Predictive Value of Epicardial Adipose Tissue Thickness for Plaque Vulnerability in Left Coronary Arteries: Histological Evidence from 245 Sudden Cardiac Death Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Autopsy Characteristics
2.3. Histopathological Characterization of Coronary Atherosclerotic Plaque
2.4. Statistical Analyses
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CVD | cardiovascular disease |
MI | myocardial infarction |
EAT | epicardial adipose tissue |
MACE | major adverse cardiac events |
SCD | sudden cardiac death |
ROC | receiver operating characteristic |
LAD | left anterior descending artery |
LCx | left circumflex coronary artery |
References
- GBD 2017 Causes of Death Collaborators. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [PubMed]
- Kyu, H.H.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Disability-Adjusted Life-Years (DALYs) for 359 Diseases and Injuries and Healthy Life Expectancy (HALE) for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef] [PubMed]
- Townsend, N.; Kazakiewicz, D.; Lucy Wright, F.; Timmis, A.; Huculeci, R.; Torbica, A.; Gale, C.P.; Achenbach, S.; Weidinger, F.; Vardas, P. Epidemiology of Cardiovascular Disease in Europe. Nat. Rev. Cardiol. 2022, 19, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Stefanadis, C.; Antoniou, C.-K.; Tsiachris, D.; Pietri, P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J. Am. Heart Assoc. 2017, 6, e005543. [Google Scholar] [CrossRef]
- Młynarska, E.; Czarnik, W.; Fularski, P.; Hajdys, J.; Majchrowicz, G.; Stabrawa, M.; Rysz, J.; Franczyk, B. From Atherosclerotic Plaque to Myocardial Infarction-The Leading Cause of Coronary Artery Occlusion. Int. J. Mol. Sci. 2024, 25, 7295. [Google Scholar] [CrossRef]
- Ahmadi, A.; Leipsic, J.; Blankstein, R.; Taylor, C.; Hecht, H.; Stone, G.W.; Narula, J. Do Plaques Rapidly Progress Prior to Myocardial Infarction? The Interplay between Plaque Vulnerability and Progression. Circ. Res. 2015, 117, 99–104. [Google Scholar] [CrossRef]
- Ansaldo, A.M.; Montecucco, F.; Sahebkar, A.; Dallegri, F.; Carbone, F. Epicardial Adipose Tissue and Cardiovascular Diseases. Int. J. Cardiol. 2019, 278, 254–260. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Antoniades, C. The Role of Epicardial Adipose Tissue in Cardiac Biology: Classic Concepts and Emerging Roles. J. Physiol. 2017, 595, 3907–3917. [Google Scholar] [CrossRef]
- Konwerski, M.; Gąsecka, A.; Opolski, G.; Grabowski, M.; Mazurek, T. Role of Epicardial Adipose Tissue in Cardiovascular Diseases: A Review. Biology 2022, 11, 355. [Google Scholar] [CrossRef]
- Iacobellis, G. Epicardial Adipose Tissue in Contemporary Cardiology. Nat. Rev. Cardiol. 2022, 19, 593–606. [Google Scholar] [CrossRef]
- Alam, M.S.; Green, R.; de Kemp, R.; Beanlands, R.S.; Chow, B.J.W. Epicardial Adipose Tissue Thickness as a Predictor of Impaired Microvascular Function in Patients with Non-Obstructive Coronary Artery Disease. J. Nucl. Cardiol. 2013, 20, 804–812. [Google Scholar] [CrossRef]
- Alexopoulos, N.; McLean, D.S.; Janik, M.; Arepalli, C.D.; Stillman, A.E.; Raggi, P. Epicardial Adipose Tissue and Coronary Artery Plaque Characteristics. Atherosclerosis 2010, 210, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G.; Corradi, D.; Sharma, A.M. Epicardial Adipose Tissue: Anatomic, Biomolecular and Clinical Relationships with the Heart. Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Ebersberger, U.; Bauer, M.J.; Straube, F.; Fink, N.; Schoepf, U.J.; Varga-Szemes, A.; Emrich, T.; Griffith, J.; Hoffmann, E.; Tesche, C. Gender Differences in Epicardial Adipose Tissue and Plaque Composition by Coronary CT Angiography: Association with Cardiovascular Outcome. Diagnostics 2023, 13, 624. [Google Scholar] [CrossRef] [PubMed]
- Hogea, T.; Noemi, N.; Suciu, B.A.; Brinzaniuc, K.; Chinezu, L.; Arbănași, E.M.; Kaller, R.; Carașca, C.; Arbănași, E.M.; Vunvulea, V.; et al. Increased Epicardial Adipose Tissue and Heart Characteristics Are Correlated with BMI and Predict Silent Myocardial Infarction in Sudden Cardiac Death Subjects: An Autopsy Study. Diagnostics 2023, 13, 2157. [Google Scholar] [CrossRef] [PubMed]
- Hogea, T.; Suciu, B.A.; Ivănescu, A.D.; Carașca, C.; Chinezu, L.; Arbănași, E.M.; Russu, E.; Kaller, R.; Arbănași, E.M.; Mureșan, A.V.; et al. Increased Epicardial Adipose Tissue (EAT), Left Coronary Artery Plaque Morphology, and Valvular Atherosclerosis as Risks Factors for Sudden Cardiac Death from a Forensic Perspective. Diagnostics 2023, 13, 142. [Google Scholar] [CrossRef]
- Basso, C.; Burke, M.; Fornes, P.; Gallagher, P.J.; de Gouveia, R.H.; Sheppard, M.; Thiene, G.; van der Wal, A.; Association for European Cardiovascular Pathology. Guidelines for autopsy investigation of sudden cardiac death. Virchows Arch. Int. J. Pathol. 2008, 452, 11–18. [Google Scholar] [CrossRef]
- Basso, C.; Aguilera, B.; Banner, J.; Cohle, S.; d’Amati, G.; de Gouveia, R.H.; di Gioia, C.; Fabre, A.; Gallagher, P.J.; Leone, O.; et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. Int. J. Pathol. 2017, 471, 691–705. [Google Scholar] [CrossRef]
- Sessa, F.; Chisari, M.; Salerno, M.; Esposito, M.; Zuccarello, P.; Capasso, E.; Scoto, E.; Cocimano, G. Congenital heart diseases (CHDs) and forensic investigations: Searching for the cause of death. Exp. Mol. Pathol. 2024, 137, 104907. [Google Scholar] [CrossRef]
- Stary, H.C.; Chandler, A.B.; Dinsmore, R.E.; Fuster, V.; Glagov, S.; Insull, W.; Rosenfeld, M.E.; Schwartz, C.J.; Wagner, W.D.; Wissler, R.W. A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis. Circulation 1995, 92, 1355–1374. [Google Scholar] [CrossRef]
- Wentzel, J.J.; Papafaklis, M.I.; Antoniadis, A.P.; Takahashi, S.; Cefalo, N.V.; Cormier, M.; Saito, S.; Coskun, A.U.; Stone, P.H. Sex-Related Differences in Plaque Characteristics and Endothelial Shear Stress Related Plaque-Progression in Human Coronary Arteries. Atherosclerosis 2022, 342, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Van Rosendael, A.R.; van den Hoogen, I.J.; Lin, F.Y.; Gianni, U.; Lu, Y.; Andreini, D.; Al-Mallah, M.H.; Cademartiri, F.; Chinnaiyan, K.; Chow, B.J.W.; et al. Age Related Compositional Plaque Burden by CT in Patients with Future ACS. J. Cardiovasc. Comput. Tomogr. 2022, 16, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Senoner, T.; Plank, F.; Langer, C.; Beyer, C.; Steinkohl, F.; Barbieri, F.; Adukauskaite, A.; Widmann, G.; Friedrich, G.; Dichtl, W.; et al. Smoking and Obesity Predict High-Risk Plaque by Coronary CTA in Low Coronary Artery Calcium Score (CACS). J. Cardiovasc. Comput. Tomogr. 2021, 15, 499–505. [Google Scholar] [CrossRef]
- Rovella, V.; Anemona, L.; Cardellini, M.; Scimeca, M.; Saggini, A.; Santeusanio, G.; Bonanno, E.; Montanaro, M.; Legramante, I.M.; Ippoliti, A.; et al. The Role of Obesity in Carotid Plaque Instability: Interaction with Age, Gender, and Cardiovascular Risk Factors. Cardiovasc. Diabetol. 2018, 17, 46. [Google Scholar] [CrossRef]
- Held, C.; Hadziosmanovic, N.; Aylward, P.E.; Hagström, E.; Hochman, J.S.; Stewart, R.A.H.; White, H.D.; Wallentin, L. Body Mass Index and Association With Cardiovascular Outcomes in Patients With Stable Coronary Heart Disease—A STABILITY Substudy. J. Am. Heart Assoc. 2022, 11, e023667. [Google Scholar] [CrossRef]
- Kobayashi, N.; Shibata, Y.; Kurihara, O.; Todoroki, T.; Tsutsumi, M.; Shirakabe, A.; Takano, M.; Asai, K.; Miyauchi, Y. Impact of Low Body Mass Index on Features of Coronary Culprit Plaques and Outcomes in Patients With Acute Coronary Syndrome. Am. J. Cardiol. 2021, 158, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Nerlekar, N.; Brown, A.J.; Muthalaly, R.G.; Talman, A.; Hettige, T.; Cameron, J.D.; Wong, D.T.L. Association of Epicardial Adipose Tissue and High-Risk Plaque Characteristics: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2017, 6, e006379. [Google Scholar] [CrossRef]
- Djaberi, R.; Schuijf, J.D.; van Werkhoven, J.M.; Nucifora, G.; Jukema, J.W.; Bax, J.J. Relation of Epicardial Adipose Tissue to Coronary Atherosclerosis. Am. J. Cardiol. 2008, 102, 1602–1607. [Google Scholar] [CrossRef]
- Yamashita, K.; Yamamoto, M.H.; Ebara, S.; Okabe, T.; Saito, S.; Hoshimoto, K.; Yakushiji, T.; Isomura, N.; Araki, H.; Obara, C.; et al. Association between Increased Epicardial Adipose Tissue Volume and Coronary Plaque Composition. Heart Vessels 2014, 29, 569–577. [Google Scholar] [CrossRef]
- Napoli, G.; Pergola, V.; Basile, P.; De Feo, D.; Bertrandino, F.; Baggiano, A.; Mushtaq, S.; Fusini, L.; Fazzari, F.; Carrabba, N.; et al. Epicardial and Pericoronary Adipose Tissue, Coronary Inflammation, and Acute Coronary Syndromes. J. Clin. Med. 2023, 12, 7212. [Google Scholar] [CrossRef]
- Wang, T.-D.; Lee, W.-J.; Shih, F.-Y.; Huang, C.-H.; Chen, W.-J.; Lee, Y.-T.; Shih, T.T.-F.; Chen, M.-F. Association of Epicardial Adipose Tissue with Coronary Atherosclerosis Is Region-Specific and Independent of Conventional Risk Factors and Intra-Abdominal Adiposity. Atherosclerosis 2010, 213, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Bachar, G.N.; Dicker, D.; Kornowski, R.; Atar, E. Epicardial Adipose Tissue as a Predictor of Coronary Artery Disease in Asymptomatic Subjects. Am. J. Cardiol. 2012, 110, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Braescu, L.; Gaspar, M.; Buriman, D.; Aburel, O.M.; Merce, A.-P.; Bratosin, F.; Aleksandrovich, K.S.; Alambaram, S.; Mornos, C. The Role and Implications of Epicardial Fat in Coronary Atherosclerotic Disease. J. Clin. Med. 2022, 11, 4718. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-S.; Choi, S.-Y.; Zheng, M.; Yang, H.-M.; Lim, H.-S.; Choi, B.-J.; Yoon, M.-H.; Hwang, G.-S.; Tahk, S.-J.; Shin, J.-H. Epicardial Adipose Tissue Thickness Is a Predictor for Plaque Vulnerability in Patients with Significant Coronary Artery Disease. Atherosclerosis 2013, 226, 134–139. [Google Scholar] [CrossRef]
- Gitsioudis, G.; Schmahl, C.; Missiou, A.; Voss, A.; Schüssler, A.; Abdel-Aty, H.; Buss, S.J.; Mueller, D.; Vembar, M.; Bryant, M.; et al. Epicardial Adipose Tissue Is Associated with Plaque Burden and Composition and Provides Incremental Value for the Prediction of Cardiac Outcome. A Clinical Cardiac Computed Tomography Angiography Study. PLoS ONE 2016, 11, e0155120. [Google Scholar] [CrossRef]
- Oka, T.; Yamamoto, H.; Ohashi, N.; Kitagawa, T.; Kunita, E.; Utsunomiya, H.; Yamazato, R.; Urabe, Y.; Horiguchi, J.; Awai, K.; et al. Association between Epicardial Adipose Tissue Volume and Characteristics of Non-Calcified Plaques Assessed by Coronary Computed Tomographic Angiography. Int. J. Cardiol. 2012, 161, 45–49. [Google Scholar] [CrossRef]
- Kitagawa, T.; Yamamoto, H.; Sentani, K.; Takahashi, S.; Tsushima, H.; Senoo, A.; Yasui, W.; Sueda, T.; Kihara, Y. The Relationship between Inflammation and Neoangiogenesis of Epicardial Adipose Tissue and Coronary Atherosclerosis Based on Computed Tomography Analysis. Atherosclerosis 2015, 243, 293–299. [Google Scholar] [CrossRef]
- Khan, I.; Berge, C.A.; Eskerud, I.; Larsen, T.H.; Pedersen, E.R.; Lønnebakken, M.T. Epicardial Adipose Tissue Volume, Plaque Vulnerability and Myocardial Ischemia in Non-Obstructive Coronary Artery Disease. IJC Heart Vasc. 2023, 49, 101240. [Google Scholar] [CrossRef]
- Lesjak, V.; Kocet, L. Sex Differences in Epicardial Adipose Tissue and Other Risk Factors for Coronary Artery Disease. Medicina 2025, 61, 934. [Google Scholar] [CrossRef]
- Mancio, J.; Pinheiro, M.; Ferreira, W.; Carvalho, M.; Barros, A.; Ferreira, N.; Vouga, L.; Ribeiro, V.G.; Leite-Moreira, A.; Falcao-Pires, I.; et al. Gender differences in the association of epicardial adipose tissue and coronary artery calcification: EPICHEART study: EAT and coronary calcification by gender. Int. J. Cardiol. 2017, 249, 419–425. [Google Scholar] [CrossRef]
- Gu, H.; Gao, Y.; Wang, H.; Hou, Z.; Han, L.; Wang, X.; Lu, B. Sex differences in coronary atherosclerosis progression and major adverse cardiac events in patients with suspected coronary artery disease. J. Cardiovasc. Comput. Tomogr. 2017, 11, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Dicker, D.; Atar, E.; Kornowski, R.; Bachar, G.N. Increased epicardial adipose tissue thickness as a predictor for hypertension: A cross-sectional observational study. J. Clin. Hypertens. 2013, 15, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Liu, L.; Li, X.; Huang, X.; Yang, W.; Sun, S.; Ma, Y.; Yu, Y.; Luo, J.; Cao, J. Association between epicardial adipose tissue and blood pressure: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. NMCD 2021, 31, 2547–2556. [Google Scholar] [CrossRef] [PubMed]
- Cetin, M.; Cakici, M.; Polat, M.; Suner, A.; Zencir, C.; Ardic, I. Relation of epicardial fat thickness with carotid intima-media thickness in patients with type 2 diabetes mellitus. Int. J. Endocrinol. 2013, 2013, 769175. [Google Scholar] [CrossRef]
- Yazıcı, D.; Özben, B.; Yavuz, D.; Deyneli, O.; Aydın, H.; Tarcin, Ö.; Akalın, S. Epicardial adipose tissue thickness in type 1 diabetic patients. Endocrine 2011, 40, 250–255. [Google Scholar] [CrossRef]
Variables | All Patients n = 245 | Male n = 175 | Female n = 70 | p Value |
---|---|---|---|---|
Age, mean ± SD | 62.31 ± 12.69 | 59.61 ± 12.01 | 69.07 ± 11.88 | <0.001 |
BMI, mean ± SD | 26.12 ± 4.16 | 25.66 ± 3.75 | 27.28 ± 4.88 | 0.044 |
Coronary Artery Characteristics, mean ± SD | ||||
EAT LAD | 0.74 ± 0.26 | 0.75 ± 0.27 | 0.72 ± 0.23 | 0.604 |
EAT LCX | 0.71 ± 0.27 | 0.71 ± 0.28 | 0.73 ± 0.24 | 0.377 |
Histological Type of Left Descending Anterior Artery Plaque, no. (%) | ||||
No plaque | 3 (1.22%) | 3 (1.71%) | - | 0.270 |
Type I | - | - | - | - |
Type II | 10 (4.08%) | 7 (4.00%) | 3 (4.29%) | 0.414 |
Type III | 27 (11.02%) | 20 (11.43%) | 7 (10.00%) | 0.138 |
Type IV | 47 (19.18%) | 27 (15.42%) | 20 (28.57%) | 0.018 |
Type Va | 10 (4.08%) | 7 (4.00%) | 3 (4.29%) | 0.919 |
Type Vb | 101 (41.22%) | 78 (44.57%) | 23 (32.86%) | 0.412 |
Type Vc | 20 (8.16%) | 17 (9.71%) | 3 (4.29%) | 0.161 |
Type VI | 28 (11.43%) | 25 (14.29%) | 3 (4.29%) | 0.026 |
Histological Type of Left Circumflex Coronary Artery Plaque, no. (%) | ||||
No plaque | 8 (3.27%) | 7 (4.00%) | 1 (1.43%) | 0.820 |
Type I | - | - | - | - |
Type II | 10 (4.08%) | 9 (5.14%) | 1 (1.43%) | 0.184 |
Type III | 46 (18.78%) | 31 (17.71%) | 15 (25.71%) | 0.501 |
Type IV | 79 (32.24%) | 53 (30.28%) | 26 (37.14%) | 0.300 |
Type Va | 6 (2.45%) | 6 (3.43%) | - | 0.117 |
Type Vb | 50 (20.41%) | 33 (18.85%) | 17 (24.28%) | 0.341 |
Type Vc | 3 (1.22%) | 3 (1.71%) | - | 0.270 |
Type VI | 43 (17.55%) | 34 (19.43%) | 9 (12.86%) | 0.222 |
Unstable Atherosclerotic Plaque, no. (%) | ||||
Left Descending Anterior Artery | 205 (83.67%) | 155 (88.57%) | 50 (71.43%) | 0.001 |
Left Circumflex Coronary Artery | 181 (73.88%) | 136 (77.71%) | 45 (64.29%) | 0.03 |
Variables | AUC | Std. Error | 95% CI | p Value |
---|---|---|---|---|
Left Anterior Descending Artery—Unstable Plaque | ||||
Age | 0.555 | 0.058 | 0.442–0.669 | 0.338 |
BMI | 0.539 | 0.049 | 0.442–0.636 | 0.426 |
EAT LAD | 0.651 | 0.050 | 0.552–0.750 | 0.003 |
Left Circumflex Coronary Artery—Unstable Plaque | ||||
Age | 0.685 | 0.041 | 0.604–0.767 | <0.001 |
BMI | 0.541 | 0.038 | 0.466–0.616 | 0.279 |
EAT LCx | 0.621 | 0.042 | 0.538–0.704 | 0.004 |
Left Anterior Descending Artery—Unstable Plaque—Male | ||||
Age | 0.605 | 0.073 | 0.461–0.748 | 0.153 |
BMI | 0.526 | 0.056 | 0.416–0.636 | 0.644 |
EAT LAD | 0.696 | 0.061 | 0.576–0.816 | 0.001 |
Left Circumflex Coronary Artery—Unstable Plaque—Male | ||||
Age | 0.752 | 0.045 | 0.663–0.841 | <0.001 |
BMI | 0.547 | 0.044 | 0.460–0.634 | 0.290 |
EAT LCx | 0.666 | 0.049 | 0.569–0.763 | 0.001 |
Left Anterior Descending Artery—Unstable Plaque—Female | ||||
Age | 0.532 | 0.094 | 0.347–0.717 | 0.734 |
BMI | 0.593 | 0.092 | 0.413–0.772 | 0.311 |
EAT LAD | 0.558 | 0.088 | 0.386–0.730 | 0.512 |
Left Circumflex Coronary Artery—Unstable Plaque—Female | ||||
Age | 0.580 | 0.088 | 0.408–0.751 | 0.363 |
BMI | 0.495 | 0.080 | 0.338–0.652 | 0.952 |
EAT LCx | 0.504 | 0.078 | 0.351–0.656 | 0.962 |
Variables | Model | Left Anterior Descending Artery—Unstable Plaque | ||
---|---|---|---|---|
OR * | 95% CI | p Value | ||
EAT LAD—All | Model 1 | 1.88 | 1.26–2.81 | 0.002 |
Model 2 | 1.80 | 1.19–2.73 | 0.005 | |
Model 3 | 1.75 | 1.15–2.67 | 0.009 | |
EAT LAD—Male | Model 1 | 2.31 | 1.35–3.93 | 0.002 |
Model 4 | 2.05 | 1.20–3.82 | 0.009 | |
EAT LAD—Female | Model 1 | 1.31 | 0.72–2.42 | 0.375 |
Model 4 | 1.29 | 0.69–2.40 | 0.421 |
Variables | Model | Left Circumflex Coronary Artery—Unstable Plaque | ||
---|---|---|---|---|
OR * | 95% CI | p Value | ||
EAT LCx—All | Model 1 | 1.51 | 1.10–2.07 | 0.010 |
Model 2 | 1.30 | 0.91–1.84 | 0.142 | |
Model 3 | 1.24 | 0.86–1.79 | 0.249 | |
EAT LCx—Male | Model 1 | 1.83 | 1.22–2.74 | 0.003 |
Model 4 | 1.74 | 1.15–2.64 | 0.009 | |
EAT LCx—Female | Model 1 | 0.97 | 0.56–1.66 | 0.915 |
Model 4 | 0.97 | 0.55–1.72 | 0.935 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niculescu, R.; Mureșan, A.; Radu, C.C.; Hogea, T.R.; Cocuz, I.G.; Sabău, A.H.; Russu, E.; Arbănași, E.M.; Arbănași, E.M.; Mureșan, A.V.; et al. Predictive Value of Epicardial Adipose Tissue Thickness for Plaque Vulnerability in Left Coronary Arteries: Histological Evidence from 245 Sudden Cardiac Death Cases. Diagnostics 2025, 15, 1491. https://doi.org/10.3390/diagnostics15121491
Niculescu R, Mureșan A, Radu CC, Hogea TR, Cocuz IG, Sabău AH, Russu E, Arbănași EM, Arbănași EM, Mureșan AV, et al. Predictive Value of Epicardial Adipose Tissue Thickness for Plaque Vulnerability in Left Coronary Arteries: Histological Evidence from 245 Sudden Cardiac Death Cases. Diagnostics. 2025; 15(12):1491. https://doi.org/10.3390/diagnostics15121491
Chicago/Turabian StyleNiculescu, Raluca, Alexandru Mureșan, Carmen Corina Radu, Timur Robert Hogea, Iuliu Gabriel Cocuz, Adrian Horațiu Sabău, Eliza Russu, Emil Marian Arbănași, Eliza Mihaela Arbănași, Adrian Vasile Mureșan, and et al. 2025. "Predictive Value of Epicardial Adipose Tissue Thickness for Plaque Vulnerability in Left Coronary Arteries: Histological Evidence from 245 Sudden Cardiac Death Cases" Diagnostics 15, no. 12: 1491. https://doi.org/10.3390/diagnostics15121491
APA StyleNiculescu, R., Mureșan, A., Radu, C. C., Hogea, T. R., Cocuz, I. G., Sabău, A. H., Russu, E., Arbănași, E. M., Arbănași, E. M., Mureșan, A. V., Stoian, A., Ceană, D. E., Buicu, C. F., & Cotoi, O. S. (2025). Predictive Value of Epicardial Adipose Tissue Thickness for Plaque Vulnerability in Left Coronary Arteries: Histological Evidence from 245 Sudden Cardiac Death Cases. Diagnostics, 15(12), 1491. https://doi.org/10.3390/diagnostics15121491