovani, A.; Koutli, E.; Goyale, A.; et al. Comparison of point-shear wave elastography (ElastPQ) and transient elastography (FibroScan) for liver fibrosis staging in patients with non-alcoholic fatty liver disease. Liver Int. 2022, 42, 2195–2203. [Google Scholar] [CrossRef]
  138. Taibbi, A.; Petta, S.; Matranga, D.; Caruana, G.; Cannella, R.; Busè, G.; Di Marco, V.; Midiri, M.; Bartolotta, T.V. Liver stiffness quantification in biopsy-proven nonalcoholic fatty liver disease patients using shear wave elastography in comparison with transient elastography. Ultrasonography 2021, 40, 407–416. [Google Scholar] [CrossRef]
  139. Cui, J.; Heba, E.; Hernandez, C.; Haufe, W.; Hooker, J.; Andre, M.P.; Valasek, M.A.; Aryafar, H.; Sirlin, C.B.; Loomba, R. Magnetic resonance elastography is superior to acoustic radiation force impulse for the Diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: A prospective study. Hepatology 2015, 63, 453–461. [Google Scholar] [CrossRef]
  140. Cassinotto, C.; Boursier, J.; de Lédinghen, V.; Lebigot, J.; Lapuyade, B.; Cales, P.; Hiriart, J.B.; Michalak, S.; Bail, B.L.; Cartier, V.; et al. Liver stiffness in nonalcoholic fatty liver disease: A comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. Hepatology 2016, 63, 1817–1827. [Google Scholar] [CrossRef]
  141. Tomeno, W.; Yoneda, M.; Nozaki, Y.; Fujita, K.; Kirikoshi, H.; Saito, S. Novel ultrasound-based Acoustic Radiation Force Elastography in patients with nonalcoholic fatty liver disease (NAFLD). Hepatology 2009, 50 (Suppl. S4), 790A. [Google Scholar]
  142. Yoneda, M.; Suzuki, K.; Kato, S.; Fujita, K.; Nozaki, Y.; Hosono, K.; Saito, S.; Nakajima, A. Nonalcoholic Fatty Liver Disease: US-based Acoustic Radiation Force Impulse Elastography. Radiology 2010, 256, 640–647. [Google Scholar] [CrossRef] [PubMed]
  143. Braticevici, C.F.; Sporea, I.; Panaitescu, E.; Tribus, L. Value of Acoustic Radiation Force Impulse Imaging Elastography for Non-invasive Evaluation of Patients with Nonalcoholic Fatty Liver Disease. Ultrasound Med. Biol. 2013, 39, 1942–1950. [Google Scholar] [CrossRef]
  144. Lee, D.H.; Cho, E.J.; Bae, J.S.; Lee, J.Y.; Yu, S.J.; Kim, H.; Lee, K.B.; Han, J.K.; Choi, B.I. Accuracy of Two-Dimensional Shear Wave Elastography and Attenuation Imaging for Evaluation of Patients with Nonalcoholic Steatohepatitis. Clin. Gastroenterol. Hepatol. 2021, 19, 797–805.e7. [Google Scholar] [CrossRef]
  145. Zhang, Y.N.; Fowler, K.J.; Boehringer, A.S.; Montes, V.; Schlein, A.N.; Covarrubias, Y.; Wolfson, T.; Hong, C.W.; Valasek, M.A.; Andre, M.P.; et al. Comparative diagnostic performance of ultrasound shear wave elastography and magnetic resonance elastography for classifying fibrosis stage in adults with biopsy-proven nonalcoholic fatty liver disease. Eur. Radiol. 2021, 32, 2457–2469. [Google Scholar] [CrossRef] [PubMed]
  146. Furlan, A.; Tublin, M.E.; Yu, L.; Chopra, K.B.; Lippello, A.; Behari, J. Comparison of 2D Shear Wave Elastography, Transient Elastography, and MR Elastography for the Diagnosis of Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Am. J. Roentgenol. 2020, 214, W20–W26. [Google Scholar] [CrossRef]
  147. Ogino, Y.; Wakui, N.; Nagai, H.; Matsuda, T. Comparison of strain elastography and shear wave elastography in diagnosis of fibrosis in nonalcoholic fatty liver disease. J. Med. Ultrason. 2023, 50, 187–195. [Google Scholar] [CrossRef]
  148. Zhou, J.; Yan, F.; Xu, J.; Lu, Q.; Zhu, X.; Gao, B.; Zhang, H.; Yang, R.; Luo, Y. Diagnosis of steatohepatitis and fibrosis in biopsy-proven nonalcoholic fatty liver diseases: Including two-dimension real-time shear wave elastography and noninvasive fibrotic biomarker scores. Quant. Imaging Med. Surg. 2022, 12, 1800–1814. [Google Scholar] [CrossRef]
  149. Ozturk, A.; Mohammadi, R.; Pierce, T.T.; Kamarthi, S.; Dhyani, M.; Grajo, J.R.; Corey, K.E.; Chung, R.T.; Bhan, A.K.; Chhatwal, J.; et al. Diagnostic Accuracy of Shear Wave Elastography as a Non-invasive Biomarker of High-Risk Non-alcoholic Steatohepatitis in Patients with Non-alcoholic Fatty Liver Disease. Ultrasound Med. Biol. 2020, 46, 972–980. [Google Scholar] [CrossRef]
  150. Sharpton, S.R.; Tamaki, N.; Bettencourt, R.; Madamba, E.; Jung, J.; Liu, A.; Behling, C.; Valasek, M.A.; Loomba, R. Diagnostic accuracy of two-dimensional shear wave elastography and transient elastography in nonalcoholic fatty liver disease. Ther. Adv. Gastroenterol. 2021, 14, 17562848211050436. [Google Scholar] [CrossRef]
  151. The Liver Meeting: Boston, Massachusetts Nov 10-14, 2023. Hepatology 2023, 78, S1–S2154. [CrossRef]
  152. Imajo, K.; Honda, Y.; Kobayashi, T.; Nagai, K.; Ozaki, A.; Iwaki, M.; Kessoku, T.; Ogawa, Y.; Takahashi, H.; Saigusa, Y.; et al. Direct Comparison of US and MR Elastography for Staging Liver Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2022, 20, 908–917.e11. [Google Scholar] [CrossRef]
  153. Herrmann, E.; De Lédinghen, V.; Cassinotto, C.; Chu, W.C.W.; Leung, V.Y.-F.; Ferraioli, G.; Filice, C.; Castera, L.; Vilgrain, V.; Ronot, M.; et al. Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography: An individual patient data-based meta-analysis. Hepatology 2018, 67, 260–272. [Google Scholar] [CrossRef]
  154. Mendoza, Y.P.; Rodrigues, S.G.; Delgado, M.G.; Murgia, G.; Lange, N.F.; Schropp, J.; Montani, M.; Dufour, J.; Berzigotti, A. Inflammatory activity affects the accuracy of liver stiffness measurement by transient elastography but not by two-dimensional shear wave elastography in non-alcoholic fatty liver disease. Liver Int. 2021, 42, 102–111. [Google Scholar] [CrossRef] [PubMed]
  155. Jamialahmadi, T.; Nematy, M.; Jangjoo, A.; Goshayeshi, L.; Rezvani, R.; Ghaffarzadegan, K.; Nooghabi, M.J.; Shalchian, P.; Zangui, M.; Javid, Z.; et al. Measurement of Liver Stiffness with 2D-Shear Wave Elastography (2D-SWE) in Bariatric Surgery Candidates Reveals Acceptable Diagnostic Yield Compared to Liver Biopsy. Obes. Surg. 2019, 29, 2585–2592. [Google Scholar] [CrossRef] [PubMed]
  156. Petzold, G.; Bremer, S.C.; Knoop, R.F.; Amanzada, A.; Raddatz, D.; Ellenrieder, V.; Ströbel, P.; Kunsch, S.; Neesse, A. Noninvasive assessment of liver fibrosis in a real-world cohort of patients with known or suspected chronic liver disease using 2D-shear wave elastography. Eur. J. Gastroenterol. Hepatol. 2020, 32, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
  157. Didenko, V.; Konenko, I.; Yagmur, V.; Orlovskyi, D.; Dementii, N.; Petishko, O. Неинвазивная oценка структурных изменений печени при ее диффузных забoлеваниях. GASTROENTEROLOGY 2019, 53, 230–238. [Google Scholar] [CrossRef]
  158. Sugimoto, K.; Moriyasu, F.; Oshiro, H.; Takeuchi, H.; Abe, M.; Yoshimasu, Y.; Kasai, Y.; Sakamaki, K.; Hara, T.; Itoi, T. The Role of Multiparametric US of the Liver for the Evaluation of Nonalcoholic Steatohepatitis. Radiology 2020, 296, 532–540. [Google Scholar] [CrossRef]
  159. Seo, J.W.; Kim, Y.R.; Jang, J.K.; Kim, S.Y.; Cho, Y.Y.; Lee, E.S.; Lee, D.H. Transient elastography with controlled attenuation parameter versus two-dimensional shear wave elastography with attenuation imaging for the evaluation of hepatic steatosis and fibrosis in NAFLD. Ultrasonography 2023, 42, 421–431. [Google Scholar] [CrossRef]
  160. Kuroda, H.; Fujiwara, Y.; Abe, T.; Nagasawa, T.; Oguri, T.; Noguchi, S.; Kamiyama, N.; Takikawa, Y.; Alpini, G.D. Two-dimensional shear wave elastography and ultrasound-guided attenuation parameter for progressive non-alcoholic steatohepatitis. PLoS ONE 2021, 16, e0249493. [Google Scholar] [CrossRef]
  161. Jang, J.K.; Lee, E.S.; Seo, J.W.; Kim, Y.R.; Kim, S.Y.; Cho, Y.Y.; Lee, D.H. Two-dimensional Shear-Wave Elastography and US Attenuation Imaging for Nonalcoholic Steatohepatitis Diagnosis: A Cross-sectional, Multicenter Study. Radiology 2022, 305, 118–126. [Google Scholar] [CrossRef] [PubMed]
  162. Kim, J.W.; Lee, C.H.; Kim, B.-H.; Lee, Y.-S.; Hwang, S.-Y.; Na Park, B.; Park, Y.S. Ultrasonographic index for the diagnosis of non-alcoholic steatohepatitis in patients with non-alcoholic fatty liver disease. Quant. Imaging Med. Surg. 2022, 12, 1815–1829. [Google Scholar] [CrossRef] [PubMed]
  163. Lee, M.S.; Bae, J.M.; Joo, S.K.; Woo, H.; Lee, D.H.; Jung, Y.J.; Kim, B.G.; Lee, K.L.; Kim, W.; Strnad, P. Prospective comparison among transient elastography, supersonic shear imaging, and ARFI imaging for predicting fibrosis in nonalcoholic fatty liver disease. PLoS ONE 2017, 12, e0188321. [Google Scholar] [CrossRef]
  164. Mikolasevic, I.; Domislovic, V.; Klapan, M.; Juric, T.; Lukic, A.; Krznaric-Zrnic, I.; Fuckar-Cupic, D.; Stimac, D.; Kanizaj, T.F.; Krznaric, Z.; et al. Accuracy of Controlled Attenuation Parameter and Liver Stiffness Measurement in Patients with Non-alcoholic Fatty Liver Disease. Ultrasound Med. Biol. 2020, 47, 428–437. [Google Scholar] [CrossRef] [PubMed]
  165. Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
  166. Eddowes, P.J.; Anstee, Q.M.; Guha, I.N.; Tsochatzis, E.; Paradis, V.; Bedossa, P. Performance of Fibroscan in the assessment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis patients: Interim results of a prospective multicentre validation study. J. Hepatol. 2016, 64 (Suppl. S1), S494. [Google Scholar] [CrossRef]
  167. Yu, H.; Liu, H.; Zhang, J.; Jia, G.; Yang, L.; Zhang, Q.; Li, G.; Liu, F.; Di, F.; Wang, F. Accuracy of FibroTouch in assessing liver steatosis and fibrosis in patients with metabolic-associated fatty liver disease combined with type 2 diabetes mellitus. Ann. Palliat. Med. 2021, 10, 9702–9714. [Google Scholar] [CrossRef]
  168. Oeda, S.; Takahashi, H.; Imajo, K.; Seko, Y.; Ogawa, Y.; Moriguchi, M.; Yoneda, M.; Anzai, K.; Aishima, S.; Kage, M.; et al. Accuracy of liver stiffness measurement and controlled attenuation parameter using FibroScan® M/XL probes to diagnose liver fibrosis and steatosis in patients with nonalcoholic fatty liver disease: A multicenter prospective study. J. Gastroenterol. 2019, 55, 428–440. [Google Scholar] [CrossRef]
  169. Siddiqui, M.; Vuppalanchi, R.; Van Natta, M.L.; Behling, C.A.; Contos, M.J.; Neuschwander-Tetri, B.A.; Brandman, D.; Tonascia, J.; Sanyal, A.J. Accuracy of vibration controlled transient elastography (VCTE) in grading steatosis and staging fibrosis in patients with nonalcoholic fatty liver disease (NAFLD): A prospective multicenter study. Hepatology 2017, 66 (Suppl. S1), 105A. [Google Scholar]
  170. Wong, V.W.; Wong, G.L.H.; Shu, S.; Chim, A.M.L.; Chan, A.W.; Choi, P.C. Application of transient elastography and FibroMeter in patients with nonalcoholic fatty liver disease. Hepatology 2015, 62 (Suppl. S1), 332A. [Google Scholar] [CrossRef]
  171. Seki, K.; Shima, T.; Oya, H.; Mitsumoto, Y.; Mizuno, M.; Okanoue, T. Assessment of transient elastography in Japanese patients with non-alcoholic fatty liver disease. Hepatol. Res. 2016, 47, 882–889. [Google Scholar] [CrossRef] [PubMed]
  172. Troelstra, M.A.; Witjes, J.J.; van Dijk, A.; Mak, A.L.; Gurney-Champion, O.; Runge, J.H.; Zwirs, D.; Stols-Gonçalves, D.; Zwinderman, A.H.; Wolde, M.T.; et al. Assessment of Imaging Modalities Against Liver Biopsy in Nonalcoholic Fatty Liver Disease: The Amsterdam NAFLD-NASH Cohort. J. Magn. Reson. Imaging 2021, 54, 1937–1949. [Google Scholar] [CrossRef]
  173. Kawamura, N.; Imajo, K.; Kalutkiewicz, K.J.; Nagai, K.; Iwaki, M.; Kobayashi, T.; Nogami, A.; Honda, Y.; Kessoku, T.; Ogawa, Y.; et al. Influence of liver stiffness heterogeneity on staging fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2022, 76, 186–195. [Google Scholar] [CrossRef]
  174. Park, C.C.; Nguyen, P.; Hernandez, C.; Bettencourt, R.; Ramirez, K.; Fortney, L.; Hooker, J.; Sy, E.; Savides, M.T.; Alquiraish, M.H.; et al. Magnetic Resonance Elastography vs Transient Elastography in Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gastroenterology 2017, 152, 598–607.e2. [Google Scholar] [CrossRef]
  175. Imajo, K.; Kessoku, T.; Honda, Y.; Tomeno, W.; Ogawa, Y.; Mawatari, H.; Fujita, K.; Yoneda, M.; Taguri, M.; Hyogo, H.; et al. Magnetic Resonance Imaging More Accurately Classifies Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease Than Transient Elastography. Gastroenterology 2016, 150, 626–637.e7. [Google Scholar] [CrossRef] [PubMed]
  176. Salehi, H.; Salehi, A.M.; Ghamarchehreh, M.E.; Khanlarzadeh, E.; Sohrabi, M.R. Diagnostic Accuracy of Vibration Controlled Transient Elastography as Non-invasive Assessment of Liver Fibrosis in Patients with Non-alcoholic Fatty Liver Disease. Middle East J. Dig. Dis. 2023, 15, 26–31. [Google Scholar] [CrossRef]
  177. Mahadeva, S.; Mahfudz, A.; Vijayanathan, A.; Goh, K.-L.; Arumugam, K. Accuracy of liver stiffness measurement in an Asian population with non-alcoholic fatty liver diseasea preliminary report. J. Gastroenterol. Hepatol. 2010, 25 (Suppl. S2), A102. [Google Scholar] [CrossRef]
  178. Loong, T.C.; Wei, J.L.; Leung, J.C.; Wong, G.L.; Shu, S.S.; Chim, A.M.; Chan, A.W.; Choi, P.C.; Tse, Y.; Chan, H.L.; et al. Application of the combined FibroMeter vibration-controlled transient elastography algorithm in Chinese patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2016, 32, 1363–1369. [Google Scholar] [CrossRef]
  179. Vali, Y.; Lee, J.; Boursier, J.; Petta, S.; Wonders, K.; Tiniakos, D.; Bedossa, P.; Geier, A.; Francque, S.; Allison, M.; et al. Biomarkers for staging fibrosis and non-alcoholic steatohepatitis in non-alcoholic fatty liver disease (the LITMUS project): A comparative diagnostic accuracy study. Lancet Gastroenterol. Hepatol. 2023, 8, 714–725. [Google Scholar] [CrossRef]
  180. Filho, C.N.D.; Reginatto, C.J.; Ivantes, C.A.P.; Strobel, R.; Percicote, A.P.; Petenusso, M.; da Silva, C.J.R.S.; Benjamim, C.J.R.; Radominski, R.B. Comparison between non-invasive methods and liver histology to stratify liver fibrosis in obese patients submitted to bariatric surgery. Obes. Res. Clin. Pract. 2021, 15, 152–156. [Google Scholar] [CrossRef]
  181. Lee, H.W.; Park, S.Y.; Kim, S.U.; Jang, J.Y.; Park, H.; Kim, J.K.; Lee, C.K.; Chon, Y.E.; Han, K.-H.; Lin, H.-C. Discrimination of Nonalcoholic Steatohepatitis Using Transient Elastography in Patients with Nonalcoholic Fatty Liver Disease. PLoS ONE 2016, 11, e0157358. [Google Scholar] [CrossRef] [PubMed]
  182. Ooi, G.J.; Earnest, A.; Kemp, W.W.; Burton, P.R.; Laurie, C.; Majeed, A.; Johnson, N.; McLean, C.; Roberts, S.K.; Brown, W.A. Evaluating feasibility and accuracy of non-invasive tests for nonalcoholic fatty liver disease in severe and morbid obesity. Int. J. Obes. 2018, 42, 1900–1911. [Google Scholar] [CrossRef]
  183. Lu, M.; Zhu, M.; Li, H.; Wang, Q.; Qian, Y.; Wang, M.; Chen, L. Factors associated with discordance in the assessment of fibrosis stage between transient elastography and liver biopsy in NAFLD patients. Clin. Res. Hepatol. Gastroenterol. 2023, 47, 102183. [Google Scholar] [CrossRef]
  184. Myers, R.P.; Pomier–Layrargues, G.; Kirsch, R.; Pollett, A.; Duarte–Rojo, A.; Wong, D.; Beaton, M.; Levstik, M.; Crotty, P.; Elkashab, M. Feasibility and Diagnostic Performance of the Fibroscan XL Probe for Liver Stiffness Measurement in Overweight and Obese Patients. Hepatology 2011, 55, 199–208. [Google Scholar] [CrossRef]
  185. Ruiz-Fernandez, G.; Abadia, M.; Romero, M.; Suárez, C.; Poza, J.; Marín, E.; Roig, C.A.; Amor, C.; Diaz, I.G.; Berenguer, C.S.; et al. High performance of new multiparametric ultrasound in the non-invasive assessment of liver disease. J. Hepatol. 2023, 78, S706. [Google Scholar] [CrossRef]
  186. Azaceta, M.D.B.; Iruzubieta, P.; Sigüenza, R.; Jiménez-González, C.; Ibañez, L.; Izquierdo-Sánchez, L.; Rivera, J.; Guerra, J.A.; Ampuero, J.; Graupera, I.; et al. Impact of obesity on transient elastography accuracy among patients with non-alcoholic fatty liver disease. J. Hepatol. 2023, 78, S700–S701. [Google Scholar] [CrossRef]
  187. Shen, F.; Zheng, R.; Shi, J.; Mi, Y.; Chen, G.; Hu, X.; Liu, Y.; Wang, X.; Pan, Q.; Chen, G.; et al. Impact of skin capsular distance on the performance of controlled attenuation parameter in patients with chronic liver disease. Liver Int. 2015, 35, 2392–2400. [Google Scholar] [CrossRef]
  188. Vuppalanchi, R.; Gawrieh, S.; Weber, R. Is liver stiffness measurement (LSM) by Fibroscan better than FIB4 score for prediction of clinically significant fibrosis in patients with NAFLD? Hepatology 2014, 60 (Suppl. S1), 606A. [Google Scholar] [CrossRef]
  189. Chuah, K.; Lai, L.; Vethakkan, S.R.; Mustapha, N.R.N.; Mahadeva, S.; Chan, W. Liver stiffness measurement in non-alcoholic fatty liver disease: Two is better than one. J. Gastroenterol. Hepatol. 2020, 35, 1404–1411. [Google Scholar] [CrossRef]
  190. Ergelen, R.; Akyuz, U.; Aydin, Y.; Eren, F.; Yilmaz, Y. Measurements of serum procollagen-III peptide and M30 do not improve the diagnostic accuracy of transient elastography for the detection of hepatic fibrosis in patients with nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 2015, 27, 667–671. [Google Scholar] [CrossRef]
  191. Yoneda, M.; Mawatari, H.; Fujita, K.; Endo, H.; Iida, H.; Nozaki, Y.; Yonemitsu, K.; Higurashi, T.; Takahashi, H.; Kobayashi, N.; et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with nonalcoholic fatty liver disease (NAFLD). Dig. Liver Dis. 2008, 40, 371–378. [Google Scholar] [CrossRef] [PubMed]
  192. Yang, X.; Chang, X.; Wu, S.; Sun, X.; Zhu, X.; Wang, L.; Xu, Y.; Yao, X.; Rao, S.; Hu, X.; et al. Performance of liver stiffness measurements obtained with FibroScan is affected by glucose metabolism in patients with nonalcoholic fatty liver disease. Lipids Health Dis. 2021, 20, 27. [Google Scholar] [CrossRef] [PubMed]
  193. Mahadeva, S.; Mahfudz, A.S.; Vijayanathan, A.; Goh, K.; Kulenthran, A.; Cheah, P. Performance of transient elastography (TE) and factors associated with discordance in non-alcoholic fatty liver disease. J. Dig. Dis. 2013, 14, 604–610. [Google Scholar] [CrossRef]
  194. Lupsor, M.; Badea, R.; Stefanescu, H.; Grigorescu, M.; Serban, A.; Radu, C.; Crişan, D.; Sparchez, Z.; Iancu, S.; Maniu, A. Performance of unidimensional transient elastography in staging non-alcoholic steatohepatitis. J. Gastrointest. Liver Dis. 2010, 19, 53–60. [Google Scholar] [PubMed]
  195. De Ledinghen, V.; Wong, V.W.; Vergniol, J.; Wong, G.; Le Bail, B.; ML Chim, A.; Foucher, J.; Chan, H. L-Y. Prediction of fibrosis in patients with NAFLD using transient elastography : A prospective multicentre study. Hepatology 2009, 50 (Suppl. S4), 767A–768A. [Google Scholar]
  196. Garteiser, P.; Castera, L.; Coupaye, M.; Doblas, S.; Calabrese, D.; Burgio, M.D.; Ledoux, S.; Bedossa, P.; Esposito-Farèse, M.; Msika, S.; et al. Prospective comparison of transient elastography, MRI and serum scores for grading steatosis and detecting non-alcoholic steatohepatitis in bariatric surgery candidates. JHEP Rep. 2021, 3, 100381. [Google Scholar] [CrossRef]
  197. Gaia, S.; Carenzi, S.; Barilli, A.L.; Bugianesi, E.; Smedile, A.; Brunello, F.; Marzano, A.; Rizzetto, M. Reliability of transient elastography for the detection of fibrosis in Non-Alcoholic Fatty Liver Disease and chronic viral hepatitis. J. Hepatol. 2011, 54, 64–71. [Google Scholar] [CrossRef]
  198. Alsaqal, S.; Hockings, P.; Ahlström, H.; Gummesson, A.; Hedström, A.; Hulthe, J.; Johansson, L.; Niessen, H.G.; Schoelch, C.; Schultheis, C.; et al. The Combination of MR Elastography and Proton Density Fat Fraction Improves Diagnosis of Nonalcoholic Steatohepatitis. J. Magn. Reson. Imaging 2021, 56, 368–379. [Google Scholar] [CrossRef]
  199. Naveau, S.; Lamouri, K.; Pourcher, G.; Njiké-Nakseu, M.; Ferretti, S.; Courie, R.; Tranchart, H.; Ghinoiu, M.; Balian, A.; Prévot, S.; et al. The Diagnostic Accuracy of Transient Elastography for the Diagnosis of Liver Fibrosis in Bariatric Surgery Candidates with Suspected NAFLD. Obes. Surg. 2014, 24, 1693–1701. [Google Scholar] [CrossRef]
  200. Jafarov, F.; Kaya, E.; Bakir, A.; Eren, F.; Yilmaz, Y. The diagnostic utility of fibrosis-4 or nonalcoholic fatty liver disease fibrosis score combined with liver stiffness measurement by fibroscan in assessment of advanced liver fibrosis: A biopsy-proven nonalcoholic fatty liver disease study. Eur. J. Gastroenterol. Hepatol. 2020, 32, 642–649. [Google Scholar] [CrossRef]
  201. Tapper, E.B.; Challies, T.; Nasser, I.; Afdhal, N.H.; Lai, M. The Performance of Vibration Controlled Transient Elastography in a US Cohort of Patients with Nonalcoholic Fatty Liver Disease. Am. J. Gastroenterol. 2016, 111, 677–684. [Google Scholar] [CrossRef] [PubMed]
  202. Chakraborty, J.; Ouni, A.; Lambrou, T.; Jacobs, C.; Zori, A.G.; Clark, V.C.; Morelli, G.; Soldevila-Pico, C.; Nelson, D.R.; Cabrera, R.; et al. Transient elastography accurately predicts advanced fibrosis (F3-F4) in NAFLD patients: Is it time to move away from liver biopsy? Gastroenterology 2019, 156 (Suppl. S1), S-1364. [Google Scholar] [CrossRef]
  203. Siddiqui, M.S.; Vuppalanchi, R.; Van Natta, M.L.; Hallinan, E.; Kowdley, K.V.; Abdelmalek, M.; Neuschwander-Tetri, B.A.; Loomba, R.; Dasarathy, S.; Brandman, D.; et al. Vibration-Controlled Transient Elastography to Assess Fibrosis and Steatosis in Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2019, 17, 156–163.e2. [Google Scholar] [CrossRef]
  204. Pathik, P.; Ravindra, S.; Ajay, C.; Prasad, B.; Jatin, P.; Prabha, S. Fibroscan versus simple noninvasive screening tools in predicting fibrosis in high-risk nonalcoholic fatty liver disease patients from Western India. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 281–286. [Google Scholar]
  205. Ergelen, R.; Yilmaz, Y.; Asedov, R.; Celikel, C.; Akin, H.; Bugdayci, O.; Altun, E.; Tuney, D. Comparison of Doppler ultrasound and transient elastography in the diagnosis of significant fibrosis in patients with nonalcoholic steatohepatitis. Abdom. Imaging 2016, 41, 1505–1510. [Google Scholar] [CrossRef]
  206. Kosick, H.; Cerocchi, O.; Sebastiani, G. Comparison of simple marker algorithms for diagnosis of advanced disease stage F3-4 in NAFLD patients with normal liver transaminases. Can Liver J. 2019, 2, 123–124. [Google Scholar]
  207. Tovo, C.V.; Villela-Nogueira, C.A.; Leite, N.C.; Panke, C.L.; Port, G.Z.; Fernandes, S.; Buss, C.; Coral, G.P.; Cardoso, A.C.; Cravo, C.M.; et al. Transient hepatic elastography has the best performance to evaluate liver fibrosis in non-alcoholic fatty liver disease (NAFLD). Ann. Hepatol. 2019, 18, 445–449. [Google Scholar] [CrossRef]
  208. Hockings, P.; Johansson, E.; Vessby, J.; Gummesson, A.; Heurling, K.; Löwenmark, A.F.; Eriksson, O.; Roberts, C.; Johansson, L.; Hedström, A.; et al. Bivariate mr imaging biomarker to improve prediction of advanced fibrosis in subjects with biopsy proven NAFLD. Hepatology 2020, 72 (Suppl. S1), 898A. [Google Scholar] [CrossRef]
  209. Loomba, R.; Lam, J.; Wolfson, T.; Ang, B.; Bhatt, A.; Peterson, M.R.; Brenner, D.A.; Sirlin, C. Mo1009 Magnetic Resonance Elastography Accurately Predicts Advanced Fibrosis in NAFLD: A Pilot Study with Paired-Liver Biopsy. Gastroenterology 2013, 144, S1012. [Google Scholar] [CrossRef]
  210. Loomba, R.; Wolfson, T.; Ang, B.; Hooker, J.; Behling, C.; Peterson, M.; Valasek, M.; Lin, G.; Brenner, D.; Gamst, A.; et al. Magnetic Resonance Elastography Predicts Advanced Fibrosis in Patients with Nonalcoholic Fatty Liver Disease: A Prospective Study. Hepatology 2014, 60, 1920–1928. [Google Scholar] [CrossRef]
  211. Loomba, R.; Cui, J.; Wolfson, T.; Haufe, W.; Hooker, J.; Szeverenyi, N.; Ang, B.; Bhatt, A.; Wang, K.; Aryafar, H.; et al. Novel 3D Magnetic Resonance Elastography for the Noninvasive Diagnosis of Advanced Fibrosis in NAFLD: A Prospective Study. Am. J. Gastroenterol. 2016, 111, 986–994. [Google Scholar] [CrossRef] [PubMed]
  212. Loomba, R.; Alkhouri, N.; Noureddin, M.; Zhang, J.; McColgan, B.J.; Djedjos, C.S.; Myers, R.P.; Middleton, M.; Goodman, Z.; Kowdley, K.; et al. Validation of the diagnostic accuracy of magnetic resonance elastography (MRE) for the detection of advanced fibrosis due to NASH across multiple phase 2 and 3 clinical trials. Hepatol. Int. 2020, 14 (Suppl. S1), S316. [Google Scholar] [CrossRef]
  213. Li, J.; Lu, X.; Zhu, Z.; Kalutkiewicz, K.J.; Mounajjed, T.; Therneau, T.M.; Venkatesh, S.K.; Sui, Y.; Glaser, K.J.; Hoodeshenas, S.; et al. Head-to-head comparison of magnetic resonance elastography-based liver stiffness, fat fraction, and T1 relaxation time in identifying at-risk NASH. Hepatology 2023, 78, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
  214. Costa-Silva, L.; Ferolla, S.M.; Lima, A.S.; Vidigal, P.V.T.; Ferrari, T.C.d.A. MR elastography is effective for the non-invasive evaluation of fibrosis and necroinflammatory activity in patients with nonalcoholic fatty liver disease. Eur. J. Radiol. 2018, 98, 82–89. [Google Scholar] [CrossRef]
  215. Kim, J.W.; Lee, Y.-S.; Park, Y.S.; Kim, B.-H.; Lee, S.Y.; Yeon, J.E.; Lee, C.H. Multiparametric MR Index for the Diagnosis of Non-Alcoholic Steatohepatitis in Patients with Non-Alcoholic Fatty Liver Disease. Sci. Rep. 2020, 10, 2671. [Google Scholar] [CrossRef]
  216. Hanniman, E.; Costa, A.F.; Bowen, C.V.; Abdolell, M.; Stueck, A.; McLeod, M.; Peltekian, K.; Rioux, J.; Clarke, S.E. Prospective Evaluation of Virtual MR Elastography with Diffusion-Weighted Imaging in Subjects with Nonalcoholic Fatty Liver Disease. J. Magn. Reson. Imaging 2022, 56, 1448–1456. [Google Scholar] [CrossRef]
Figure 1. PRISMA flow diagram showing screening and selection of studies included in the systematic review.
Figure 1. PRISMA flow diagram showing screening and selection of studies included in the systematic review.
Diagnostics 15 01598 g001
Figure 2. Proposed two-tier blood-based followed by image-based risk stratification algorithm for population screening of patients with suspected or diagnosed MASLD. Metabolic risk factors = central obesity, high triglycerides, low HDL cholesterol, hypertension, prediabetes, or insulin resistance.
Figure 2. Proposed two-tier blood-based followed by image-based risk stratification algorithm for population screening of patients with suspected or diagnosed MASLD. Metabolic risk factors = central obesity, high triglycerides, low HDL cholesterol, hypertension, prediabetes, or insulin resistance.
Diagnostics 15 01598 g002
Table 1. Pooled and weighted sensitivity and specificity values reported by threshold for FIB-4, pSWE, 2D-SWE, VCTE, and MRE for detecting significant and advanced hepatic fibrosis in MASLD patients. Weighted sensitivities to specificities included 0.3:0.7, 0.5:0.5, and 0.7:0.3.
Table 1. Pooled and weighted sensitivity and specificity values reported by threshold for FIB-4, pSWE, 2D-SWE, VCTE, and MRE for detecting significant and advanced hepatic fibrosis in MASLD patients. Weighted sensitivities to specificities included 0.3:0.7, 0.5:0.5, and 0.7:0.3.
Sensitivity Weight 0.3Sensitivity Weight 0.5Sensitivity Weight 0.7
ModalityFibrosis SeverityThresholdSensitivity [%, 95% CI]Specificity [%, 95% CI]ThresholdSensitivity [%, 95% CI]Specificity [%, 95% CI]ThresholdSensitivity [%, 95% CI]Specificity [%, 95% CI]
FIB-4 Significant2.3436 [27–47]89 [84–93]1.0668 [61–75]68 [61–75]0.4889 [84–93]36 [27–47]
Advanced2.3942 [35–50]88 [85–91]1.3370 [63–76]70 [65–75]0.7488 [85–91]42 [35–50]
pSWE Significant35.9052 [10–92]88 [42–99]5.3774 [60–84]74 [59–84]0.8088 [42–99]52 [10–92]
Advanced12.9761 [33–83]88 [74–95]6.4378 [60–89]78 [65–87]3.2088 [74–95]61 [33–83]
2D-SWE Significant13.5954 [35–72]88 [78–94]8.3174 [60–85]74 [62–84]5.1088 [78–94]54 [35–72]
Advanced18.6360 [38–79]88 [79–94]9.5877 [61–88]77 [67–85]4.9288 [79–94]60 [38–79]
VCTE Significant11.8848 [37–60]88 [82–92]8.4872 [62–80]72 [63–79]6.1088 [82–92]48 [37–60]
Advanced13.2156 [48–64]88 [85–91]9.7475 [69–81]75 [70–80]7.1888 [85–91]56 [48–64]
MRE Significant3.7069 [50–83]90 [80–95]2.9382 [67–90]82 [68–90]2.3290 [80–95]69 [50–83]
Advanced5.9875 [61–85]91 [84–95]2.7385 [75–91]85 [76–90]1.2491 [84–95]75 [61–85]
Significant hepatic fibrosis = METAVIR 0–1 versus METAVIR 2–4; advanced hepatic fibrosis = METAVIR 0–2 versus METAVIR 3–4; FIB-4 = Fibrosis 4; pSWE = point shear wave elastography; 2D-SWE = 2D shear wave elastography; VCTE = vibration-controlled elastography; and MRE = magnetic resonance elastography.
Table 2. Pooled sensitivity and specificity values for FIB-4 thresholds of 1.3 and 2.67 for detecting significant and advanced hepatic fibrosis in MASLD patients.
Table 2. Pooled sensitivity and specificity values for FIB-4 thresholds of 1.3 and 2.67 for detecting significant and advanced hepatic fibrosis in MASLD patients.
Hepatic Fibrosis Severity FIB–4 ThresholdNo. StudiesNo. PatientsSensitivity [% (95% CI)]Specificity [% (95% CI)]
Significant 1.313797565 (55–73)74 (66–81)
Advanced1.34421,40972 (68–76)71 (66–75)
Significant2.677374125 (18–33)97 (94–99)
Advanced2.675029,95332 (27–38)96 (94–97)
Significant hepatic fibrosis = METAVIR 0–1 versus METAVIR 2–4; advanced hepatic fibrosis = METAVIR 0–2 versus METAVIR 3–4.
Table 3. Vendor-specific pooled and weighted sensitivity and specificity values reported by threshold for pSWE, 2D-SWE, and MRE for detecting significant and advanced hepatic fibrosis in MASLD patients. Weighted sensitivities to specificities included 0.3:0.7, 0.5:0.5, and 0.7:0.3.
Table 3. Vendor-specific pooled and weighted sensitivity and specificity values reported by threshold for pSWE, 2D-SWE, and MRE for detecting significant and advanced hepatic fibrosis in MASLD patients. Weighted sensitivities to specificities included 0.3:0.7, 0.5:0.5, and 0.7:0.3.
No. StudiesNo. Contigency TablesSensitivity Weight 0.3Sensitivity Weight 0.5 Sensitivity Weight 0.7
ModalityFibrosis SeverityVendor ThresholdSensitivity [%, 95% CI]Specificity [%, 95% CI]ThresholdSensitivity [%, 95% CI]Specificity [%, 95% CI]ThresholdSensitivity [%, 95% CI]Specificity [%, 95% CI]
2D-SWESignificantCanon46NANANANANANANANANA
GE71114.549 (12–87)91 (0–100)973 (47–89)73 (51–87)5.688 (72–95)49 (30–68)
Siemens24NANANANANANANANANA
Supersonic Imagine81013.652 (23–80)88 (80–96)8.274 (55–87)74 (57–86)588 (63–97)52 (23–80)
AdvancedCanon45NANANANANANANANANA
GE71012.359 (28–84)88 (70–96)8.777 (54–90)77 (61–87)6.188 (71–96)59 (37–77)
Siemens24NANANANANANANANANA
Supersonic Imagine9123558 (10–95)88 (36–99)10.876 (58–88)76 (64–85)3.388 (39–99)58 (12–93)
pSWESignificantSiemens5815.154 (61–96)88 (29–99)4.475 (62–84)75 (61–84)1.388 (37–99)54 (8–94)
Phillips55NANANANANANANANANA
Samsung13NANANANANANANANANA
AdvancedSiemens7108.867 (41–86)89 (77–96)5.981 (64–91)81 (69–89)489 (78–95)67 (52–79)
Phillips55NANANANANANANANANA
Samsung13NANANANANANANANANA
MRESignificantGE13193.970 (52–83)80 (81–95)382 (67–91)82 (69–90)2.490 (72–97)70 (41–88)
Siemens22NANANANANANANANANA
AdvancedGE10145.975 (57–88)91 (83–96)2.685 (73–92)85 (76–91)1.191 (72–98)75 (45–92)
Siemens11NANANANANANANANANA
Phillips11NANANANANANANANANA
Significant hepatic fibrosis = METAVIR 0–1 versus METAVIR 2–4; advanced hepatic fibrosis = METAVIR 0–2 versus METAVIR 3–4; No. studies = number of studies; No. contingency tables = number of contingency tables (which may include >1 table per study if multiple thresholds are reported); NA = not analyzable.
Table 4. Pooled sensitivity and specificity subgroup analyses evaluating reported thresholds of 7–9 kPa (8 ± 1 kPa) for pSWE, 2D-SWE, VCTE, and MRE for detecting significant and advanced hepatic fibrosis in MASLD patients.
Table 4. Pooled sensitivity and specificity subgroup analyses evaluating reported thresholds of 7–9 kPa (8 ± 1 kPa) for pSWE, 2D-SWE, VCTE, and MRE for detecting significant and advanced hepatic fibrosis in MASLD patients.
ModalityFibrosis SeveritySubgroupNo. StudiesNo. PatientsSensitivity, % (95% CI)Specificity, % (95% CI)Significance
pSWESignificantEast Asian Countries00N/AN/AN/A
Other Countries323278 (70–84)80 (71–87)
Vendor: Siemens127N/AN/AN/A
Vendor: Philips1159N/AN/A
Vendor: Samsung146N/AN/A
<10 measurements29272 (59–83)68 (52–81)NS
≥10 measurements323277 (69–93)80 (71–87)
RoB: Low 313873 (62–81)70 (57–81)NS
RoB: Unclear and/or High218678 (69–85)82 (72–89)
AdvancedEast Asian Countries211775 (53–88)62 (40–80)NS
Other Countries551872 (62–81)82 (74–89)
Vendor: Siemens226362 (51–71)86 (67–95)NS
Vendor: Philips432680 (70–87)77 (61–88)
Vendor: Samsung14667 (41–87)71 (51–87)
<10 measurements214671 (52–85)57 (41–72)p < 0.05
≥10 measurements447273 (60–83)84 (76–89)
RoB: Low 329973 (62–81)70 (57–81)NS
RoB: Unclear and/or High433678 (69–85)82 (72–89)
2D–SWESignificantEast Asian Countries9100584 (72–91)85 (77–91)NS
Other Countries664983 (74–89)83 (75–88)
Prospective Study Design12136084 (74–90)82 (73–89)NS
Retrospective Study Design445084 (76–90)81 (73–87)
Vendor: Canon333992 (75–97)87 (73–94)NS
Vendor: GE551882 (66–91)81 (63–91)
Vendor: Siemens230185 (64–94)74 (51–88)
Vendor: Supersonic Imagine665283 (70–91)79 (64–89)
RoB: Low 9121685 (74–92)75 (63–84)NS
RoB: Unclear and/or High759484 (76–90)81 (73–87)
AdvancedEast Asian Countries10119986 (78–92)81 (75–86)NS
Other Countries547887 (74–94)83 (74–90)
Prospective Study Design12126086 (80–91)84 (78–89)NS
Retrospective Study Design222386 (68–95)82 (76–86)
Vendor: Canon333998 (84–100)82 (72–98)p < 0.05
Vendor: GE766881 (73–87)86 (78–91)
Vendor: Siemens122291 (84–96)76 (68–83)
Vendor: Supersonic Imagine223090 (77–96)62 (45–76)
RoB: Low 786086 (77–92)83 (77–90)NS
RoB: Unclear and/or High762387 (76–93)81 (69–88)
VCTESignificantEast Asian Countries12177480 (71–86)74 (63–82)NS
Other Countries23506580 (74–85)66 (58–73)
Prospective Study Design28501079 (75–83)72 (66–78)NS
Retrospective Study Design9238084 (79–89)59 (50–69)
Single Hospital Design22282077 (72–82)70 (64–77)NS
Multicenter Design18512281 (76–85)69 (61–75)
RoB: Low 23293777 (72–82)72 (64–78)NS
RoB: Unclear and/or High17477382 (76–86)65 (56–73)
AdvancedEast Asian Countries14217887 (80–92)71 (59–81)NS
Other Countries25869187 (83–91)69 (60–77)
Prospective Study Design29754188 (84–91)72 (66–78)NS
Retrospective Study Design12532887 (82–91)64 (55–71)
Single Hospital Design22314884 (79–89)71 (61–79)NS
Multicenter Design22988189 (86–92)70 (60–78)
RoB: Low 22706588 (84–91)61 (52–69)p < 0.05
RoB: Unclear and/or High19580487 (82–90)79 (72–84)
MRESignificantEast Asian Countries7112588 (82–92)84 (77–89)NS
Other Countries1097077 (67–84)88 (83–91)
Prospective Study Design10127783 (73–90)87 (81–91)NS
Retrospective Study Design339488 (73–95)83 (71–91)
Vendor: GE9127686 (75–92)84 (78–89)NS
Vendor: Siemens216685 (59–96)93 (80–98)
Magnet Strength: 1.5T438984 (69–93)82 (71–90)NS
Magnet Strength: 3T8111283 (71–91)87 (80–91)
Pulse Sequence: GRE764284 (72–91)82 (72–88)NS
Pulse Sequence: SE–EPI445883 (66–93)89 (77–95)
RoB: Low 10124182 (72–89)87 (81–91)NS
RoB: Unclear and/or High449883 (71–91)86 (78–92)
AdvancedEast Asian Countries120182 (73–89)92 (84–96)NS
Other Countries430586 (75–93)85 (80–89)
Prospective Study Design540386 (76–93)88 (83–92)N/A
Retrospective Study Design00N/AN/A
Vendor: GE329282 (68–91)91 (80–96)N/A
Vendor: Siemens00N/AN/A
Magnet Strength: 1.5T15992 (73–99)89 (73–97)NS
Magnet Strength: 3T329282 (68–91)90 (81–95)
Pulse Sequence: GRE325385 (73–92)86 (80–91)NS
Pulse Sequence: SE–EPI19887 (60–98)96 (90–99)
RoB: Low 329282 (68–91)91 (82–96)NS
RoB: Unclear and/or High211193 (74–98)81 (62–92)
Subgroup analysis performed by modality and fibrosis severity for studies reporting thresholds between 7–9 kPa (8 ± 1 kPa). Categories with an insufficient number of studies could not be analyzed and are labeled as “N/A”; No. studies = number of studies; No. patients = number of patients included in subgroup assessment; GE = General Electric; RoB = Risk of Bias stratified by all domains that are deemed low risk versus studies with any single domain deemed unclear or high risk of bias; GRE = gradient echo; SE-EPI = spin echoplanar; N/A = not analyzable; NS = not significant.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wilson, M.P.; Singh, R.; Mehta, S.; Murad, M.H.; Fung, C.; Low, G. Comparing FIB-4, VCTE, pSWE, 2D-SWE, and MRE Thresholds and Diagnostic Accuracies for Detecting Hepatic Fibrosis in Patients with MASLD: A Systematic Review and Meta-Analysis. Diagnostics 2025, 15, 1598. https://doi.org/10.3390/diagnostics15131598

AMA Style

Wilson MP, Singh R, Mehta S, Murad MH, Fung C, Low G. Comparing FIB-4, VCTE, pSWE, 2D-SWE, and MRE Thresholds and Diagnostic Accuracies for Detecting Hepatic Fibrosis in Patients with MASLD: A Systematic Review and Meta-Analysis. Diagnostics. 2025; 15(13):1598. https://doi.org/10.3390/diagnostics15131598

Chicago/Turabian Style

Wilson, Mitchell Patrick, Ranjit Singh, Shyam Mehta, Mohammad Hassan Murad, Christopher Fung, and Gavin Low. 2025. "Comparing FIB-4, VCTE, pSWE, 2D-SWE, and MRE Thresholds and Diagnostic Accuracies for Detecting Hepatic Fibrosis in Patients with MASLD: A Systematic Review and Meta-Analysis" Diagnostics 15, no. 13: 1598. https://doi.org/10.3390/diagnostics15131598

APA Style

Wilson, M. P., Singh, R., Mehta, S., Murad, M. H., Fung, C., & Low, G. (2025). Comparing FIB-4, VCTE, pSWE, 2D-SWE, and MRE Thresholds and Diagnostic Accuracies for Detecting Hepatic Fibrosis in Patients with MASLD: A Systematic Review and Meta-Analysis. Diagnostics, 15(13), 1598. https://doi.org/10.3390/diagnostics15131598

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop