Clinical Validation of Commercial AI Software for the Detection of Incidental Vertebral Compression Fractures in CT Scans of the Chest and Abdomen
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Cohort
3.2. AI Performance at Two Thresholds
3.3. False Positives
3.4. Detection of Missed Fractures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VCF | Vertebral compression fractures |
PPV | Positive predictive value |
NPV | Negative predictive value |
AI | Artificial intelligence |
GSQ | Genant semiquantitative |
QM | Quantitative morphometry |
mABQ | Morphological algorithm-based qualitative |
References
- Public Health Agency of Canada. Osteoporosis and Related Fractures in Canada: Report from the Canadian Chronic Disease Surveillance System. Available online: https://www.canada.ca/en/public-health/services/publications/diseases-conditions/osteoporosis-related-fractures-2020.html (accessed on 8 June 2025).
- Ballane, G.; Cauley, J.A.; Luckey, M.M.; El-Hajj Fuleihan, G. Worldwide Prevalence and Incidence of Osteoporotic Vertebral Fractures. Osteoporos. Int. 2017, 28, 1531–1542. [Google Scholar] [CrossRef]
- Bell, A.; Kendler, D.L.; Khan, A.A.; Shapiro, C.M.M.; Morisset, A.; Leung, J.-P.; Reiner, M.; Colgan, S.M.; Slatkovska, L.; Packalen, M. A Retrospective Observational Study of Osteoporosis Management after a Fragility Fracture in Primary Care. Arch. Osteoporos. 2022, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Kendler, D.L.; Adachi, J.D.; Brown, J.P.; Juby, A.G.; Kovacs, C.S.; Duperrouzel, C.; McTavish, R.K.; Cameron, C.; Slatkovska, L.; Burke, N. A Scorecard for Osteoporosis in Canada and Seven Canadian Provinces. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2021, 32, 123–132. [Google Scholar] [CrossRef]
- McArthur, C.; Lee, A.; Alrob, H.A.; Adachi, J.D.; Giangregorio, L.; Griffith, L.E.; Morin, S.; Thabane, L.; Ioannidis, G.; Lee, J.; et al. An Update of the Prevalence of Osteoporosis, Fracture Risk Factors, and Medication Use among Community-Dwelling Older Adults: Results from the Canadian Longitudinal Study on Aging (CLSA). Arch. Osteoporos. 2022, 17, 31. [Google Scholar] [CrossRef] [PubMed]
- Tarride, J.-E.; Burke, N.; Leslie, W.D.; Morin, S.N.; Adachi, J.D.; Papaioannou, A.; Bessette, L.; Brown, J.P.; Pericleous, L.; Muratov, S.; et al. Loss of Health Related Quality of Life Following Low-Trauma Fractures in the Elderly. BMC Geriatr. 2016, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Genant, H.K.; Cooper, C.; Poor, G.; Reid, I.; Ehrlich, G.; Kanis, J.; Nordin, B.E.; Barrett-Connor, E.; Black, D.; Bonjour, J.P.; et al. Interim Report and Recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 1999, 10, 259–264. [Google Scholar] [CrossRef]
- Cai, W.; Ji, C.; Rong, Y.; Wang, J. Risk Factors for Refracture Following Primary Osteoporotic Vertebral Compression Fractures. Pain Physician 2021, 24, E335–E340. [Google Scholar] [CrossRef]
- Tatangelo, G.; Watts, J.; Lim, K.; Connaughton, C.; Abimanyi-Ochom, J.; Borgström, F.; Nicholson, G.C.; Shore-Lorenti, C.; Stuart, A.L.; Iuliano-Burns, S.; et al. The Cost of Osteoporosis, Osteopenia, and Associated Fractures in Australia in 2017. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2019, 34, 616–625. [Google Scholar] [CrossRef]
- Khosla, S.; Hofbauer, L.C. Osteoporosis Treatment: Recent Developments and Ongoing Challenges. Lancet Diabetes Endocrinol. 2017, 5, 898–907. [Google Scholar] [CrossRef]
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005–2025. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef]
- Adachi, J.D.; Loannidis, G.; Berger, C.; Joseph, L.; Papaioannou, A.; Pickard, L.; Papadimitropoulos, E.A.; Hopman, W.; Poliquin, S.; Prior, J.C.; et al. The Influence of Osteoporotic Fractures on Health-Related Quality of Life in Community-Dwelling Men and Women across Canada. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2001, 12, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Palermo, A.; Tuccinardi, D.; Defeudis, G.; Watanabe, M.; D’Onofrio, L.; Lauria Pantano, A.; Napoli, N.; Pozzilli, P.; Manfrini, S. BMI and BMD: The Potential Interplay between Obesity and Bone Fragility. Int. J. Environ. Res. Public Health 2016, 13, 544. [Google Scholar] [CrossRef] [PubMed]
- Adachi, J.D.; Brown, J.P.; Schemitsch, E.; Tarride, J.-E.; Brown, V.; Bell, A.D.; Reiner, M.; Packalen, M.; Motsepe-Ditshego, P.; Burke, N.; et al. Fragility Fracture Identifies Patients at Imminent Risk for Subsequent Fracture: Real-World Retrospective Database Study in Ontario, Canada. BMC Musculoskelet. Disord. 2021, 22, 224. [Google Scholar] [CrossRef]
- Johansson, H.; Siggeirsdóttir, K.; Harvey, N.C.; Odén, A.; Gudnason, V.; McCloskey, E.; Sigurdsson, G.; Kanis, J.A. Imminent Risk of Fracture after Fracture. Osteoporos. Int. 2017, 28, 775–780. [Google Scholar] [CrossRef]
- Balasubramanian, A.; Zhang, J.; Chen, L.; Wenkert, D.; Daigle, S.G.; Grauer, A.; Curtis, J.R. Risk of Subsequent Fracture after Prior Fracture among Older Women. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2019, 30, 79–92. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, L.; Pan, L.; Zeng, Y.; Fu, Q.; Liu, Y.; Peng, Y.; Wang, Y.; You, L. Risk Factors of Primary and Recurrent Fractures in Postmenopausal Osteoporotic Chinese Patients: A Retrospective Analysis Study. BMC Womens Health 2022, 22, 465. [Google Scholar] [CrossRef]
- Hinde, K.; Maingard, J.; Hirsch, J.A.; Phan, K.; Asadi, H.; Chandra, R.V. Mortality Outcomes of Vertebral Augmentation (Vertebroplasty and/or Balloon Kyphoplasty) for Osteoporotic Vertebral Compression Fractures: A Systematic Review and Meta-Analysis. Radiology 2020, 295, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Black, D.M.; Arden, N.K.; Palermo, L.; Pearson, J.; Cummings, S.R.; for the Study of Osteoporotic Fractures Research Group. Prevalent Vertebral Deformities Predict Hip Fractures and New Vertebral Deformities but Not Wrist Fractures. J. Bone Miner. Res. 1999, 14, 821–828. [Google Scholar] [CrossRef]
- McCarthy, J.; Davis, A. Diagnosis and Management of Vertebral Compression Fractures. Am. Fam. Physician 2016, 94, 44–50. [Google Scholar]
- Johnell, O.; Kanis, J.A.; Odén, A.; Sernbo, I.; Redlund-Johnell, I.; Petterson, C.; De Laet, C.; Jönsson, B. Mortality after Osteoporotic Fractures. Osteoporos. Int. 2004, 15, 38–42. [Google Scholar] [CrossRef]
- Spiegl, U.J.; Hölbing, P.-L.; Jarvers, J.-S.; Höh, N.v.d.; Pieroh, P.; Osterhoff, G.; Heyde, C.-E. Midterm Outcome after Posterior Stabilization of Unstable Midthoracic Spine Fractures in the Elderly. BMC Musculoskelet. Disord. 2021, 22, 188. [Google Scholar] [CrossRef] [PubMed]
- Borgen, T.T.; Bjørnerem, Å.; Solberg, L.B.; Andreasen, C.; Brunborg, C.; Stenbro, M.-B.; Hübschle, L.M.; Froholdt, A.; Figved, W.; Apalset, E.M.; et al. Post-Fracture Risk Assessment: Target the Centrally Sited Fractures First! A Substudy of NoFRACT. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2019, 34, 2036–2044. [Google Scholar] [CrossRef]
- Fink, H.A.; Milavetz, D.L.; Palermo, L.; Nevitt, M.C.; Cauley, J.A.; Genant, H.K.; Black, D.M.; Ensrud, K.E. What Proportion of Incident Radiographic Vertebral Deformities Is Clinically Diagnosed and Vice Versa? J. Bone Miner. Res. 2005, 20, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Hatgis, J.; Granville, M.; Jacobson, R.E. Delayed Recognition of Thoracic and Lumbar Vertebral Compression Fractures in Minor Accident Cases. Cureus 2017, 9, e1050. [Google Scholar] [CrossRef]
- Lentle, B.; Koromani, F.; Brown, J.P.; Oei, L.; Ward, L.; Goltzman, D.; Rivadeneira, F.; Leslie, W.D.; Probyn, L.; Prior, J.; et al. The Radiology of Osteoporotic Vertebral Fractures Revisited. J. Bone Miner. Res. 2019, 34, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.E.; Yao, J.; Summers, R.M. Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images. Radiology 2017, 284, 788–797. [Google Scholar] [CrossRef]
- Nazrun, A.S.; Tzar, M.N.; Mokhtar, S.A.; Mohamed, I.N. A Systematic Review of the Outcomes of Osteoporotic Fracture Patients after Hospital Discharge: Morbidity, Subsequent Fractures, and Mortality. Ther. Clin. Risk Manag. 2014, 10, 937–948. [Google Scholar] [CrossRef]
- Mills, E.S.; Hah, R.J.; Fresquez, Z.; Mertz, K.; Buser, Z.; Alluri, R.K.; Anderson, P.A. Secondary Fracture Rate After Vertebral Osteoporotic Compression Fracture Is Decreased by Anti-Osteoporotic Medication but Not Increased by Cement Augmentation. J. Bone Joint Surg. Am. 2022, 104, 2178–2185. [Google Scholar] [CrossRef]
- Lentle, B.C.; Berger, C.; Probyn, L.; Brown, J.P.; Langsetmo, L.; Fine, B.; Lian, K.; Shergill, A.K.; Trollip, J.; Jackson, S.; et al. Comparative Analysis of the Radiology of Osteoporotic Vertebral Fractures in Women and Men: Cross-Sectional and Longitudinal Observations from the Canadian Multicentre Osteoporosis Study (CaMos). J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2018, 33, 569–579. [Google Scholar] [CrossRef]
- Lentle, B.C.; Berger, C.; Brown, J.P.; Probyn, L.; Langsetmo, L.; Hammond, I.; Hu, J.; Leslie, W.D.; Prior, J.C.; Hanley, D.A.; et al. Vertebral Fractures: Which Radiological Criteria Are Better Associated With the Clinical Course of Osteoporosis? Can. Assoc. Radiol. J. 2021, 72, 150–158. [Google Scholar] [CrossRef]
- Adams, J.E. Opportunistic Identification of Vertebral Fractures. J. Clin. Densitom. 2016, 19, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.A.; Cummings, S.R.; Watts, N.B.; Feudjo, M.T.; Sprafka, J.M.; Zhou, J.; Guo, H.; Balasubramanian, A.; Cooper, C. Real-World Effectiveness of Osteoporosis Therapies for Fracture Reduction in Post-Menopausal Women. Arch. Osteoporos. 2018, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Skjødt, M.K.; Nicolaes, J.; Smith, C.D.; Olsen, K.R.; Cooper, C.; Libanati, C.; Abrahamsen, B. Fracture Risk in Men and Women With Vertebral Fractures Identified Opportunistically on Routine Computed Tomography Scans and Not Treated for Osteoporosis: An Observational Cohort Study. JBMR Plus 2023, 7, e10736. [Google Scholar] [CrossRef] [PubMed]
- Kendler, D.L.; Bauer, D.C.; Davison, K.S.; Dian, L.; Hanley, D.A.; Harris, S.T.; McClung, M.R.; Miller, P.D.; Schousboe, J.T.; Yuen, C.K.; et al. Vertebral Fractures: Clinical Importance and Management. Am. J. Med. 2016, 129, e1–e221. [Google Scholar] [CrossRef]
- Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.H.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The Global Prevalence of Osteoporosis in the World: A Comprehensive Systematic Review and Meta-Analysis. J. Orthop. Surg. 2021, 16, 609. [Google Scholar] [CrossRef]
- Chou, S.H.; Vokes, T. Vertebral Morphometry. J. Clin. Densitom. 2016, 19, 48–53. [Google Scholar] [CrossRef]
- Lorenc, R.; Głuszko, P.; Franek, E.; Jabłoński, M.; Jaworski, M.; Kalinka-Warzocha, E.; Karczmarewicz, E.; Kostka, T.; Księzopolska-Orłowska, K.; Marcinowska-Suchowierska, E.; et al. Guidelines for the Diagnosis and Management of Osteoporosis in Poland: Update 2017. Endokrynol. Pol. 2017, 68, 604–609. [Google Scholar] [CrossRef]
- Kim, K.-W.; Cho, K.-J.; Kim, S.-W.; Lee, S.-H.; An, M.-H.; Im, J.-H. A Nation-Wide, Outpatient-Based Survey on the Pain, Disability, and Satisfaction of Patients with Osteoporotic Vertebral Compression Fractures. Asian Spine J. 2013, 7, 301. [Google Scholar] [CrossRef]
- Zhao, Q.M.; Gu, X.F.; Yang, H.L.; Liu, Z.T. Surgical Outcome of Posterior Fixation, Including Fractured Vertebra, for Thoracolumbar Fractures. Neurosciences 2015, 20, 362–367. [Google Scholar] [CrossRef]
- Shen, L.; Gao, C.; Hu, S.; Kang, D.; Zhang, Z.; Xia, D.; Xu, Y.; Xiang, S.; Zhu, Q.; Xu, G.; et al. Using Artificial Intelligence to Diagnose Osteoporotic Vertebral Fractures on Plain Radiographs. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2023, 38, 1278–1287. [Google Scholar] [CrossRef]
- Nicolaes, J.; Raeymaeckers, S.; Robben, D.; Wilms, G.; Vandermeulen, D.; Libanati, C.; Debois, M. Detection of Vertebral Fractures in CT Using 3D Convolutional Neural Networks. In Proceedings of the Computational Methods and Clinical Applications for Spine Imaging: 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, 17 October 2019; Proceedings. Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–14. [Google Scholar]
- Zhang, J.; Liu, F.; Xu, J.; Zhao, Q.; Huang, C.; Yu, Y.; Yuan, H. Automated Detection and Classification of Acute Vertebral Body Fractures Using a Convolutional Neural Network on Computed Tomography. Front. Endocrinol. 2023, 14, 1132725. [Google Scholar] [CrossRef] [PubMed]
- Namireddy, S.R.; Gill, S.S.; Peerbhai, A.; Kamath, A.G.; Ramsay, D.S.C.; Ponniah, H.S.; Salih, A.; Jankovic, D.; Kalasauskas, D.; Neuhoff, J.; et al. Artificial Intelligence in Risk Prediction and Diagnosis of Vertebral Fractures. Sci. Rep. 2024, 14, 30560. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, Z.; Li, Y.; Cao, Y.; Zhang, H.; Dong, B. Machine Learning Value in the Diagnosis of Vertebral Fractures: A Systematic Review and Meta-Analysis. Eur. J. Radiol. 2024, 181, 111714. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, P.; Buchebner, D.; Geijer, M. Vertebral Compression Fractures at Abdominal CT: Underdiagnosis, Undertreatment, and Evaluation of an AI Algorithm. J. Bone Miner. Res. 2024, 39, zjae096. [Google Scholar] [CrossRef]
- Kim, Y.R.; Yoon, Y.S.; Cha, J.G. Opportunistic Screening for Acute Vertebral Fractures on a Routine Abdominal or Chest Computed Tomography Scans Using an Automated Deep Learning Model. Diagnostics 2024, 14, 781. [Google Scholar] [CrossRef]
Number of Patients | Fractures | Normal | Total |
---|---|---|---|
Mean age, years (SD) [CI] | 72.5 (10.7) [70.3–74.7] | 66.9 (9.7) [66.0–67.8] | 67.8 (10.1) [67.0–68.6] |
Number of males (%) [CI] | 41 (44.1%) [0.34–0.54] | 273 (54.9%) [0.51–0.59] | 314 (53.2%) [0.49–0.57] |
Number of females (%) [CI] | 52 (55.9%) [0.46–0.66] | 224 (45.1%) [0.41–0.50] | 276 (46.8%) [0.43–0.51] |
Total Patients (%) [CI] | 93 (15.8%) [0.13–0.19] | 497 (84.2%) [0.81–0.87] | 590 (100%) [0.99–1.0] |
AI | Fracture Present | Fracture Absent | Total | ||
---|---|---|---|---|---|
Positive | True positive | 138 | False Positive | 699 | 837 |
Negative | False Negative | 12 | True Negative | 780 | 792 |
Total | 150 | 1479 |
AI | Fracture Present | Fracture Absent | Total | ||
---|---|---|---|---|---|
Positive | True positive | 117 | False Positive | 112 | 229 |
Negative | False Negative | 33 | True Negative | 1812 | 1845 |
Total | 150 | 1924 |
Metrics | 20% AI Cutoff [CI] | 25% AI Cutoff [CI] |
---|---|---|
Sensitivity | 92.0% [0.87–0.95] | 78.0% [0.71–0.84] |
Specificity | 52.7% [0.50–0.55] | 94.2% [0.93–0.95] |
Positive Predictive Value (PPV) | 16.5% [0.14–0.19] | 51.1% [0.45–0.58] |
Negative Predictive Value (NPV) | 98.5% [0.97–0.99] | 98.2% [0.98–0.99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathew, V.; Pearce, D.; Kates Rose, N.; Saini, S.; Bogoch, E. Clinical Validation of Commercial AI Software for the Detection of Incidental Vertebral Compression Fractures in CT Scans of the Chest and Abdomen. Diagnostics 2025, 15, 1530. https://doi.org/10.3390/diagnostics15121530
Mathew V, Pearce D, Kates Rose N, Saini S, Bogoch E. Clinical Validation of Commercial AI Software for the Detection of Incidental Vertebral Compression Fractures in CT Scans of the Chest and Abdomen. Diagnostics. 2025; 15(12):1530. https://doi.org/10.3390/diagnostics15121530
Chicago/Turabian StyleMathew, Vinu, Dawn Pearce, Noah Kates Rose, Sidharth Saini, and Earl Bogoch. 2025. "Clinical Validation of Commercial AI Software for the Detection of Incidental Vertebral Compression Fractures in CT Scans of the Chest and Abdomen" Diagnostics 15, no. 12: 1530. https://doi.org/10.3390/diagnostics15121530
APA StyleMathew, V., Pearce, D., Kates Rose, N., Saini, S., & Bogoch, E. (2025). Clinical Validation of Commercial AI Software for the Detection of Incidental Vertebral Compression Fractures in CT Scans of the Chest and Abdomen. Diagnostics, 15(12), 1530. https://doi.org/10.3390/diagnostics15121530