The Impact of Alveolar Recruitment Strategies on Perioperative Outcomes in Obese Patients Undergoing Major Gynecologic Cancer Surgeries: A Prospective Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salome, C.M.; King, G.G.; Berend, N. Physiology of obesity and effects on lung function. J. Appl. Physiol. 2010, 108, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.L.; Ball, L.; Rocco, P.; Pelosi, P. Physiological and pathophysiological consequences of mechanical ventilation. Semin. Respir. Crit. Care Med. 2022, 43, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Bustamante, A.; Frendl, G.; Sprung, J.; Kor, D.J.; Subramaniam, B.; Martinez Ruiz, R.; Lee, J.-W.; Henderson, W.G.; Moss, A.; Mehdiratta, N.; et al. Postoperative pulmonary complications, early mortality, and hospital stay following noncardiothoracic surgery: Amulticenter study by the perioperative research network investigators. JAMA Surg. 2017, 152, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Odor, P.M.; Bampoe, S.; Gilhooly, D.; Creagh-Brown, B.; Moonesinghe, S.R. Perioperative interventions for prevention of postoperative pulmonary complications: Systematic review and meta-analysis. BMJ 2020, 368, m540. [Google Scholar] [CrossRef]
- Bigatello, L.; Pesenti, A. Respiratory Physiology for the Anesthesiologist. Anesthesiology 2019, 130, 1064–1077. [Google Scholar] [CrossRef]
- Weller, W.E.; Rosati, C. Comparing outcomes of laparoscopic versus open bariatric surgery. Ann. Surg. 2008, 248, 10–15. [Google Scholar] [CrossRef]
- O’Malley, C.; Cunningham, A.J. Physiologic changes during laparoscopy. Anesthesiol. Clin. N. Am. 2001, 19, 1–19. [Google Scholar] [CrossRef]
- Ruszkai, Z.; Kiss, E.; László, I.; Bokrétás, G.P.; Vizserálek, D.; Vámossy, I.; Surány, E.; Buzogány, I.; Bajory, Z.; Molnár, Z. Effects of Intraoperative Positive End-Expiratory Pressure Optimization on Respiratory Mechanics and the Inflammatory Response: A Randomized Controlled Trial. J. Clin. Monit. Comput. 2020, 35, 469–482. [Google Scholar] [CrossRef]
- Leme, A.C.; Hajjar, L.A.; Volpe, M.S.; Fukushima, J.T.; Santis Santiago, R.R.; Osawa, E.A.; de Almeida, J.P.; Gerent, A.M.; Franco, R.A.; Feltrim, M.I.Z.; et al. Effect of Intensive vs Moderate Alveolar Recruitment Strategies Added to Lung-Protective Ventilation on Postoperative Pulmonary Complications: A Randomized Clinical Trial. JAMA 2017, 317, 1422–1432. [Google Scholar] [CrossRef]
- Kim, J.K. Importance of alveolar recruitment strategy revisited. Korean J. Anesthesiol. 2014, 67, 75–76. [Google Scholar] [CrossRef]
- Canet, J.; Gallart, L.; Gomar, C.; Paluzie, G.; Vallès, J.; Castillo, J.; Sabaté, S.; Mazo, V.; Briones, Z.; Sanchis, J. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology 2010, 113, 1338–1350. [Google Scholar] [CrossRef] [PubMed]
- Baneton, S.; Dauvergne, J.E.; Gouillet, C.; Cartron, E.; Volteau, C.; Nicolet, J.; Corne, F.; Rozec, B. Effect of Active Physiotherapy with Positive Airway Pressure on Pulmonary Atelectasis After Cardiac Surgery: A Randomized Controlled Study. J. Cardiothorac. Vasc. Anesth. 2023, 37, 1668–1676. [Google Scholar] [CrossRef]
- Zhou, Z.; Fang, J.; Chem, L.; Wang, H.; Yu, Y.; Wang, W.; Chen, J.; Zhang, M.; Hu, S. Effects of intraoperative PEEP on postoperative pulmonary complications in patients undergoing robot-assisted laparoscopic radical resection for bladder cancer or prostate cancer: Study protocol for a randomized controlled. Trial 2019, 20, 304. [Google Scholar] [CrossRef] [PubMed]
- Karalapillai, D.; Weinberg, L.; Peyton, P.; Ellard, L.; Hu, R.; Pearce, B.; Tan, C.O.; Story, D.; O’Donnell, M.; Hamilton, P.; et al. Effect of Intraoperative Low Tidal Volume vs Conventional Tidal Volume on Postoperative Pulmonary Complications in Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA 2020, 324, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zheng, Z.N.; Zhang, N.R.; Guo, J.; Wang, K.; Wang, W.; Li, L.; Jin, J.; Tang, J.; Liao, Y.; et al. Intra-operative open-lung ventilatory strategy reduces postoperative complications after laparoscopic colorectal cancer resection: A randomised controlled trial. Eur. J. Anaesthesiol. 2021, 38, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Mazo, V.; Sabate, S.; Canet, J.; Gallart, L.; de Abreu, M.G.; Belda, J.; Langeron, O.; Hoeft, A.; Pelosi, P. Prospective external validation of a predictive score for postoperative pulmonary complications. Anesthesiology 2014, 121, 219–231. [Google Scholar] [CrossRef]
- Cressoni, M.; Chiumello, D.; Algieri, I.; Brioni, M.; Chiurazzi, C.; Colombo, A.; Crimella, F.; Guanziroli, M.; Tomic, I.; Tonetti, T.; et al. Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med. 2017, 43, 603–611. [Google Scholar] [CrossRef]
- Park, S. Perioperative lung-protective ventilation strategy reduces postoperative pulmonary complications in patients undergoing thoracic and major abdominal surgery. Korean J. Anesthesiol. 2016, 69, 3–7. [Google Scholar] [CrossRef]
- Littleton, S.W. Impact of obesity on respiratory function. Respirology 2012, 17, 43–49. [Google Scholar] [CrossRef]
- Ball, L.; Hemmes, S.; Neto, A.S.; Bluth, T.; Canet, J.; Hiesmayr, M.; Hollmann, M.; Mills, G.; Melo, M.V.; Putensen, C.; et al. Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients. Br. J. Anaesth. 2018, 121, 899–908. [Google Scholar] [CrossRef]
- Ferrando, C.; Soro, M.; Unzueta, C.; Suarez-Sipmann, F.; Canet, J.; Librero, J.; Pozo, N.; Peiró, S.; Llombart, A.; León, I.; et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): A randomised controlled trial. Lancet Respir. Med. 2018, 6, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Ladha, K.; Vidal Melo, M.F.; McLean, D.J.; Wanderer, J.P.; Grabitz, S.D.; Kurth, T.; Eikermann, M. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: Hospital based registry study. BMJ 2015, 351, h3646. [Google Scholar] [CrossRef] [PubMed]
- Hemmes, S.N.; Gama de Abreu, M.; Pelosi, P.; Schultz, M.J. PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology: High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): A multicentre randomised controlled trial. Lancet 2014, 384, 495–503. [Google Scholar] [PubMed]
- Aldenkortt, M.; Lysakowski, C.; Elia, N.; Brochard, L.; Tramer, M.R. Ventilation strategies in obese patients undergoing surgery: A quantitative systematic review and meta-analysis. Br. J. Anaesth. 2012, 109, 493–502. [Google Scholar] [CrossRef]
- Neto, A.S.; Hemmes, S.N.T.; Barbas, C.S.V.; Beiderlinden, M.; Fernandez-Bustamante, A.; Futier, E.; Gajic, O.; El-Tahan, M.R.; A Al Ghamdi, A.; Günay, E.; et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: A metaanalysis of individual patient data. Lancet Respir. Med. 2016, 4, 272–280. [Google Scholar] [CrossRef]
- Ferrando, C.; Suarez-Sipmann, F.; Tusman, G.; León, I.; Romero, E.; Gracia, E.; Mugarra, A.; Arocas, B.; Pozo, N.; Soro, M.; et al. Open lung approach versus standard protective strategies: Effects on driving pressure and ventilatory efficiency during anesthesia—A pilot, randomized controlled trial. PLoS ONE 2017, 12, e0177399. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Soni, K.D.; Maitra, S. Recruitment maneuver does not provide any mortality benefit over lung protective strategy ventilation in adult patients with acute respiratory distress syndrome: A meta-analysis and systematic review of the randomized controlled trials. J. Intensive Care 2018, 6, 35. [Google Scholar] [CrossRef]
- Hess, D.R. Recruitment maneuvers and PEEP titration. Respir. Care 2015, 60, 1688–1704. [Google Scholar] [CrossRef]
- Nestler, C.; Simon, P.; Petroff, D.; Hammermüller, S.; Kamrath, D.; Wolf, S.; Dietrich, A.; Camilo, L.M.; Beda, A.; Carvalho, A.R.; et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: A randomized controlled clinical trial using electrical impedance tomography. Br. J. Anaesth. 2017, 119, 1194–1205. [Google Scholar] [CrossRef]
- Lagier, D.; Zeng, C.; Fernandez-Bustamante, A.; Melo, M.F.V. Perioperative Pulmonary Atelectasis—Part II: Clinical Implications. Anesthesiology 2021, 136, 206–236. [Google Scholar] [CrossRef]
- Park, S.; Kim, B.; Oh, A.; Han, S.; Han, H.; Ryu, J. Effects of intraoperative protective lung ventilation on postoperative pulmonary complications in patients with laparoscopic surgery: Prospective, randomized and controlled trial. Surg. Endosc. 2016, 30, 4598–4606. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zeng, J.; Zhang, C.; Zheng, W.; Huang, X.; Zhao, N.; Duan, G.; Yu, C. Optimized ventilation strategy for surgery on patients with obesity from the perspective of lung protection: A network meta-analysis. Front. Immunol. 2022, 13, 1032783. [Google Scholar] [CrossRef] [PubMed]
- Bluth, T.; Teichmann, R.; Kiss, T.; PROBESE Investigators; PROtective VEntilation Network (PROVEnet); Clinical Trial Network of the European Society of Anaesthesiology (ESA). Protective intraoperative ventilation with higher versus lower levels of Positive End-Expiratory Pressure in Obese Patients (PROBESE): Study protocol for a randomized controlled trial. Trials 2017, 18, 202. [Google Scholar] [CrossRef]
- Paulus, F.; Binnekade, J.M.; Vroom, M.B.; Schultz, M.J. Benefits and risks of manual hyperinflation in intubated and mechanically ventilated intensive care unit subjects: A systematic review. Crit. Care 2012, 16, R145. [Google Scholar] [CrossRef] [PubMed]
- Hartland, B.L.; Newell, T.J.; Damico, N. Alveolar recruitment maneuvers under general anesthesia: A systematic review of the literature. Respir. Care 2015, 60, 609–620. [Google Scholar] [CrossRef]
Non-ARS (n:20) | ARS (n:20) | p | |
---|---|---|---|
Age, years | 56.050 ± 9.411 | 55.200 ± 12.614 | 0.810 |
Weight, kg | 88.750 ± 9.513 | 82.500 ± 5.145 | 0.015 * |
Height, cm | 160.100 ± 5.025 | 158.150 ± 6.301 | 0.286 |
BMI, kg/m2 | 34.705 ± 2.863 | 33.040 ± 2.734 | 0.068 |
Duration of surgery, minutes | 195.950 ± 37.888 | 234.850 ± 91.383 | 0.091 |
ARISCAT score | 41 (37.25–41) | 36 (34–41) | 0.08 |
Comorbidity, n (%) | 0.942 | ||
HT | 8 (40) | 7 (35) | |
DM | 4 (20) | 5 (25) | |
Lung disease | 1 (10) | 1 (5) | |
Thyroid dysfunction | 1 (10) | 1 (5) | |
Other diseases | 4 (10) | 1 (5) | |
ASA, n (%) | 0.118 | ||
2 | 14 (70) | 18 (90) | |
3 | 6 (30) | 2 (10) | |
Length of hospital stay, days | 4.850 ± 1.225 | 4.900 ± 1.165 | 0.896 |
Presence of ICU hospitalization | 9 (45) | 5 (25) | 0.190 |
Non-ARS (n:20) | ARS (n:20) | p | |
---|---|---|---|
HR, beats/minute | |||
T1 | 82.550 ± 13.264 | 89.500 ± 17.831 | 0.170 |
T2 | 77.315 ± 15.975 | 84.800 ± 16.334 | 0.157 |
T3 | 72.200 ± 11.865 | 73.700 ± 12.818 | 0.730 |
T4 | 67.750 ± 13.054 | 74.850 ± 14.829 | 0.116 |
T5 | 70.900 ± 13.995 | 72.250 ± 13.186 | 0.755 |
T6 | 83.550 ± 18.740 | 89.150 ± 16.161 | 0.318 |
MAP, mmHg | |||
T1 | 107.250 ± 18.724 | 114.200 ± 17.887 | 0.237 |
T2 | 87.200 ± 16.093 | 94.300 ± 19.520 | 0.217 |
T3 | 86.600 ± 23.349 | 80.850 ± 22.850 | 0.436 |
T4 | 94.050 ± 22.312 | 91.700 ± 15.647 | 0.702 |
T5 | 85.800 ± 16.093 | 78.200 ± 12.297 | 0.102 |
T6 | 99.800 ± 20.106 | 94.450 ± 12.725 | 0.321 |
SpO2, % | |||
T1 | 99.150 ± 1.225 | 98.500 ± 1.791 | 0.189 |
T2 | 100 (99.25–97) | 100 (99–100) | 0.226 |
T3 | 99.300 ± 1.218 | 99.350 ± 1.089 | 0.892 |
T4 | 98.50 (97–100) | 99 (98–100) | 0.210 |
T5 | 100 (99–100) | 99 (98.25–100) | 0.408 |
T6 | 98.750 ± 1.446 | 99 ± 1.414 | 0.584 |
NIRSright | |||
T1 | 67.800 ± 5.745 | 71.650 ± 11.449 | 0.187 |
T2 | 69.100 ± 7.340 | 72 ± 10.130 | 0.306 |
T3 | 65.50 (60–70) | 70 (64.25–73.50) | 0.147 |
T4 | 69.50 (61.75–72) | 68 (63.25–73.75) | 0.924 |
T5 | 67.550 ± 7.472 | 69.800 ± 10.144 | 0.429 |
T6 | 70 (65.75–72.50) | 72 (66.25–76) | 0.284 |
NIRSleft | |||
T1 | 70.650 ± 8.171 | 69.750 ± 8.018 | 0.727 |
T2 | 71.850 ± 8.317 | 70.300 ± 7.427 | 0.538 |
T3 | 70.750 ± 9.930 | 67.400 ± 7.535 | 0.237 |
T4 | 71.050 ± 10.262 | 66.300 ± 7.644 | 0.105 |
T5 | 72.150 ± 11.379 | 67.350 ± 8.336 | 0.136 |
T6 | 71.400 ± 9.996 | 70.500 ± 7.976 | 0.755 |
T2 | T3 | T4 | T5 | |||||
---|---|---|---|---|---|---|---|---|
Non-ARS | ARS | Non-ARS | ARS | Non-ARS | ARS | Non-ARS | ARS | |
TV mL | 430.650 ± 39.349 | 433 ± 34.957 | 436.400 ± 24.469 | 434.80 ± 44.139 | 432 ± 27.028 | 447.100 ± 40.167 | 438.850 ± 29.205 | 460.900 ± 56.616 |
Respiratory rate | 12 (12–12.75) | 12 (12–12) | 12.200 ± 0.410 | 12.450 ± 0.604 | 12.700 ± 1.031 | 12.750 ± 0.966 | 12.550 ± 0.944 | 12.850 ± 10.308 |
FiO2 % | 60.750 ± 7.304 | 63.750 ± 5.590 | 59.500 ± 6.261 | 63.250 ± 4.94 * | 62.250 ± 4.127 | 62.750 ± 3.79 | 61.750 ± 6.544 | 64.250 ± 5.447 |
Flow L | 0.935 ± 0.142 | 0.895 ± 0.203 | 0.655 ± 0.238 | 0.535 ± 0.200 | 0.537 ± 0.206 | 0.520 ± 0.155 | 0.675 ± 0.244 | 0.552 ± 0.215 |
PIP cmH2O | 18.00 ± 2.533 | 19.350 ± 2.084 | 18 (16.25–19.75) | 19.50 (17.25–21.75) | 22 (21–23.75) * | 20 (18.25–22) | 18.500 ± 2.982 | 18.800 ± 2.419 |
Pplato cmH2O | 16.550 ± 3.235 | 19.050 ± 2.372 * | 19 (16–21.50) | 18 (15.25–18.75) | 19.750 ± 2.291 | 19.200 ± 3.365 | 18.500 ± 2.982 | 18.800 ± 2.419 |
DP cmH2O | 8.550 ± 3.235 | 11.150 ± 2.539 * | 9.050 ± 2.665 | 11.500 ± 4.123 * | 10.950 ± 3.546 | 11.650 ± 2.277 | 10.450 ± 2.946 | 10.650 ± 2.345 |
Cdyn mL/cmH2O | 51.375 ± 9.012 | 56.490 ± 12.725 | 55.040 ± 10.770 | 53.475 ± 13.386 | 42.590 ± 7.796 | 53.445 ± 15.204 * | 52.480 ± 12.536 | 55.480 ± 12.935 |
Non-ARS (n:20) | ARS (n:20) | p | |
---|---|---|---|
Radiological Atelectasis Score, n (%) | 0.039 * | ||
0 | 5 (25) | 10 (50) | |
1 | 9 (45) | 9 (45) | |
2 | 2 (10) | 0 | |
3 | 2 (10) | 0 | |
4 | 2 (10) | 1 (5) | |
Grade scale for PPC, n (%) | 0.170 | ||
0 | 6 (30) | 9 (45) | |
1 | 10 (50) | 10 (50) | |
2 | 2 (10) | 1 (5) | |
3 | 2 (10) | 0 | |
4 | 0 | 0 | |
Extrapulmonary complications, n (%) | 2 (10) | 4 (20) | 0.360 |
SIRS Sepsis | 0 | 1 (5) | |
Surgical complication: Anastomotic leakage and need for surgical re-intervention | 1 (5) | 0 | |
Surgical site infection | 0 | 1 (5) | |
Renal complications | 1 (5) | 2 (10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akyol, D.; Özcan, F.G. The Impact of Alveolar Recruitment Strategies on Perioperative Outcomes in Obese Patients Undergoing Major Gynecologic Cancer Surgeries: A Prospective Randomized Controlled Trial. Diagnostics 2025, 15, 1428. https://doi.org/10.3390/diagnostics15111428
Akyol D, Özcan FG. The Impact of Alveolar Recruitment Strategies on Perioperative Outcomes in Obese Patients Undergoing Major Gynecologic Cancer Surgeries: A Prospective Randomized Controlled Trial. Diagnostics. 2025; 15(11):1428. https://doi.org/10.3390/diagnostics15111428
Chicago/Turabian StyleAkyol, Duygu, and Funda Gümüş Özcan. 2025. "The Impact of Alveolar Recruitment Strategies on Perioperative Outcomes in Obese Patients Undergoing Major Gynecologic Cancer Surgeries: A Prospective Randomized Controlled Trial" Diagnostics 15, no. 11: 1428. https://doi.org/10.3390/diagnostics15111428
APA StyleAkyol, D., & Özcan, F. G. (2025). The Impact of Alveolar Recruitment Strategies on Perioperative Outcomes in Obese Patients Undergoing Major Gynecologic Cancer Surgeries: A Prospective Randomized Controlled Trial. Diagnostics, 15(11), 1428. https://doi.org/10.3390/diagnostics15111428