Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortes Rivera, M.; Mastronardi, C.; Silva-Aldana, C.T.; Arcos-Burgos, M.; Lidbury, B.A. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics 2019, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness; The National Academies Press: Washington, DC, USA, 2015. [CrossRef]
- Nacul, L.C.; Lacerda, E.M.; Pheby, D.; Campion, P.; Molokhia, M.; Fayyaz, S.; Leite, J.C.; Poland, F.; Howe, A.; Drachler, M.L. Prevalence of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) in three regions of England: A repeated cross-sectional study in primary care. BMC Med. 2011, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Estevez-Lopez, F.; Castro-Marrero, J.; Wang, X.; Bakken, I.J.; Ivanovs, A.; Nacul, L.; Sepúlveda, N.; Strand, E.B.; Pheby, D.; Alegre, J.; et al. Prevalence and incidence of myalgic encephalomyelitis/chronic fatigue syndrome in Europe-the Euro-epiME study from the European network EUROMENE: A protocol for a systematic review. BMJ Open 2018, 8, e020817. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, B.M.; Van De Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef]
- Brurberg, K.G.; Fonhus, M.S.; Larun, L.; Flottorp, S.; Malterud, K. Case definitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): A systematic review. BMJ Open 2014, 4, e003973. [Google Scholar] [CrossRef]
- Maes, M.; Rodriguez, L.A.; Morris, G. Is a diagnostic blood test for chronic fatigue syndrome on the horizon? Expert. Rev. Mol. Diagn. 2019, 19, 1049–1051. [Google Scholar] [CrossRef]
- Rasa, S.; Nora-Krukle, Z.; Henning, N.; Eliassen, E.; Shikova, E.; Harrer, T.; Scheibenbogen, C.; Murovska, M.; Prusty, B.K. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Transl. Med. 2018, 16, 268. [Google Scholar] [CrossRef]
- Sotzny, F.; Blanco, J.; Capelli, E.; Castro-Marrero, J.; Steiner, S.; Murovska, M.; Scheibenbogen, C. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Evidence for an autoimmune disease. Autoimmun. Rev. 2018, 17, 601–609. [Google Scholar] [CrossRef]
- Klimas, N.G.; Koneru, A.O. Chronic fatigue syndrome: Inflammation, immune function, and neuroendocrine interactions. Curr. Rheumatol. Rep. 2007, 9, 482–487. [Google Scholar] [CrossRef]
- Keller, R.H.; Lane, J.L.; Klimas, N.; Reiter, W.M.; Fletcher, M.A.; van Riel, F.; Morgan, R. Association between HLA class II antigens and the chronic fatigue immune dysfunction syndrome. Clin. Infect. Dis. 1994, 18 (Suppl. S1), S154–S156. [Google Scholar] [CrossRef]
- Smith, J.; Fritz, E.L.; Kerr, J.R.; Cleare, A.J.; Wessely, S.; Mattey, D.L. Association of chronic fatigue syndrome with human leucocyte antigen class II alleles. J. Clin. Pathol. 2005, 58, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Hernandez, O.D.; Cuccia, M.; Bozzini, S.; Bassi, N.; Moscavitch, S.; Diaz-Gallo, L.-M.; Blank, M.; Agmon-Levin, N.; Shoenfeld, Y. Autoantibodies, polymorphisms in the serotonin pathway, and human leukocyte antigen class II alleles in chronic fatigue syndrome: Are they associated with age at onset and specific symptoms? Ann. N. Y. Acad. Sci. 2009, 1173, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Underhill, J.A.; Mahalingam, M.; Peakman, M.; Wessely, S. Lack of association between HLA genotype and chronic fatigue syndrome. Eur. J. Immunogenet. 2001, 28, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, A.D.; Lacerda, E.M.; Nacul, L.; Sepúlveda, N. Review of the Quality Control Checks Performed by Current Genome-Wide and Targeted-Genome Association Studies on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Pediatr. 2020, 8, 293. [Google Scholar] [CrossRef]
- van de Putte, E.M.; van Doornen, L.J.P.; Engelbert, R.H.H.; Kuis, W.; Kimpen, J.L.L.; Uiterwaal, C.S.P.M. Mirrored symptoms in mother and child with chronic fatigue syndrome. Pediatrics 2006, 117, 2074–2079. [Google Scholar] [CrossRef]
- Albright, F.; Light, K.; Light, A.; Bateman, L.; Cannon-Albright, L.A. Evidence for a heritable predisposition to Chronic Fatigue Syndrome. BMC Neurol. 2011, 11, 62. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Evengard, B.; Jacks, A.; Pedersen, N.L. Twin analyses of chronic fatigue in a Swedish national sample. Psychol. Med. 2005, 35, 1327–1336. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Allander, T.; Lysholm, F.; Goh, S.; Persson, B.; Jacks, A.; Evengård, B.; Pedersen, N.L.; Andersson, B. An unbiased metagenomic search for infectious agents using monozygotic twins discordant for chronic fatigue. BMC Microbiol. 2011, 11, 2. [Google Scholar] [CrossRef]
- Carruthers, B.M.; Jain, A.K.; de Meirleir, K.L.; Peterson, D.L.; Klimas, N.G.; Lerner, A.M.; Bested, A.C.; Flor-Henry, P.; Joshi, P.; Powles, A.C.P.; et al. Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. J. Chronic Fatigue Syndr. 2003, 11, 7–115. [Google Scholar] [CrossRef]
- Velez, J.I.; Chandrasekharappa, S.C.; Henao, E.; Martinez, A.F.; Harper, U.; Jones, M.; Solomon, B.D.; Lopez, L.; Garcia, G.; Aguirre-Acevedo, D.C.; et al. Pooling/bootstrap-based GWAS (pbGWAS) identifies new loci modifying the age of onset in PSEN1 p.Glu280Ala Alzheimer’s disease. Mol. Psychiatry 2013, 18, 568–575. [Google Scholar] [CrossRef]
- Schlauch, K.A.; Khaiboullina, S.F.; De Meirleir, K.L.; Rawat, S.; Petereit, J.; Rizvanov, A.A.; Blatt, N.; Mijatovic, T.; Kulick, D.; Palotás, A.; et al. Genome-wide association analysis identifies genetic variations in subjects with myalgic encephalomyelitis/chronic fatigue syndrome. Transl. Psychiatry 2016, 6, e730. [Google Scholar] [CrossRef]
- Davis, J.M.; Heft, I.; Scherer, S.W.; Sikela, J.M. A Third Linear Association Between Olduvai (DUF1220) Copy Number and Severity of the Classic Symptoms of Inherited Autism. Am. J. Psychiatry 2019, 176, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Sikela, J.M.; Van Roy, F. Changing the name of the NBPF/DUF1220 domain to the Olduvai domain. F1000Research 2017, 6, 2185. [Google Scholar] [CrossRef] [PubMed]
- Quick, V.B.S.; Davis, J.M.; Olincy, A.; Sikela, J.M. DUF1220 copy number is associated with schizophrenia risk and severity: Implications for understanding autism and schizophrenia as related diseases. Transl. Psychiatry 2015, 5, e697. [Google Scholar] [CrossRef] [PubMed]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Smets, E.M.A.; Garssen, B.; Bonke, B.; De Haes, J.C.J.M. The multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 1995, 39, 315–325. [Google Scholar] [CrossRef]
- Lidbury, B.A.; Kita, B.; Richardson, A.M.; Lewis, D.P.; Privitera, E.; Hayward, S.; de Kretser, D.; Hedger, M. Rethinking ME/CFS Diagnostic Reference Intervals via Machine Learning, and the Utility of Activin B for Defining Symptom Severity. Diagnostics 2019, 9, 79. [Google Scholar] [CrossRef]
- Richardson, A.M.; Lewis, D.P.; Kita, B.; Ludlow, H.; Groome, N.P.; Hedger, M.P.; de Kretser, D.M.; Lidbury, B.A. Weighting of orthostatic intolerance time measurements with standing difficulty score stratifies ME/CFS symptom severity and analyte detection. J. Transl. Med. 2018, 16, 97. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Burrows, M.; Wheeler, D. A Block-Sorting Lossless Data Compression Algorithm; Digital SRC Research Report (Citeseer); Digital Equipment Corporation: Palo Alto, CA, USA, 1994. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.11–11.10.33. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, A.R. BEDTools: The Swiss-army tool for genome feature analysis. Curr. Protoc. Bioinform. 2014, 47, 11.12.1–11.12.34. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Libiger, O.; Torkamani, A.; Schork, N.J. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 2010, 11, 773–785. [Google Scholar] [CrossRef]
- Brookes, A.J. The essence of SNPs. Gene 1999, 234, 177–186. [Google Scholar] [CrossRef]
- Karki, R.; Pandya, D.; Elston, R.C.; Ferlini, C. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med. Genom. 2015, 8, 37. [Google Scholar] [CrossRef]
- Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Segura, V.; Vilhjalmsson, B.J.; Platt, A.; Korte, A.; Seren, Ü.; Long, Q.; Nordborg, M. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 2012, 44, 825–830. [Google Scholar] [CrossRef]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Al-Shahrour, F.; Diaz-Uriarte, R.; Dopazo, J. FatiGO: A web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 2004, 20, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Al-Shahrour, F.; Minguez, P.; Vaquerizas, J.M.; Conde, L.; Dopazo, J. BABELOMICS: A suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res. 2005, 33, W460–W464. [Google Scholar] [CrossRef]
- Minguez, P.; Gotz, S.; Montaner, D.; Al-Shahrour, F.; Dopazo, J. SNOW, a web-based tool for the statistical analysis of protein-protein interaction networks. Nucleic Acids Res. 2009, 37, W109–W114. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alonso, L.; Alonso, R.; Vidal, E.; Amadoz, A.; de María, A.; Minguez, P.; Medina, I.; Dopazo, J. Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments. Nucleic Acids Res. 2012, 40, e158. [Google Scholar] [CrossRef]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’Ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
- Kaur, R.; Greeley, B.; Ciok, A.; Mehta, K.; Tsai, M.; Robertson, H.; Debelic, K.; Zhang, L.X.; Nelson, T.; Boulter, T.; et al. A Multimodal Magnetic Resonance Imaging Study on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Feasibility and Clinical Correlation. Medicina 2024, 60, 1370. [Google Scholar] [CrossRef]
- Mueller, C.; Lin, J.C.; Sheriff, S.; Maudsley, A.A.; Younger, J.W. Evidence of widespread metabolite abnormalities in Myalgic encephalomyelitis/chronic fatigue syndrome: Assessment with whole-brain magnetic resonance spectroscopy. Brain Imaging Behav. 2020, 14, 562–572. [Google Scholar] [CrossRef]
- Barnden, L.R.; Crouch, B.; Kwiatek, R.; Burnet, R.; Del Fante, P. Evidence in chronic fatigue syndrome for severity-dependent upregulation of prefrontal myelination that is independent of anxiety and depression. NMR Biomed. 2015, 28, 404–413. [Google Scholar] [CrossRef]
- Lee, J.S.; Sato, W.; Son, C.G. Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis. Autoimmun. Rev. 2024, 23, 103484. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.Y.; Barnden, L.R.; Kwiatek, R.A.; Bhuta, S.; Hermens, D.F.; Lagopoulos, J. Neuroimaging characteristics of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A systematic review. J. Transl. Med. 2020, 18, 335. [Google Scholar] [CrossRef] [PubMed]
- Nelson, T.; Zhang, L.X.; Guo, H.; Nacul, L.; Song, X. Brainstem Abnormalities in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Scoping Review and Evaluation of Magnetic Resonance Imaging Findings. Front. Neurol. 2021, 12, 769511. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.K.; Fang, H.; Whistler, T.; Unger, E.R.; Rajeevan, M.S. Convergent genomic studies identify association of GRIK2 and NPAS2 with chronic fatigue syndrome. Neuropsychobiology 2011, 64, 183–194. [Google Scholar] [CrossRef]
- Kenna, K.P.; McLaughlin, R.L.; Hardiman, O.; Bradley, D.G. Using reference databases of genetic variation to evaluate the potential pathogenicity of candidate disease variants. Hum. Mutat. 2013, 34, 836–841. [Google Scholar] [CrossRef]
- Stanescu, H.C.; Arcos-Burgos, M.; Medlar, A.; Bockenhauer, D.; Kottgen, A.; Dragomirescu, L.; Voinescu, C.; Patel, N.; Pearce, K.; Hubank, M.; et al. Risk HLA-DQA1 and PLA (2)R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 2011, 364, 616–626. [Google Scholar] [CrossRef]
- Enciso-Mora, V.; Hosking, F.J.; Kinnersley, B.; Wang, Y.; Shete, S.; Zelenika, D.; Broderick, P.; Idbaih, A.; Delattre, J.-Y.; Hoang-Xuan, K.; et al. Deciphering the 8q24.21 association for glioma. Hum. Mol. Genet. 2013, 22, 2293–2302. [Google Scholar] [CrossRef]
- Chornokur, G.; Lin, H.-Y.; Tyrer, J.P.; Lawrenson, K.; Dennis, J.; Amankwah, E.K.; Qu, X.; Tsai, Y.-Y.; Jim, H.S.L.; Chen, Z.; et al. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS ONE 2015, 10, e0128106. [Google Scholar] [CrossRef]
- Zheng-Bradley, X.; Flicek, P. Applications of the 1000 Genomes Project resources. Brief. Funct. Genom. 2017, 16, 163–170. [Google Scholar] [CrossRef]
- Vandepoele, K.; Andries, V.; Van Roy, N.; Staes, K.; Vandesompele, J.; Laureys, G.; De Smet, E.; Berx, G.; Speleman, F.; van Roy, F.; et al. A constitutional translocation t(1;17)(p36.2;q11.2) in a neuroblastoma patient disrupts the human NBPF1 and ACCN1 genes. PLoS ONE 2008, 3, e2207. [Google Scholar] [CrossRef]
- Vandepoele, K.; Van Roy, N.; Staes, K.; Speleman, F.; Van Roy, F. A novel gene family NBPF: Intricate structure generated by gene duplications during primate evolution. Mol. Biol. Evol. 2005, 22, 2265–2274. [Google Scholar] [CrossRef] [PubMed]
- Andries, V.; Vandepoele, K.; Staes, K.; Berx, G.; Bogaert, P.; Van Isterdael, G.; Ginneberge, D.; Parthoens, E.; Vandenbussche, J.; Gevaert, K.; et al. NBPF1, a tumor suppressor candidate in neuroblastoma, exerts growth inhibitory effects by inducing a G1 cell cycle arrest. BMC Cancer 2015, 15, 391. [Google Scholar] [CrossRef] [PubMed]
- Andries, V.; Vandepoele, K.; Van Roy, F. The NBPF gene family. In Neuroblastoma–Present and Future, 1st ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Vandepoele, K.; Andries, V.; van Roy, F. The NBPF1 promoter has been recruited from the unrelated EVI5 gene before simian radiation. Mol. Biol. Evol. 2009, 26, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Fiddes, I.T.; Pollen, A.A.; Davis, J.M.; Sikela, J.M. Paired involvement of human-specific Olduvai domains and NOTCH2NL genes in human brain evolution. Hum. Genet. 2019, 138, 715–721. [Google Scholar] [CrossRef]
- Heft, I.E.; Mostovoy, Y.; Levy-Sakin, M.; Ma, W.; Stevens, A.J.; Pastor, S.; McCaffrey, J.; Boffelli, D.; I Martin, D.; Xiao, M.; et al. The Driver of Extreme Human-Specific Olduvai Repeat Expansion Remains Highly Active in the Human Genome. Genetics 2020, 214, 179–191. [Google Scholar] [CrossRef]
- Keeney, J.G.; Davis, J.M.; Siegenthaler, J.; Post, M.D.; Nielsen, B.S.; Hopkins, W.D.; Sikela, J.M. DUF1220 protein domains drive proliferation in human neural stem cells and are associated with increased cortical volume in anthropoid primates. Brain Struct. Funct. 2015, 220, 3053–3060. [Google Scholar] [CrossRef]
- Sikela, J.M.; Searles Quick, V.B. Genomic trade-offs: Are autism and schizophrenia the steep price of the human brain? Hum. Genet. 2018, 137, 1–13. [Google Scholar] [CrossRef]
- Dumas, L.; Sikela, J.M. DUF1220 domains, cognitive disease, and human brain evolution. Cold Spring Harb. Symp. Quant. Biol. 2009, 74, 375–382. [Google Scholar] [CrossRef]
- Davis, J.M.; Searles, V.B.; Anderson, N.; Keeney, J.; Dumas, L.; Sikela, J.M.; Foroud, T. DUF1220 dosage is linearly associated with increasing severity of the three primary symptoms of autism. PLoS Genet. 2014, 10, e1004241. [Google Scholar] [CrossRef]
- Davis, J.M.; Searles Quick, V.B.; Sikela, J.M. Replicated linear association between DUF1220 copy number and severity of social impairment in autism. Hum. Genet. 2015, 134, 569–575. [Google Scholar] [CrossRef]
- Ortiz, B.; Fabius, A.W.M.; Wu, W.H.; Pedraza, A.; Brennan, C.W.; Schultz, N.; Pitter, K.L.; Bromberg, J.F.; Huse, J.T.; Holland, E.C.; et al. Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc. Natl. Acad. Sci. USA 2014, 111, 8149–8154. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.; Strawbridge, R.J.; Bailey, M.E.S.; Graham, N.; Ferguson, A.; Lyall, D.M.; Cullen, B.; Pidgeon, L.M.; Cavanagh, J.; Mackay, D.F.; et al. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Transl. Psychiatry 2017, 7, 1264. [Google Scholar] [CrossRef] [PubMed]
- Mattheisen, M.; Samuels, J.F.; Wang, Y.; Greenberg, B.D.; Fyer, A.J.; McCracken, J.T.; Geller, D.A.; Murphy, D.L.; Knowles, J.A.; Grados, M.A.; et al. Genome-wide association study in obsessive-compulsive disorder: Results from the OCGAS. Mol. Psychiatry 2015, 20, 337–344. [Google Scholar] [CrossRef] [PubMed]
- International Obsessive-Compulsive Disorder Foundation Genetics Studies. Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol. Psychiatry 2018, 23, 1181–1188. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Lv, L.; Ma, C.; Du, B.; Lu, T.; Jin, C.; Yan, H.; Yang, Y.; Li, W.; et al. Genome-Wide Association Study Suggested the PTPRD Polymorphisms Were Associated With Weight Gain Effects of Atypical Antipsychotic Medications. Schizophr. Bull. 2016, 42, 814–823. [Google Scholar] [CrossRef]
- Chibnik, L.B.; White, C.C.; Mukherjee, S.; Raj, T.; Yu, L.; Larson, E.B.; Montine, T.J.; Keene, C.D.; Sonnen, J.; A Schneider, J.; et al. Susceptibility to neurofibrillary tangles: Role of the PTPRD locus and limited pleiotropy with other neuropathologies. Mol. Psychiatry 2018, 23, 1521–1529. [Google Scholar] [CrossRef]
- Naviaux, R.K.; Naviaux, J.C.; Li, K.; Bright, A.T.; Alaynick, W.A.; Wang, L.; Baxter, A.; Nathan, N.; Anderson, W.; Gordon, E. Metabolic features of chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA 2016, 113, E5472–E5480. [Google Scholar] [CrossRef]
- Yamano, E.; Kataoka, Y. New Diagnostic Biomarkers for Chronic Fatigue Syndrome. Brain Nerve 2018, 70, 27–34. [Google Scholar]
- Armstrong, C.W.; McGregor, N.R.; Sheedy, J.R.; Buttfield, I.; Butt, H.L.; Gooley, P.R. NMR metabolic profiling of serum identifies amino acid disturbances in chronic fatigue syndrome. Clin. Chim. Acta 2012, 413, 1525–1531. [Google Scholar] [CrossRef]
- Armstrong, C.W.; McGregor, N.R.; Butt, H.L.; Gooley, P.R. Metabolism in chronic fatigue syndrome. Adv. Clin. Chem. 2014, 66, 121–172. [Google Scholar]
- Missailidis, D.; Annesley, S.J.; Allan, C.Y.; Sanislav, O.; Lidbury, B.A.; Lewis, D.P.; Fisher, P.R. An Isolated Complex V Inefficiency and Dysregulated Mitochondrial Function in Immortalized Lymphocytes from ME/CFS Patients. Int. J. Mol. Sci. 2020, 21, 1074. [Google Scholar] [CrossRef]
A. Multi-Locus Additive Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | MAF | p-Value | Beta (βreg) | Beta SE | FDR |
1 | 16909052 | rs3897177 | NBPF1 | synonymous | C/T | 0.36 | 3.15 × 10−8 | 0.055 | 0.01 | 6.36 × 10−4 |
1 | 145303971 | rs10910794 | NBPF10 | synonymous | A/G | 0.24 | 2.63 × 10−7 | 0.047 | 0.009 | 4.25 × 10−3 |
1 | 145355624 | rs1553120233 | NBPF10 | intron | C/T | 0.5 | 1.81 × 10−10 | 0.08 | 0.012 | 7.33 × 10−6 |
1 | 148756363 | rs200632836 | NBPF16 | intergenic | A/G | 0.45 | 1.04 × 10−6 | 0.047 | 0.01 | 0.01 |
3 | 142233470 | rs6440086 | ATR | intron | T/C | 0.49 | 1.68 × 10−6 | −0.038 | 0.008 | 0.02 |
7 | 6006431 | rs2711192 | RSPH10B | intron | G/A | 0.45 | 3.73 × 10−6 | −0.038 | 0.008 | 0.03 |
8 | 12291415 | rs80169473 | FAM86B2 | intergenic | C/A | 0.48 | 1.98 × 10−10 | −0.052 | 0.008 | 5.32 × 10−6 |
8 | 12294359 | rs2980473 | FAM86B2 | intergenic | G/C | 0.35 | 2.62 × 10−18 | 0.096 | 0.01 | 2.11 × 10−13 |
19 | 14499357 | rs2302094 | ADGRE5-CD97 | intron | T/A | 0.05 | 2.48 × 10−6 | 0.085 | 0.018 | 0.03 |
22 | 51183255 | rs5771002 | ACR | missense | A/G | 0.48 | 6.09 × 10−6 | 0.037 | 0.008 | 0.05 |
B. Single-Locus Additive Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | MAF | p-Value | Beta (βreg) | Beta SE | FDR |
1 | 16904121 | rs5003678 | NBPF1 | intron | T/G | 0.41 | 1.61 × 10−10 | 0.08 | 0.012 | 6.52 × 10−6 |
1 | 16909052 | rs3897177 | NBPF1 | synonymous | C/T | 0.36 | 2.43 × 10−10 | 0.07 | 0.011 | 4.91 × 10−6 |
1 | 145355624 | rs1553120233 | NBPF10 | intron | C/T | 0.5 | 9.26 × 10−13 | 0.1 | 0.014 | 7.49 × 10−8 |
1 | 148756363 | rs200632836 | NBPF16 | intergenic | A/G | 0.45 | 1.09 × 10−9 | 0.07 | 0.011 | 1.76 × 10−5 |
1 | 236396811 | rs2463185 | ERO1B | intron | C/A | 0.49 | 1.20 × 10−6 | 0.05 | 0.01 | 6.91 × 10−3 |
2 | 87069431 | rs4514875 | CD8B | stop_retained | C/T | 0.47 | 3.06 × 10−8 | 0.06 | 0.01 | 4.13 × 10−4 |
2 | 233273504 | rs183793479 | ALPG | missense | T/G | 0.49 | 1.36 × 10−7 | 0.05 | 0.01 | 1.37 × 10−3 |
3 | 52965713 | rs2710339 | SFMBT1 | intron | G/A | 0.47 | 2.75 × 10−6 | 0.04 | 0.009 | 0.01 |
3 | 142233470 | rs6440086 | ATR | intron | T/C | 0.49 | 1.44 × 10−6 | −0.05 | 0.009 | 7.27 × 10−3 |
8 | 12294359 | rs2980473 | LOC100506990 | intergenic | G/C | 0.35 | 1.93 × 10−10 | 0.07 | 0.011 | 5.19 × 10−6 |
8 | 92052619 | rs13277356 | PIP4P2- TMEM55A | intron | C/A | 0.48 | 3.90 × 10−6 | −0.05 | 0.01 | 0.02 |
9 | 139249991 | rs28603210 | GPSM1 | intron | T/C | 0.43 | 5.17 × 10−6 | 0.04 | 0.009 | 0.02 |
10 | 65355538 | rs10733794 | REEP3 | intron | A/G | 0.46 | 2.57 × 10−7 | 0.05 | 0.01 | 2.08 × 10−3 |
11 | 121459522 | rs1792122 | SORL1 | intron | C/T | 0.5 | 6.73 × 10−6 | −0.04 | 0.009 | 0.03 |
12 | 112036797 | rs4098854 | ATXN2 | synonymous | C/T | 0.38 | 1.79 × 10−7 | 0.05 | 0.01 | 1.61 × 10−3 |
14 | 105356241 | rs61996002 | CEP170B | intron | A/G | 0.4 | 1.23 × 10−6 | 0.05 | 0.009 | 6.62 × 10−3 |
16 | 3791261 | rs129968 | CREBBP | intron | A/G | 0.49 | 8.04 × 10−6 | 0.04 | 0.01 | 0.03 |
17 | 18290687 | rs35418981 | EVPLL | intron | T/A | 0.45 | 1.17 × 10−5 | −0.04 | 0.01 | 0.04 |
17 | 30358510 | rs10752705 | LRRC37B | intron | G/A | 0.46 | 7.53 × 10−7 | 0.05 | 0.009 | 5.07 × 10−3 |
17 | 38858029 | rs6416908 | KRT24 | intron | A/T | 0.45 | 8.56 × 10−7 | −0.05 | 0.01 | 5.32 × 10−3 |
19 | 14499357 | rs2302094 | ADGRE5 | intron | T/A | 0.05 | 1.11 × 10−7 | 0.12 | 0.021 | 1.28 × 10−3 |
20 | 31945861 | rs291670 | CDK5RAP1 | intergenic | G/A | 0.5 | 1.21 × 10−5 | −0.04 | 0.009 | 0.04 |
22 | 51183255 | rs5771002 | ACR | missense | A/G | 0.48 | 3.07 × 10−7 | 0.05 | 0.01 | 2.26 × 10−3 |
C. Multi-Locus Dominant Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | MAF | p-Value | Beta (βreg) | Beta SE | FDR |
3 | 142233470 | rs6440086 | ATR | intron | T/C | 0.49 | 3.88 × 10−6 | −0.068 | 0.015 | 0.03 |
6 | 129622257 | rs3798664 | LAMA2 | intron | A/G | 0.37 | 1.51 × 10−6 | −0.058 | 0.012 | 0.02 |
8 | 92052619 | rs13277356 | PIP4P2- TMEM55A | intron | C/A | 0.48 | 5.30 × 10−9 | −0.088 | 0.015 | 4.28 × 10−4 |
9 | 8436361 | rs7854171 | PTPRD | intron | A/G | 0.45 | 2.21 × 10−6 | −0.062 | 0.013 | 0.02 |
9 | 87325994 | rs1659400 | NTRK2 | intron | A/G | 0.46 | 5.77 × 10−9 | −0.082 | 0.014 | 2.33 × 10−4 |
9 | 136274058 | rs7030175 | REXO4 | intron | G/T | 0.46 | 1.44 × 10−6 | −0.064 | 0.013 | 0.02 |
11 | 121459522 | rs1792122 | SORL1 | intron | C/T | 0.5 | 7.81 × 10−8 | −0.081 | 0.015 | 1.26 × 10−3 |
12 | 46761324 | rs1873793 | SLC38A2 | intron | C/T | 0.49 | 5.20 × 10−6 | −0.06 | 0.013 | 0.04 |
17 | 38858029 | rs6416908 | KRT24 | intron | A/T | 0.45 | 4.18 × 10−8 | −0.081 | 0.014 | 8.45 × 10−4 |
17 | 66303352 | rs2072268 | ARSG | 5_primeUTR | G/A | 0.39 | 7.35 × 10−6 | −0.053 | 0.012 | 0.05 |
19 | 9526017 | rs7258150 | ZNF266 | intron | G/A | 0.44 | 2.12 × 10−8 | −0.076 | 0.013 | 5.71 × 10−4 |
19 | 15728556 | rs4019755 | CYP4F8 | intron | A/G | 0.42 | 2.68 × 10−6 | −0.059 | 0.012 | 0.02 |
D. Single-Locus Dominant Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | MAF | p-Value | Beta (βreg) | Beta SE | FDR |
1 | 40234765 | rs230319 | BMP8B | intron | A/G | 0.42 | 9.03 × 10−7 | −0.074 | 0.015 | 5.21 × 10−3 |
1 | 120301432 | rs1441010 | HMGCS2 | intron | A/G | 0.44 | 9.26 × 10−6 | −0.070 | 0.016 | 0.02 |
1 | 225555856 | rs12756111 | DNAH14 | intron | C/T | 0.48 | 1.28 × 10−6 | −0.080 | 0.016 | 5.46 × 10−3 |
2 | 108443647 | rs78477381 | RGPD4 | intron | C/G | 0.38 | 1.23 × 10−5 | −0.066 | 0.015 | 0.02 |
2 | 112870730 | rs7581849 | PIP4P2- TMEM87B | intron | G/A | 0.49 | 3.38 × 10−6 | −0.077 | 0.016 | 0.01 |
3 | 142233470 | rs6440086 | ATR | intron | T/C | 0.49 | 1.70 × 10−9 | −0.105 | 0.017 | 4.59 × 10−5 |
3 | 195460955 | rs1808432 | MUC20 | intergenic | T/A | 0.34 | 4.64 × 10−6 | −0.068 | 0.015 | 0.01 |
4 | 70596977 | rs7660770 | SULT1B1 | intron | G/A | 0.42 | 2.19 × 10−5 | −0.063 | 0.015 | 0.03 |
5 | 43614968 | rs4991951 | NNT | intron | A/G | 0.46 | 5.57 × 10−6 | −0.072 | 0.016 | 0.01 |
5 | 176898619 | rs335420 | DBN1 | intron | T/C | 0.42 | 1.85 × 10−5 | −0.062 | 0.014 | 0.03 |
6 | 130379160 | rs12661232 | L3MBTL3 | intron | T/C | 0.43 | 4.57 × 10−6 | −0.073 | 0.016 | 0.01 |
7 | 6006431 | rs2711192 | RSPH10B | intron | G/A | 0.45 | 1.21 × 10−5 | −0.069 | 0.016 | 0.02 |
7 | 22184167 | rs1859806 | RAPGEF5 | intron | G/A | 0.42 | 2.80 × 10−5 | −0.063 | 0.015 | 0.04 |
7 | 30537640 | rs4720005 | GGCT | intron | G/T | 0.47 | 2.09 × 10−7 | −0.087 | 0.017 | 1.88 × 10−3 |
8 | 90802099 | rs400411 | RIPK2 | intron | A/G | 0.50 | 2.51 × 10−7 | −0.085 | 0.016 | 1.84 × 10−3 |
8 | 92052619 | rs13277356 | PIP4P2- TMEM55A | intron | C/A | 0.48 | 6.12 × 10−9 | −0.101 | 0.017 | 9.89 × 10−5 |
8 | 113650725 | rs7833307 | CSMD3 | intron | C/T | 0.37 | 7.08 × 10−6 | −0.066 | 0.014 | 0.02 |
9 | 8436361 | rs7854171 | PTPRD | intron | A/G | 0.45 | 9.14 × 10−7 | −0.077 | 0.016 | 4.93 × 10−3 |
9 | 34724786 | rs3739878 | FAM205A | synonymous | G/A | 0.40 | 6.51 × 10−6 | −0.066 | 0.014 | 0.02 |
9 | 36121065 | rs2149006 | RECK | intron | C/G | 0.49 | 1.04 × 10−6 | −0.080 | 0.016 | 4.67 × 10−3 |
9 | 87325994 | rs1659400 | NTRK2 | intron | A/G | 0.46 | 2.24 × 10−7 | −0.084 | 0.016 | 1.81 × 10−3 |
9 | 133916387 | rs11244254 | LAMC3 | intron | G/T | 0.38 | 8.83 × 10−6 | −0.064 | 0.014 | 0.02 |
9 | 136274058 | rs7030175 | REXO4 | intron | G/T | 0.46 | 9.67 × 10−7 | −0.078 | 0.016 | 4.88 × 10−3 |
9 | 139944588 | rs7869655 | ENTPD2 | intron | T/C | 0.46 | 2.70 × 10−7 | −0.091 | 0.017 | 1.82 × 10−3 |
10 | 97367511 | rs11188397 | ALDH18A1 | intron | C/A | 0.41 | 4.29 × 10−6 | −0.070 | 0.015 | 0.01 |
10 | 129908986 | rs2782870 | MKI67 | intron | C/A | 0.44 | 3.49 × 10−5 | −0.062 | 0.015 | 0.05 |
11 | 121459522 | rs1792122 | SORL1 | intron | C/T | 0.50 | 4.43 × 10−9 | −0.102 | 0.017 | 8.94 × 10−5 |
12 | 12879570 | rs34322 | APOLD1 | intron | T/C | 0.43 | 5.65 × 10−6 | −0.071 | 0.015 | 0.01 |
12 | 46761324 | rs1873793 | SLC38A2 | intron | C/T | 0.49 | 1.02 × 10−6 | −0.078 | 0.016 | 4.86 × 10−3 |
12 | 64001613 | rs2202644 | DPY19L2 | intron | G/A | 0.42 | 2.54 × 10−5 | −0.064 | 0.015 | 0.04 |
12 | 133378852 | rs10781650 | GOLGA3 | intron | T/C | 0.47 | 4.63 × 10−6 | −0.071 | 0.015 | 0.01 |
14 | 21970379 | rs1263793 | METTL3 | intron | A/G | 0.43 | 4.04 × 10−6 | −0.072 | 0.015 | 0.01 |
14 | 69809143 | rs1296214 | GALNT16 | intron | G/A | 0.37 | 2.05 × 10−5 | −0.060 | 0.014 | 0.03 |
14 | 94120712 | rs55882426 | UNC79 | intron | C/T | 0.42 | 2.02 × 10−5 | −0.064 | 0.015 | 0.03 |
15 | 34639015 | rs383086 | NUTM1 | intron | C/T | 0.42 | 2.57 × 10−6 | −0.073 | 0.015 | 8.66 × 10−3 |
15 | 74365264 | rs1835371 | GOLGA6A | intron | T/G | 0.34 | 2.44 × 10−5 | −0.059 | 0.014 | 0.04 |
16 | 2014954 | rs2302176 | SNHG9 | intergenic | C/T | 0.49 | 1.54 × 10−5 | −0.070 | 0.016 | 0.03 |
16 | 5135380 | rs6775 | ALG1-EEF2KMT | 3_prime_UTR | A/G | 0.43 | 1.17 × 10−5 | −0.067 | 0.015 | 0.02 |
16 | 31393544 | rs9929832 | ITGAX | 3_prime_UTR | C/T | 0.39 | 9.94 × 10−6 | −0.064 | 0.014 | 0.02 |
16 | 50333837 | rs8045659 | ADCY7 | intron | T/C | 0.45 | 4.34 × 10−7 | −0.080 | 0.016 | 2.70 × 10−3 |
16 | 69986839 | rs2650542 | CLEC18A | intron | G/C | 0.44 | 1.53 × 10−6 | −0.076 | 0.016 | 5.91 × 10−3 |
17 | 6537526 | rs9914024 | KIAA0753 | intron | G/A | 0.39 | 3.08 × 10−5 | −0.061 | 0.014 | 0.04 |
17 | 18290687 | rs35418981 | EVPLL | intron | T/A | 0.45 | 3.67 × 10−8 | −0.089 | 0.016 | 4.94 × 10−4 |
17 | 20355058 | rs4332792 | LGALS9B | intron | T/G | 0.41 | 2.04 × 10−6 | −0.072 | 0.015 | 7.48 × 10−3 |
17 | 38858029 | rs6416908 | KRT24 | intron | A/T | 0.45 | 6.47 × 10−10 | −0.105 | 0.017 | 5.23 × 10−5 |
17 | 49281678 | rs28410310 | MBTD1 | intron | T/C | 0.45 | 1.57 × 10−5 | −0.068 | 0.016 | 0.03 |
18 | 50924132 | rs11082992 | DCC | intron | T/C | 0.42 | 1.43 × 10−6 | −0.075 | 0.015 | 5.78 × 10−3 |
19 | 9526017 | rs7258150 | ZNF266 | intron | G/A | 0.44 | 2.02 × 10−7 | −0.082 | 0.015 | 2.04 × 10−3 |
19 | 14499357 | rs2302094 | ADGRE5 | intron | T/A | 0.05 | 1.11 × 10−7 | 0.115 | 0.021 | 1.28 × 10−3 |
19 | 14639947 | rs7249458 | DNAJB1 | intron | A/T | 0.37 | 3.09 × 10−5 | −0.061 | 0.015 | 0.04 |
19 | 15728556 | rs4019755 | CYP4F8 | intron | A/G | 0.42 | 1.01 × 10−5 | −0.067 | 0.015 | 0.02 |
19 | 40375967 | rs62106959 | FCGBP | intron | C/T | 0.40 | 8.18 × 10−6 | −0.068 | 0.015 | 0.02 |
19 | 44132559 | rs8101721 | CADM4 | intron | G/C | 0.42 | 5.00 × 10−6 | −0.067 | 0.014 | 0.01 |
19 | 55773590 | rs10403164 | HSPBP1 | 3_prime_UTR | A/G | 0.44 | 2.58 × 10−5 | −0.064 | 0.015 | 0.04 |
19 | 56274506 | rs147984855 | RFPL4A | missense | G/A | 0.11 | 2.04 × 10−5 | 0.070 | 0.016 | 0.03 |
20 | 10624926 | rs6077861 | JAG1 | intron | A/T | 0.36 | 1.60 × 10−5 | −0.064 | 0.015 | 0.03 |
20 | 31945861 | rs291670 | CDK5RAP1 | intergenic | G/A | 0.50 | 1.58 × 10−9 | −0.107 | 0.017 | 6.40 × 10−5 |
20 | 46270379 | rs623953 | NCOA3 | intron | G/A | 0.46 | 2.51 × 10−6 | −0.074 | 0.016 | 8.82 × 10−3 |
E. Multi-Locus Dominant Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | p-Value | Beta (βreg) | Beta SE | FDR | |
9 | 8318231 | rs996924 | PTPRD | intron | A/G | 4.55 × 10−11 | 0.714 | 0.092 | 1.13 × 10−7 | |
F. Single-Locus Additive Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | p-Value | Beta (βreg) | Beta SE | FDR | |
7 | 22278040 | rs11766861 | RAPGEF5 | Intron | A/T | 7.96 × 10−5 | 0.350 | 0.08 | 4.94 × 10−2 | |
8 | 114359441 | rs17608734 | CSMD3 | intron | G/T | 3.61 × 10−5 | −0.320 | 0.073 | 3.00 × 10−2 | |
9 | 8318231 | rs996924 | PTPRD | intron | A/G | 1.14 × 10−6 | 0.483 | 0.091 | 2.84 × 10−3 | |
18 | 50369520 | rs1560521 | DCC | intron | G/A/C | 2.63 × 10−5 | 0.378 | 0.084 | 3.27 × 10−2 | |
G. Multi-Locus Recessive Model | ||||||||||
Chr | Position | Identifier | Related Gene * | Sequence Ontology (Combined) | Ref/Alt | p-Value | Beta (βreg) | Beta SE | FDR | |
8 | 113617156 | rs4876478 | CSMD3 | intron | T/G | 3.81 × 10−13 | −0.917 | 0.1035 | 4.73 × 10−10 | |
8 | 114359441 | rs17608734 | CSMD3 | intron | G/T | 2.11 × 10−22 | −0.872 | 0.0618 | 5.25 × 10−19 | |
8 | 114399612 | rs4311682 | CSMD3 | intron | A/G | 9.22 × 10−5 | 0.933 | 0.2251 | 1.53 × 10−2 | |
8 | 114406336 | rs4354335 | CSMD3 | intron | G/A | 9.22 × 10−5 | 0.933 | 0.2251 | 1.43 × 10−2 | |
8 | 114418955 | rs7002354 | CSMD3 | intron | T/C | 9.22 × 10−5 | 0.933 | 0.2251 | 1.35 × 10−2 | |
8 | 114436474 | rs2942852 | CSMD3 | intron | T/G | 9.22 × 10−5 | 0.933 | 0.2251 | 1.27 × 10−2 | |
9 | 8409888 | rs3847293 | PTPRD | intron | C/G | 1.80 × 10−7 | −0.917 | 0.1588 | 6.40 × 10−5 | |
9 | 8845429 | rs2570961 | PTPRD | intron | G/A | 1.80 × 10−7 | −0.917 | 0.1588 | 1.12 × 10−4 | |
9 | 8897215 | rs7866753 | PTPRD | intron | C/T | 9.22 × 10−5 | 0.933 | 0.2251 | 1.21 × 10−2 | |
9 | 8901739 | rs10815990 | PTPRD | intron | A/G | 9.22 × 10−5 | 0.933 | 0.2251 | 1.15 × 10−2 | |
9 | 9270379 | rs12341573 | PTPRD | intron | G/T | 9.22 × 10−5 | 0.933 | 0.2251 | 1.09 × 10−2 | |
9 | 9829690 | rs1746813 | PTPRD | intron | G/C | 7.63 × 10−6 | −0.938 | 0.1942 | 1.73 × 10−3 | |
9 | 9904274 | rs16930522 | PTPRD | intron | G/A | 7.63 × 10−6 | −0.938 | 0.1942 | 1.90 × 10−3 | |
9 | 10254793 | rs2498611 | PTPRD | intron | T/G | 1.80 × 10−7 | −0.917 | 0.1588 | 8.96 × 10−5 | |
9 | 87533389 | rs6559836 | NTRK2 | intron | G/A | 7.63 × 10−6 | −0.938 | 0.1942 | 2.37 × 10−3 | |
9 | 87631034 | rs2378672 | NTRK2 | intron | C/T | 7.63 × 10−6 | −0.938 | 0.1942 | 2.11 × 10−3 | |
10 | 97392993 | rs3750700 | ALDH18A1 | intron | T/C | 4.75 × 10−4 | −0.288 | 0.0785 | 4.37 × 10−2 | |
14 | 69734498 | rs1890939 | GALNT16 | intron | C/G | 6.71 × 10−12 | −0.772 | 0.0942 | 5.57 × 10−9 | |
14 | 93902973 | rs28385502 | UNC79 | intron | A/G | 9.22 × 10−5 | 0.933 | 0.2251 | 1.04 × 10−2 | |
18 | 50567129 | rs11874663 | DCC | intron | G/A | 7.63 × 10−6 | −0.938 | 0.1942 | 1.58 × 10−3 | |
18 | 50597529 | rs4995148 | DCC | intron | T/A | 7.63 × 10−6 | −0.938 | 0.1942 | 1.46 × 10−3 | |
18 | 50618359 | rs7233997 | DCC | intron | G/A | 3.86 × 10−4 | −0.620 | 0.1665 | 4.18 × 10−2 | |
18 | 50622857 | rs9957443 | DCC | intron | T/G | 3.86 × 10−4 | −0.620 | 0.1665 | 4.00 × 10−2 | |
18 | 50622885 | rs16956110 | DCC | intron | C/T | 3.86 × 10−4 | −0.620 | 0.1665 | 3.84 × 10−2 | |
18 | 50623189 | rs16956114 | DCC | intron | G/A | 7.63 × 10−6 | −0.938 | 0.1942 | 1.36 × 10−3 | |
18 | 50668321 | rs9956477 | DCC | intron | C/A | 3.86 × 10−4 | −0.620 | 0.1665 | 3.69 × 10−2 | |
20 | 46215501 | rs6066395 | NCOA3 | intron | G/A | 1.80 × 10−7 | −0.917 | 0.1588 | 7.47 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcos-Burgos, M.; Arcos-Holzinger, M.; Mastronardi, C.; Isaza-Ruget, M.A.; Vélez, J.I.; Lewis, D.P.; Patel, H.; Lidbury, B.A. Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders. Diagnostics 2025, 15, 1542. https://doi.org/10.3390/diagnostics15121542
Arcos-Burgos M, Arcos-Holzinger M, Mastronardi C, Isaza-Ruget MA, Vélez JI, Lewis DP, Patel H, Lidbury BA. Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders. Diagnostics. 2025; 15(12):1542. https://doi.org/10.3390/diagnostics15121542
Chicago/Turabian StyleArcos-Burgos, Mauricio, Mauricio Arcos-Holzinger, Claudio Mastronardi, Mario A. Isaza-Ruget, Jorge I. Vélez, Donald P. Lewis, Hardip Patel, and Brett A. Lidbury. 2025. "Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders" Diagnostics 15, no. 12: 1542. https://doi.org/10.3390/diagnostics15121542
APA StyleArcos-Burgos, M., Arcos-Holzinger, M., Mastronardi, C., Isaza-Ruget, M. A., Vélez, J. I., Lewis, D. P., Patel, H., & Lidbury, B. A. (2025). Neurodevelopment Genes Encoding Olduvai Domains Link Myalgic Encephalomyelitis to Neuropsychiatric Disorders. Diagnostics, 15(12), 1542. https://doi.org/10.3390/diagnostics15121542